References
1. Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., O’Meara, M. J., Rezelj, V. V., Guo, J. Z., Swaney, D. L., Tummino, T. A., Hüttenhain, R., Kaake, R. M., Richards, A. L., Tutuncuoglu, B., Foussard, H., Batra, J., Haas, K., Modak, M., … Krogan, N. J. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature , 583 (7816), 459–468. https://doi.org/10.1038/s41586-020-2286-9
2. Clark, L. K., Green, T. J., & Petit, C. M. (2020). Structure of Nonstructural Protein 1 from SARS-CoV-2. Journal of Virology ,95 (4). https://doi.org/10.1128/jvi.02019-20
3. Egorova, T., & Alkalaeva, E. (2020). Nsp1 of SARS-CoV-2 Stimulates Host Translation Termination .
4. Kamitani, W., Narayanan, K., Huang, C., Lokugamage, K., Ikegami, T., Ito, N., Kubo, H., & Makino, S. (2006). Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proceedings of the National Academy of Sciences of the United States of America , 103 (34), 12885–12890. https://doi.org/10.1073/pnas.0603144103
5. Vankadari, N., Jeyasankar, N. N., & Lopes, W. J. (2020). Structure of the SARS-CoV-2 Nsp1/5′-Untranslated Region Complex and Implications for Potential Therapeutic Targets, a Vaccine, and Virulence. The Journal of Physical Chemistry Letters , 9659–9668. https://doi.org/10.1021/acs.jpclett.0c02818
6. Tohya, Y., Narayanan, K., Kamitani, W., Huang, C., Lokugamage, K., & Makino, S. (2009). Suppression of Host Gene Expression by nsp1 Proteins of Group 2 Bat Coronaviruses. Journal of Virology , 83 (10), 5282–5288. https://doi.org/10.1128/jvi.02485-08
7. Pandala, N., Cole, C. A., McFarland, D., Nag, A., & Valafar, H. (2020). A Preliminary Investigation in the Molecular Basis of Host Shutoff Mechanism in SARS-CoV. Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, BCB 2020 , August . https://doi.org/10.1145/3388440.3412483
8. Semper, C., Watanabe, N., & Savchenko, A. (2021). Structural characterization of nonstructural protein 1 from SARS-CoV-2.IScience , 24 (1), 101903. https://doi.org/10.1016/j.isci.2020.101903
9. Schubert, K., Karousis, E. D., Jomaa, A., Scaiola, A., Echeverria, B., Gurzeler, L. A., Leibundgut, M., Thiel, V., Mühlemann, O., & Ban, N. (2020). SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nature Structural and Molecular Biology ,27 (10), 959–966. https://doi.org/10.1038/s41594-020-0511-8
10. Kumar, A., Kumar, A., Kumar, P., Garg, N., & Giri, R. (2020). SARS-CoV-2 NSP1 C-terminal region (residues 130-180) is an intrinsically disordered region. BioRxiv . https://doi.org/10.1101/2020.09.10.290932
11. Thoms, M., Buschauer, R., Ameismeier, M., Koepke, L., Denk, T., Hirschenberger, M., Kratzat, H., Hayn, M., MacKens-Kiani, T., Cheng, J., Straub, J. H., Stürzel, C. M., Fröhlich, T., Berninghausen, O., Becker, T., Kirchhoff, F., Sparrer, K. M. J., & Beckmann, R. (2020). Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science , 369 (6508), 1249–1256. https://doi.org/10.1126/SCIENCE.ABC8665
12. Lokugamage, K. G., Narayanan, K., Huang, C., & Makino, S. (2012). Severe Acute Respiratory Syndrome Coronavirus Protein nsp1 Is a Novel Eukaryotic Translation Inhibitor That Represses Multiple Steps of Translation Initiation. Journal of Virology , 86 (24), 13598–13608. https://doi.org/10.1128/jvi.01958-12
13. Tanaka, T., Kamitani, W., DeDiego, M. L., Enjuanes, L., & Matsuura, Y. (2012). Severe Acute Respiratory Syndrome Coronavirus nsp1 Facilitates Efficient Propagation in Cells through a Specific Translational Shutoff of Host mRNA. Journal of Virology ,86 (20), 11128–11137. https://doi.org/10.1128/jvi.01700-12
