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Abstract

The  Forecasting  of  Groundwater  Fluctuations  is  a  useful  tool  for  managing  groundwater

resources in the mining area. Water resources management requires identifying potential periods

for groundwater drainage to prevent groundwater from entering the mine pit and imposing high

costs. In this research, Auto-Regressive Integrated Moving Average (ARIMA) and Holt-Winters

Exponential Smoothing (HWES) data-driven models were used for short-term modeling of the

groundwater  fluctuations  in  a  piezometer  around the  Gohar  Zamin  Iron  Ore  Mine.  For  this

purpose, 250 non-seasonal groundwater  fluctuations  data in the period 22-Nov-2018 to 29-Jul-

2019, 200 data for modeling, and 50 data for prediction were used. To take advantage of all the

features of the two developed models, the predictions are combined with different methods and

specific  weights.  The results  show better  accuracy for the ARIMA method between the two

short-term forecasts, while the HWES method requires less time for modeling. Also, among all

the  predictions  made,  the  highest  accuracy  for  the  combined  least-squares  method  is  for

forecasting the groundwater fluctuations in the short-term. All the forecasts show a decrease in

the groundwater fluctuations, indicating pumping wells around the Gohar Zamin Iron Ore Mine

area.

Keywords: Groundwater  Fluctuations,  ARIMA,  HWES,  Data-Driven  Models,  Combining

Forecasts

1. Introduction

Groundwater is a natural resource that has costly adverse effects on mining operations (Brawner,

1986). Due to the increased depth of mining, excavation may be done below the water table,
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which leads  to  the movement  of  water  towards  mining works.  Too much water  entering  the

mining  environment  may  delay  the  project  or  impede  production,  in  addition  to  causing

environmental and safety problems (Singh & Atkins, 1985). Increased equipment failure, lack of

access to part of the mining area, increased use of explosives, loading problems, unsafe working

conditions,  and a damaging effect on pit slope stability are among the undesirable impacts of

groundwater  entering  the  mining  environment.  Therefore,  to  overcome  these  problems,  it  is

necessary to develop an efficient dewatering system that predicts groundwater  fluctuations that

can contribute significantly to this design.

In  recent  years,  data-driven  techniques  have  been  a  useful  tool  for  predicting  groundwater

fluctuations as an alternative to physical models.  Lack of need for information about aquifer

hydrogeological parameters is the most crucial advantage of data-driven models over physical

models (Adamowski & Chan, 2011), but data-driven models need precise calibration ((Burrows

& Doherty, 2015); (Xu & Valocchi, 2015); (Burrows & Doherty, 2016); (Stefania et al., 2018);

(Gianni,  Doherty,  &  Brunner,  2019);  (Pan  et  al.,  2019);  (Nogueira,  Schmidt,  Trauth,  &

Fleckenstein,  2021)).  Hence,  data-driven  models  can  be  more  appropriate  if  comprehensive

information  about  subsurface  characteristics  is  inaccessible.  Also,  data-driven  models  are

superior to physical models for modeling and predicting groundwater fluctuations because they

can overcome the uncertainty of parameters and data constraints ((Maskey, Dibike, Jonoski, &

Solomatine, 2000); (Nikolos, Stergiadi, Papadopoulou, & Karatzas, 2008); (Banerjee, Prasad, &

Singh, 2009); (Yoon, Jun, Hyun, Bae, & Lee, 2011); (Shiri, Kisi, Yoon, Lee, & Hossein Nazemi,

2013); (Boggs, Van Kirk, Johnson, & Fairley, 2014); (Chang, Wang, & Mao, 2015); (Curtis, Li,

Liao,  &  Lusch,  2018);  (Ross,  Ali,  Spence,  Oswald,  &  Casson,  2019)).  The  extensive  and

successful  application  of  data-driven  models  in  hydrological  and  hydrogeological  fields  to
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predict  groundwater  fluctuations  changes  have  been  demonstrated  in  many  previous  studies

(Guo, Song, Shi, & Li, 2020), such as runoff  (Pektaş & Kerem Cigizoglu, 2013),  arid region

(Mirzavand & Ghazavi, 2015), semiarid  (Choubin & Malekian, 2017),  Spring Discharge,  river

basin (Gibrilla, Anornu, & Adomako, 2018).

Among  data-driven  models,  linear  models  are  one  of  the  most  widely  used  methods  for

predicting groundwater fluctuations. The need for less computational time and effort for training

is an advantage of linear models. Struggling to handle non-linearity is the principal disadvantage

of this model. To develop linear models:

I) The input time series must be stationary.

II) Residuals must be white noise.

There should be no cross-correlation and no autocorrelation between the input and the residuals;

also, the mean of time series should be zero (Zanotti et al., 2019).

Developing data-driven models for accurate and efficient estimation requires a large amount of

time series data, which is a time-consuming and costly process. The primary purpose of this

research is to develop and compare statistical methods to forecast groundwater fluctuations using

a  small  amount  of  time  series  data.  For  this  purpose,  Auto-Regressive  Integrated  Moving

Average (ARIMA) and Holt-Winters Exponential Smoothing (HWES) linear statistical methods

have been used to predict the fluctuations of the groundwater fluctuations of Gohar Zamin Iron

Ore Mine in a short period of 250 days. The innovation of this research is the combination of

developed models to cover and capture the desired features of each forecasting method.

The rest of this research is organized as follows: Section 2 describes information on the study area

and developed models, Section 3 provides the results and discussion of this research, and section

4 presents the conclusions of this research.
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2. Materials and Methods

2.1 Study area

Gol Gohar iron ore deposit is one of the most popular pivot points of the mining industry in the

Middle East, with six separate anomalies. This deposit with a reserve of about 1200 million tons

is located in an area of approximately 10 km in length and nearly 4 km in width. The mining area

is generally covered with recent alluvium. Stone outcrops contain Paleozoic metamorphic rock in

the south, Mesozoic and Cenozoic sedimentary rock in the east of the mine. Six separate Gol

Gohar anomalies of iron deposits are situated in the metamorphic complex. The lower part of

Gneiss consists of Mica schist, Amphibolite, and Quartz schist. Deposits of sediments are mostly

related to Pliocene and Quaternary periods containing conglomerate, sandstone, marl, Gypsum-

bearing clay,  and limestone.  From the tectonic point of view, Gol Gohar is located near the

Zagros fault, and also, Deh Bid and Deh Shir faults located in this area are in contact with each

other. The area is affected by compressive tectonics. The original faults are generally the reverse

types, and the normal faults are the secondary ones. All the Quaternary faults are normal and

active faults, and they can move a distance of a few centimeters to several meters. These faults

play a part in guiding the water surface and groundwater through Gohar Zamin Iron Ore Mine.

These young faults are created by movements of Strike-slip faults from the direction of NW-SE

and have bent to the left.

In anomaly NO.3 (Gohar Zamin Iron Ore Mine), groundwater does not enter the pit; therefore,

water permeates through the alluvium of the pit’s stairs. Artesian explored borehole is another

problem of this mine. One of the probable factors of going groundwater inflow into Gohar Zamin

Iron Ore Mine is Kheyrabad plain with alluvial sediments situated in the northeast of the mine at

15 km (figure 1). Furthermore, since the mine is surrounded by various faults such as Kheyrabad,
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Gol Gohar, the probability of the water inflow from the Kheyrabad plain to the mine is doubled.

When  the  mine  is  boring,  the  hydraulic  gradient  of  groundwater,  which  goes  through  the

Kheyrabad plain, changes its direction and goes through the mine. Around the Gohar Zamin Iron

Ore  Mine,  water  pumping  wells  are  located  around  anomaly  No.  1,  which  is  considered  a

discharge  area.  The  data  set  includes  daily  groundwater  fluctuations  data  measured  at  six

piezometers around the mine pit (22-Nov-2018 to 29-Jul-2019).

Fig. 1. Study area and location of Gohar Zamin Iron Ore Mine.