14. Bouayad, A. (2020). Innate immune evasion by SARS-CoV-2: Comparison with SARS-CoV. Reviews in Medical Virology , 30 (6), 1–9. https://doi.org/10.1002/rmv.2135
15. Vankadari, N., Jeyasankar, N. N., & Lopes, W. J. (2020). Structure of the SARS-CoV-2 Nsp1/5′-Untranslated Region Complex and Implications for Potential Therapeutic Targets, a Vaccine, and Virulence.Journal of Physical Chemistry Letters , 11 (22), 9659–9668. https://doi.org/10.1021/acs.jpclett.0c02818
16. Almeida, M. S., Johnson, M. A., Herrmann, T., Geralt, M., & Wüthrich, K. (2007). Novel β-Barrel Fold in the Nuclear Magnetic Resonance Structure of the Replicase Nonstructural Protein 1 from the Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology , 81 (7), 3151–3161. https://doi.org/10.1128/jvi.01939-06
17. Alsulami, A. F., Thomas, S. E., Jamasb, A. R., Beaudoin, C. A., Moghul, I., Bannerman, B., Copoiu, L., Vedithi, S. C., Torres, P., & Blundell, T. L. (2021). SARS-CoV-2 3D database: understanding the coronavirus proteome and evaluating possible drug targets.Briefings in Bioinformatics , 00 (September 2020), 1–12. https://doi.org/10.1093/bib/bbaa404
18. Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology , 48 (3), 443–453. https://doi.org/10.1016/0022-2836(70)90057-4
19. Rice, P., Longden, L., & Bleasby, A. (2000). EMBOSS: The European Molecular Biology Open Software Suite. Trends in Genetics ,16 (6), 276–277. https://doi.org/10.1016/S0168-9525(00)02024-2
20. Yang, J., & Zhang, Y. (2015). I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Research , 43 (W1), W174–W181. https://doi.org/10.1093/nar/gkv342
21. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography ,26 (2), 283–291. https://doi.org/10.1107/s0021889892009944
22. Laskowski, R. A., Rullmann, J. A. C., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR , 8 (4), 477–486. https://doi.org/10.1007/BF00228148
23. Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research , 35 (SUPPL.2), 407–410. https://doi.org/10.1093/nar/gkm290
24. Vriend, G., & Sander, C. (1993). Quality control of protein models: Directional atomic contact analysis. Journal of Applied Crystallography , 26 (pt 1), 47–60. https://doi.org/10.1107/S0021889892008240
25. Anandakrishnan, R., Aguilar, B., & Onufriev, A. V. (2012). H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Research , 40 (W1), 537–541. https://doi.org/10.1093/nar/gks375
26. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis.Journal of Computational Chemistry , 25 (13), 1605–1612. https://doi.org/10.1002/jcc.20084
27. Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics ,32 (23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514
28. Martin, A. J. M., Vidotto, M., Boscariol, F., Di Domenico, T., Walsh, I., & Tosatto, S. C. E. (2011). RING: networking interacting residues, evolutionary information and energetics in protein structures.Bioinformatics , 27 (14), 2003–2005. https://doi.org/10.1093/bioinformatics/btr191
29. Piovesan, D., Minervini, G., & Tosatto, S. C. E. (2016). The RING 2 . 0 web server for high quality residue interaction networks .44 (May), 367–374. https://doi.org/10.1093/nar/gkw315
30. Singer, J., Gifford, R., Cotten, M., & Robertson, D. (2020). CoV-GLUE: A Web Application for Tracking SARS-CoV-2 Genomic Variation.Preprints , June , 2020060225. https://doi.org/10.20944/preprints202006.0225.v1