2.2 Time Series Analysis

A time series is a sequence of observations with an equal time interval related to one or more

variables and recorded as a random sequence in time  (Yoon, Hyun, Ha, Lee, & Kim, 2016);

(Nixdorf & Trauth, 2018). Series data has a definite beginning and end and is not independent

when  the  same desirable  feature  is  used  for  modeling. In  time  series  analysis,  the  variable

changes are explained based on the current  and past changes of the other variables  (Palit  &

Popovic, 2005). The purpose of time series analysis:

1.  Create  input  models  that  express  the  random  behavior  of  a  variable  over  time  using  a

probabilistic model

2. Prediction to obtain values in forwarding time steps using the developed model

The most critical aspect of the series analysis is when it helps eliminate or reduce the inherent

distribution of fluctuating components in measured values.

2.2.1 Non-Seasonal Auto-Regressive Integrated Moving Average (ARIMA)
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Due to the lack of the necessary theory for the time series, statistical concepts are used based on

the distribution functions to extract the essential regression to model the time series. Besides,

standard regression cannot be used due to the serial correlation of time series due to the inability

to estimate the coefficients of the regression equation. Box and Jenkins’ approach (1976) and

Auto-Regressive Integrated Moving Average (ARIMA) modeling have been used to solve this

problem. The Box and Jenkins method is not a straightforward process but a series of repetitive

actions, as shown in Figure 2. 

Fig. 2. Box and Jenkins model construction method (Palit & Popovic, 2005).

In  the  model  identification  phase,  the  number  of  parameters  of  the  developed mathematical

model is carefully determined with the studied time series data. In the model estimation phase,

the  values  of  the model  parameters  are  calculated  by minimizing  the  sum of  the  remaining

squares. In the model evaluation phase, the model’s precision is examined, and the model is

developed.

The essential  condition for modeling and predicting a time series using the Box and Jenkins

approach is  the time series  is  stationary. The time series  have a  non-stationary  trend,  so by

identifying the systematic pattern and identifying the type, and eliminating the trend, the time

series is de-trending and stationarity. Locally weighted regression and smoothing scatter plot, a

particular  form of  the  nearest  neighbor  fit  that  is  a  non-parametric  approach  introduced  by

Cleveland (1979), can be used to identify the type of time series trend. In this method, instead of

considering all the samples, a part of it is recognized. For each observation in its neighborhood, a

multi-sentence regression of locally weighted fit is observed. Points with more distance weigh

less, and points with less distance weigh more.
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The time series converted to stationarity by differencing the time series d times. Differencing is

an operation by which a replacement time series is made by taking the differences of values, like

y (t )– y (t−1),  with  the  non-stationary  time  series  pattern.  During  this  research,  the  Mann-

Kendall  test  was  accustomed  to  assess  the  stationarity  of  the  groundwater  fluctuations.

Therefore,  the  time  series  may  be  considered  stationary  with  a  significance  level  of  0.05,

meaning that they might be used without transformation (Zanotti et al., 2019). The residuals are

identified as a de-trending time series (Palit & Popovic, 2005).

In the acronym  Auto-Regressive Integrated Moving Average (ARIMA), the letter I symbolize

integration.  Within  the  model  identification  phase,  additionally  to  the  Integrated  order

identification,  the  quantity  of  required  AR  and  MA  parameters  for  the  model  should  be

identified.  The general  convention  for  outlining  the  structure  of  ARIMA models  is  ARIMA

( p .d .q),  p and  q are the number of Auto-Regressive parameters and the number of moving-

average parameters, respectively  (Kabir et al., 2018).  d  stands that the number of differencing

passes (Bhardwaj, Chandrasekhar, Padiyar, & Gadre, 2020). The equation of the ARIMA model

for a non-seasonal time series model as:

y t=c+∅1 yd (t−1)+∅p yd (t−p )+…+θ1et−1+θqe t−q+e t
(1

)

Where y t is groundwater fluctuations value at time t . yd means y differenced d times. e t is the

error of the model as a mixture of the previous error. ∅k . θk  are the Auto-Regressive and moving

average constant coefficients of the model at lag k .

Due to the uncertainty of the number of parameters identified for the Auto-Regressive Integrated

Moving  Average  (ARIMA)  model,  information  criterion  methods  such  as  Akaike  (1987)
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Information Criterion (AIC), Bayesian (Gideon, 1978) Information Criterion (BIC), and Hannan

and Quinn (1979) Information Criterion (HQIC) can be used to estimate the optimal number of

parameters. After determining the required number of parameters of the model, the model should

be evaluated using these values. Some unique statistical methods, such as Maximum Likelihood,

can be used to determine the model. The assessed demonstrate at this step ought to have the most

reduced mistake rate than the real proof.

The  validity  of  the  developed  model  must  be  confirmed  in  the  last  phase  of  the  model

construction.  The  fit  of  the  developed  model  should  be  checked  with  time  series  data.  In

addition, future forecast values should be close to the actual values. A simplified approach to

verify the minimum number of model parameters needed to represent the observation data is to

check the residuals’ mutual noncorrelation. In the case of residual correlation,  the number of

model parameters must be increased. The residual diagnostic methods are appropriate to verify

this correlation.  Residual diagnostics includes statistical  calculations of the autocorrelation of

residuals.  The  correlogram  of  residuals  is  assessed  for  checking  the  mutual  correlation  of

residuals. Spikes in the correlogram signs that the residuals may be correlated, which the model

created is not satisfactory.

2.2.2 Holt-Winters Exponential Smoothing (HWES)

The Exponential Smoothing approach is especially suitable for short-term forecasting. In this

method, weight factors are used for the past values, and the weight factors are reduced in the

form of  a  view with  a  distance  from the  previous  values  of  the  time  series  (Bowerman  &

O'Connell,  1993).  This  approach  makes  possible  formula  of  the  prediction  algorithm  that

requires only a few recent data with fewer calculations (Holt, 2004).
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The smoothed series y t is given by:

y t+k=a+bk
(2

)

a is the permanent component, and b is the trend. The following recursions characterize these 

two coefficients:

a ( t )=α y t+(1−α ) (a (t−1 )+b ( t−1 ) )
(3

)

b ( t )=β (a ( t )−a ( t−1 ) )+1−βb(t−1)
(4

)

Where α  and β are damping factors fluctuating between 0 and 1 depending on the specific time

series characteristics. Time series patterns and smoothing objectives can affect the optimal value

of these parameters. α  values between 0.1 and 0.3 are more commonly used because they rely on

many  last  observations  to  predict.  Values  close  to  1  are  seldom  used  because  they  make

predictions that depend on recent data. For example,  α=1 shows the forecast is equal to recent

observations.

2.2.3 Forecast Combining

There  are  several  ways to  predict  the  time series,  but  choosing the best method is  difficult.

Besides,  each  of  the  available  techniques  offers  different  predictive  results,  which  after

comparing the results, the best model is selected based on the professional experience of the

user. These models and forecasting, in addition to different fundamental assumptions, also use

additional information. Traditionally, an individual prediction was chosen with the least error.

Various studies have shown that forecast combining has a more precise result than selecting the
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best forecast.  Timmermann (2006) presents an overview of such studies, citing  Clemen (1989)

and Makridakis and Hibon (2000) specifically.

Forecast  combining  can  be  combining  multiple  forecasts  into  one  forecast.  The  forecast

combining method is based on forecast evaluation and model selection techniques. To choose the

most practical forecasting, the acceptability of each forecasting must be measured. Instead of

identifying  the  best  forecasting,  the  feature  of  all  predictions  can  be  used  by  generating

weighting  coefficients.  Combined  forecasting  methods  regularly  utilize  a  simple  weighted

average  calculation.  The  cross-forecast  average  with  various  predictions  assigned  different

weights is computed. Different weights are used to determine complex weight schemes during

the forecast period. The following is a list of commonly used methods that use constant weights

through time:

Simple mean:  In this method, the arithmetic mean of forecasts at each observation within the

forecast sample is calculated. During this method, every forecast is given an identical weight.

Simple median: The median of the prediction at each observation within the prediction sample

will be estimated for the simple median method. The implicit (0, 1) weights are time-varying as

every forecasting method is also the median for a few observations.