31. Rodrigues, C. H. M., Pires, D. E. V, & Ascher, D. B. (2018).DynaMut : predicting the impact of mutations on protein conformation , flexibility and stability . 46 (April), 350–355. https://doi.org/10.1093/nar/gky300
32. Rezaei, S., Sefidbakht, Y., & Uskoković, V. (2020). Comparative molecular dynamics study of the receptor-binding domains in SARS-CoV-2 and SARS- CoV and the effects of mutations on the binding affinity.Journal of Biomolecular Structure and Dynamics , 0 (0), 1–20. https://doi.org/10.1080/07391102.2020.1860829
33. Zhang, N., Chen, Y., Lu, H., Zhao, F., Alvarez, R. V., Goncearenco, A., Panchenko, A. R., & Li, M. (2020). MutaBind2: Predicting the Impacts of Single and Multiple Mutations on Protein-Protein Interactions. IScience , 23 (3), 100939. https://doi.org/10.1016/j.isci.2020.100939
34. Lieutaud, P. (2016). How disordered is my protein and what is its disorder for ? A guide through the “ dark side ” of the protein universe . 4 (1), 1–33. https://doi.org/10.1080/21690707.2016.1259708
35. Vinterhalter, G., Kova, J. J., Uversky, V. N., & Pavlovi, G. M. (2021). International Journal of Biological Macromolecules Bioinformatics analysis of correlation between protein function and intrinsic disorder . 167 , 446–456. https://doi.org/10.1016/j.ijbiomac.2020.11.211
36. Chand, G. B., Banerjee, A., & Azad, G. K. (2020). Identification of novel mutations in RNA-dependent RNA polymerases of SARS-CoV-2 and their implications on its protein structure. PeerJ , 2020 (7), 1–11. https://doi.org/10.7717/peerj.9492
37. Goethe, M., Fita, I., & Rubi, J. M. (2015). Vibrational entropy of a protein: Large differences between distinct conformations.Journal of Chemical Theory and Computation , 11 (1), 351–359. https://doi.org/10.1021/ct500696p
38. Shi, M., Wang, L., Fontana, P., Vora, S., Zhang, Y., Fu, T. M., Lieberman, J., & Wu, H. (2020). SARS-CoV-2 Nsp1 suppresses host but not viral translation through a bipartite mechanism. BioRxiv ,2 , 1–16. https://doi.org/10.1101/2020.09.18.302901
39. Charon, J., Barra, A., Walter, J., Millot, P., Hébrard, E., Moury, B., & Michon, T. (2018). First Experimental Assessment of Protein Intrinsic Disorder Involvement in an RNA Virus Natural Adaptive Process.Molecular Biology and Evolution , 35 (1), 38–49. https://doi.org/10.1093/molbev/msx249
40. Walter, J., Charon, J., Hu, Y., Lachat, J., Leger, T., Lafforgue, G., Barra, A., & Michon, T. (2019). Comparative analysis of mutational robustness of the intrinsically disordered viral protein VPg and of its interactor eIF4E. PLoS ONE , 14 (2), 1–13. https://doi.org/10.1371/journal.pone.0211725
41. Mozzi, A., Forni, D., Cagliani, R., Clerici, M., Pozzoli, U., & Sironi, M. (2020). Intrinsically disordered regions are abundant in simplexvirus proteomes and display signatures of positive selection.Virus Evolution , 6 (1), 1–12. https://doi.org/10.1093/ve/veaa028
42. Barik, S. (2020). Genus-specific pattern of intrinsically disordered central regions in the nucleocapsid protein of coronaviruses.Computational and Structural Biotechnology Journal , 18 , 1884–1890. https://doi.org/10.1016/j.csbj.2020.07.005
43. Sen, S., Dey, A., Bandhyopadhyay, S., & Uversky, V. N. (2012).Understanding Structural Malleability of the SARS-CoV-2 Proteins and their Relation to the Comorbidities SARS-CoV-2 . 774 , 1–17.
44. Macraild, C. A., Richards, J. S., Anders, R. F., & Norton, R. S. (2016). Antibody Recognition of Disordered Antigens. Structure ,24 (1), 148–157. https://doi.org/10.1016/j.str.2015.10.028