Least-squares weights:  To use this method, the actual values of the forecasted  variable for a

few of  the  forecast  periods  must  be  identified.  This  method is  calculated  by  regressing  the

forecasts  against  particular  values  and using regression coefficients  as  weights.  In  the  least-

squares  method,  the  underlying  individual  forecasts  can  be  unbiased,  and  also  the  resulting

average can be outside the scope of the underlying forecasts.
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Mean squares error weights: Mean squares error (MSE) weighting during the forecast period

compares  the  actual  values  with  the  individual  forecasts  (Stock  &  Watson,  2002).  After

computing each forecast, individual forecast weights are formed using the following equation.

w i=

1

MSEi
k

∑
j=1

N
1

MSE j
k

(5)

k  is employed to change the MSE to different powers. The most comprehensive power for k is 1.

MSE ranks:  This method estimates the  mean squares error  of every forecast, then ranks them

and finally calculates the ratio of the inverse of the ranks  (Aiolfi, Capistran, & Timmermann,

2010). The weight of forecasting is obtained by dividing its rank by the sum of all forecast ranks.

Smoothed AIC weights: This method applies the Akaike (1987)  information criterion from the

developed  model  that  created  each  forecast.  The  weight  of  forecasting  calculates  from  the

following equation:

w i=
exp (−0.5 AIC i)

∑
j=1

N

exp (−0.5 AIC j)

(6

)

Approximate Bayesian model averaging weights: Bayesian model averaging (BMA) weights

use the Bayesian information criterion from the developed model that produced every forecast or

the first estimation, then the weight of forecasting calculates from the following equation:

w i=
exp (−0.5BIC i)

∑
j=1

N

exp (−0.5BIC j)

(7

)

2.2.4 Forecast Evaluation Statistics
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To describe the error related to the model output, various statistical measures can be used to

compare the effectiveness of the developed models. The performance of the trained model is

compared in terms of statistical measurement of precision. During this research, the Root Mean

Squared Error (RMSE), the Mean Absolute Error (MAE), the Mean Absolute Percentage Error

(MAPE), and Theil Inequality Coefficient are taken under consideration to check the efficiency

of the models as predictive tools. RMSE and MAE are a measure of the quality deviation of the

residuals.

Supposes, the forecast sample is  j=T+1.T+2.….T+h, and in period  t ,  y t and  ŷ t denote the

particular  and  forecasted  groundwater  fluctuations,  respectively.  Forecast  evaluation  is

calculated from the following equations:

RMSE=√ ∑
t=T +1

T+h ( ŷ t− y t)
2

h
(8)

MAE= ∑
t=T +1

T +h |ŷ t− y t|
h

(9)

MAPE=100 ∑
t=T+1

T+h | ŷ t− y t
yt |
h

(10)

Theil InequalityCoefficient=
√ ∑
t=T +1

T+h ( ŷt− y t)
2

h

√ ∑
t=T +1

T +h ŷ t
2

h
+√ ∑

t=T+1

T+h y t
2

h

(11)

h is the total amount of data within the sequence. The developed model performs better with

smaller RMSE and MAE, MAPE, and Theil Inequality Coefficient values (Zanotti et al., 2019).

To evaluate the models’ performance,  different performance criteria can be used, as different

criteria,  with  emphasis  on  different  aspects  of  the  model’s  predictive  power,  examine  the
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performance of the model  (Maier, Jain, Dandy, & Sudheer, 2010). In this research, the Akaike

Information  Criterion  (AIC),  Bayesian  Information  Criterion  (BIC),  and  Hannan  and  Quinn

Information Criterion (HQIC) are calculated:

AIC=nlog(∑i=1
n

( y i− ŷ i )
2

n
)+2 p

(12

)

BIC=nlog(∑i=1
n

( y i− ŷ i )
2

n
)+ p ln (n )

(13

)

HQIC=nlog(∑i=1
n

( y i− ŷ i )
2

n
)+2 pln(ln (n ))

(14

)

y i is the i-th target value of groundwater fluctuations, ŷ i is that the i-th groundwater fluctuations

value  estimated  by the  developed  model,  and  n is  that  the  total  amount  of  data  within  the

sequence. The scalar  p is the number of parameters of the developed model that are estimated

during the training. Regarding the existence of two suitable models with acceptable residues, one

of them, which has a lower information criterion, is selected because it is better.  In addition to

measuring  model  error,  information  criteria  also consider  model  complexity.  Therefore,  they

need the potential to end in more parsimonious models (Maier et al., 2010).

To settle on the most straightforward model from the prevailing predictions,  it  means which

model has better predictor precision. The simple approach is to choose the forecast that has the

smaller  error  measurement  supported  one  in  every  of  the  error  measurements  described  in

forecasting errors. The Diebold and Mariano (2002) test is used to check the precision of several

competing predictions. For one-step-ahead prediction, the test statistic is computed as:
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S=
d
sd

(15)

Where

d=L1−L2
(16

)

And Li, i=1.2 is either an absolute or squared difference between the forecast and also the 

actual,

Li=| ŷi− y|
(17

)

Or

Li=( ŷ i− y )2 (18)

where d  and sd are the mean and sample standard deviation of d .

A  combination  test  or  Forecast  Encompassing  Test  is  used  to  test  whether  the  average  or

combination  of  predictions  performed  is  better  than  the  individual  predictions  (Chong  and

Hendry (1986) and refined by Timmermann (2006)). This test combines several forecasting into

single forecasting. In this test, if a forecast includes all information contained within the other

individual forecasts, that forecast will be even as good as a combination of all of the forecasts.

By performing regression of the model, a test of this hypothesis is performed:

Y t+h−Ŷ t+ h. i=β0+∑
j ≠i

N

β j Ŷ t+h . j (19)

For forecast  i, during the forecast period,  Y t+h is the vector of actual  values,  and during the

identical period, Ŷ t+h .i is the vector of forecast values. A test for whether forecast i contains all
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the information of the other forecasts is also performed by testing whether β j=0.∀ ( j ≠i ) ; if the

difference between the actuality values and, therefore, the forecasted values from forecast i are

not associated with the forecasts from all other developed models, then forecast i are often used

individually. If the differences are laid low with the different forecasts, then the recent forecasts

should be contained within the formation of a composite forecast.

In this research, to predict the time series using the Box and Jenkins approach, the groundwater

fluctuations data was first de-trended using the method introduced by Cleveland (1979). Then the

optimal  model  for  Auto-Regressive  Integrated  Moving  Average  (ARIMA)  modeling  is

identified, and the groundwater fluctuations for the future are predicted using it. Using the Holt-

Winters  Exponential  Smoothing model,  the  groundwater  fluctuations  are  forecasted,  and the

error of different methods is calculated. To benefit from the desirable features of each of these

predictions, the candidate models are combined, and the combined models are evaluated. All

models and evaluations in the Eviews software package are provided.

3. Results and Discussion

3.1 Auto-Regressive Integrated Moving Average (ARIMA) model

To stationarity the time series, using the Box and Jenkins approach and the Auto-Regressive

Integrated  Moving  Average  (ARIMA)  model,  time  series  trends  must  be  identified  and

eliminated. To study groundwater fluctuations trend around the study area of the available six

piezometer data, piezometer records No. 2 located in the western part of Pit Mining from 22-

Nov-2018  to  29-Jul-2019  were  examined.  The  statistical  explanation  of  the  groundwater

fluctuations is shown in Table 1.

Table 1
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The statistical explanation of the groundwater fluctuations

In visual inspection, the line fitted to groundwater data using the nearest neighbor fit method

indicates that the trend of the time series is decreasing and non-seasonal. The declining time

series shows the groundwater withdrawal by pumping wells around the mine pit (Figure 3). In

the first 90 days, the average groundwater fluctuations are about 1613.85 meters above sea level

because the pumping wells around the mine pit have been more active. During 90 to 160 days,

the average groundwater fluctuations are about 1611.95 meters above sea level, which indicates

less  activity  of  pumping wells.  In  the  last  90  days,  again,  with  more  pumping activity,  the

average groundwater fluctuations are about 1611.06 meters above sea level.

Fig. 3. The fitted line to groundwater fluctuations.

After identifying the trend to remove it, the logarithm and the first difference is taken from the

time series. A value close to 1 for the p-value in the Mann-Kendall test indicates eliminating

trends in groundwater fluctuations time series data. After removing the trend, the information

criterion was used to identify the orders in the Box and Jenkins approach. Figure 4 shows the

results of the top 20 Auto-Regressive Integrated Moving Average (ARIMA) models for different

orders, using Akaike information criteria, Bayesian information criteria, and Hannan and Quinn

information criteria. For  Akaike Information Criterion (AIC),  Bayesian Information Criterion

(BIC),  and  Hannan and Quinn Information Criterion (HQIC)  ARIMA models (6,1,3), (1,1,1),

and  (1,1,1)  are  suitable  candidates  for  modeling,  respectively.  According  to  the  simple

parsimony, the ARIMA model (1,1,1) has been used for modeling and prediction.

Fig. 4. AIC, BIC, and HQIC values for the top 20 models to estimate the model orders.
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In the modeling phase using the Box and Jenkins approach, using the candidate model, out of

250  daily  data  of  groundwater  fluctuations  available,  200  samples  were  modeled  using  the

maximum likelihood method. The fitted model and the residual value for the estimated model are

shown in Figure 5. Given that most of the remaining value is in the confidence range, as well as

the average close to zero (-6.05E-13), it  can be concluded that for the developed model, the

pattern is well identified, and a passable estimate has been made for it.

Fig. 5. Actual, fitted, and residual graphs for the first difference ARIMA model.

In the evaluation  phase of the estimated model  using the Box and Jenkins approach,  partial

autocorrelation function (PACF) and autocorrelation function (ACF) of the theoretical residues

(red) and the estimated model (blue) compares for 24 lags (Figure 6). According to the LJUNG

and BOX (1978) statistics, the model does not have a linear dependence. The serial correlation is

well captured, which indicates an acceptable estimate for the estimated model.

Fig. 6. ACF and PACF of the theoretical residues and the estimated model.

The next step is to static forecast the groundwater fluctuations for the next 50 days using the

estimated  Auto-Regressive  Integrated  Moving  Average  (ARIMA)  model. The  prediction

accuracy of the time series is shown in Table 1, which indicates a low error. The prediction made

by the ARIMA method indicates a decrease in the groundwater fluctuations in the next 50 days.

Groundwater  fluctuations  decreased  sharply  between  6  Jul-2019 and  13-Jul-2019,  indicating

more  pumping  activity.  In  the  period  from  14-Jul-2019  to  29-Jul-2019,  the  slope  of  the

groundwater  reduction  chart  has  reduced.  On  the  last  day  of  the  forecast,  the  groundwater

fluctuations are estimated at 1607.64 meters, which differs from the actual value of 1607.46 by

about 0.18 meters.
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3.2 Exponential Smoothing Model

In order to predict the time series of groundwater fluctuations, the Holt-Winters parameters for α

= 0.96, β = 0.33 and γ = 0 are estimated. α  Nearly one indicates that groundwater fluctuations

forecasting  is  commonly  based  on  recent  values  in  the  time  series. A value  of  0.33  for  β

demonstrates linearity, and a value of 0 for  γ shows that the time series is non-seasonal. The

average amount of groundwater fluctuations and the trend for modeling are 1611.57 and -0.04,

respectively. Figure 7 shows the estimated model using the Holt-Winters Exponential Smoothing

(HWES) method with its residuals. Most of the estimated residuals of the time series are in the

confidence range, and close to zero (-9.83E-13) indicates that the model is acceptable.

Fig. 7. Actual, fitted, and residual graphs for Holt-Winters Exponential Smoothing model.

In the predicted model using Holt-Winters Exponential Smoothing (HWES), the groundwater

fluctuations have decreased, and the accuracy of the forecast for this model is shown in Table 2.

The  lower  the  calculated  error  value,  the  better  the  ability  to  predict  the  developed  model

according  to  that  criterion.  The  values  of  these  statistics  were  0.107297  and  0.069369  for

RMSE(m) and MAE(m), respectively, indicating there was some minor underestimation of the

observed groundwater fluctuations. Theil inequality coefficient and the Mean Absolute Percent

Error (MAPE) are scale invariants. The Theil inequality coefficient lies between 0 and 1, where

0 indicates a perfect  fit.  A low value of MAPE (here 0.004311 %) and the Theil  inequality

coefficient (here 3.33E-05) is considered a good indicator. In the forecast made by the Holt-

Winters Exponential Smoothing (HWES) method, the groundwater fluctuations on 29-Jul-2019

are estimated at 1607.62 meters, which differs from the real value of 1607.46 by about 0.16

meters.
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Table 2

Forecast evaluation for nine forecasts applied on groundwater fluctuations data in Gohar Zamin Iron Ore

Mine

3.3 Combined Forecast

To evaluate the accuracy of the two predictions Holt-Winters Exponential Smoothing (HWES)

and Auto-Regressive Integrated Moving Average (ARIMA), the Diebold and Mariano test was

used, which for absolute and squared error, the p-value is 0.21 and 0.72, respectively. The p-

value above 5% of the null hypothesis is accepted and indicates that the two predictions have the

same  accuracy. Since  the  forecasts  made  by  ARIMA  and  HWES  models  have  the  same

efficiency  and  each  has  its  desired  characteristics,  to  capture  and  cover  all  the  forecasting

features, combining two forecasts has been used in different methods. The Encompassing test,

introduced by Chong and Hendry (1986) and refined by Timmermann (2006), was used to test

whether the prediction combination performed better than individual forecasts. The p-value of

about 0.66 for ARIMA prediction indicates a higher accuracy of this method than HWES.

To combine the predictions, 250 available data, 200 data for training, and 50 data for evaluation

were  used. The  evaluation  results  of  the  composition  of  the  predictions  made  by  different

methods are shown in Table 2. The results show the highest accuracy related to the least-squares

combination  method. Table  3  calculates  the  weights  obtained  to  combine  the  Holt-Winters

Exponential  Smoothing (HWES) and Auto-Regressive Integrated Moving Average (ARIMA)

predictions.

Table 3

The weights obtained to combine the predictions of the ARIMA and HWES models
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Figure 8 shows a forecast comparison graph for the actual mounting of groundwater fluctuations,

Holt-Winters  Exponential  Smoothing  (HWES),  and  Auto-Regressive  Integrated  Moving

Average  (ARIMA)  forecasts,  as  well  as  different  methods  of  combining  forecasts.  The

predictions show the high accuracy of the ARIMA method compared to the HWES method and

the least-squares method in combining models.

Fig. 8 Time series forecast by actual groundwater fluctuations, ARIMA, HWES, and combined forecast.

4. conclusion

Groundwater  fluctuations  for  mines  can be forecasted  by short-term analysis  that  shows the

impact of groundwater recharging and harvesting from water storage in an aquifer. The records

of piezometer No. 2 in the western part of Gohar Zamin Iron Ore Mine were reviewed from 22-

Nov-2018 to  29-Jul-2019  to  study groundwater  fluctuations.  In  this  research,  the  predictive

ability  of  Holt-Winters  Exponential  Smoothing  (HWES)  and  non-seasonal  Auto-Regressive

Integrated  Moving  Average  (ARIMA)  models  at  the  time  series  of  daily  groundwater

fluctuations around the Gohar Zamin Iron Ore Mine pit was compared.

Since each prediction has its characteristics,  this research showed that combining predictions

made  with  different  methods  has  better  results  than  individual  predictions. Diebold  and

Mariano’s  test  with  a  p-value  above  5% indicates  a  similar  accuracy  of  the  two predictive

methods. An encompassing test  with a p-value of about 0.66 for Auto-Regressive Integrated

Moving Average (ARIMA) prediction indicates a higher efficiency of this method than Holt-

Winters  Exponential  Smoothing  (HWES)  in  short-term predictions. Also,  the  results  of  the

prediction combination show a higher accuracy of the least-squares combination method than

other  prediction  methods. Forecasts  made  by  simulation  of  time  series  indicated  that  if  the
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current  situation is  still  around the pit,  it  is  predicted  that  the groundwater  fluctuations  will

decrease, indicating the activity of pumping wells around the pit. Due to the acceptable results of

the prediction combination, which shows the high accuracy of this method, it is recommended to

predict the short-term time series.
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