References
Adler, P. B., Smull, D., Beard, K. H., Choi, R. T., Furniss, T., Kulmatiski, A., … & Veblen, K. E. (2018). Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecol. Lett. , 21, 1319-1329.
Agrawal, A. A., Underwood, N., & Stinchcombe, J. R. (2004). Intraspecific variation in the strength of density dependence in aphid populations. Ecol. Entomol.  29, 521-5262008.
Armas, C., Rodríguez‐Echeverría, S., & Pugnaire, F. I. (2011). A field test of the stress‐gradient hypothesis along an aridity gradient.J. Veg. Sci. , 22, 818-827.
Barabás, G., D’Andrea, R., & Stump, S. M. (2018). Chesson’s coexistence theory. Ecol. Monogr.,88, 277-303.
Belcher, J. W., Keddy, P. A., & Twolan-Strutt, L. (1995). Root and shoot competition intensity along a soil depth gradient. J. Ecol. ,83, 673-682.
Bennett, S., Wernberg, T., De Bettignies, T., Kendrick, G. A., Anderson, R. J., Bolton, J. J., … & Christie, H. C. (2015). Canopy interactions and physical stress gradients in subtidal communities. Ecol. Lett.,  18, 677-686.
Bertness, M. D., & Ewanchuk, P. J. (2002). Latitudinal and climate-driven variation in the strength and nature of biological interactions in New England salt marshes. Oecologia , 132, 392-401.
Bimler, M. D., Stouffer, D. B., Lai, H. R., & Mayfield, M. M. (2018). Accurate predictions of coexistence in natural systems require the inclusion of facilitative interactions and environmental dependency. J. Ecol. , 106, 1839-1852.
Broekman, M. J., Muller‐Landau, H. C., Visser, M. D., Jongejans, E., Wright, S. J., & de Kroon, H. (2019). Signs of stabilisation and stable coexistence. Ecol. Lett. , 22, 1957-1975.
Calizza, E., Costantini, M. L., Careddu, G., & Rossi, L. (2017). Effect of habitat degradation on competition, carrying capacity, and species assemblage stability. Ecol. Evol. ,7, 5784-5796.
Cantrell, R. S., & Cosner, C. (1991). The effects of spatial heterogeneity in population dynamics. J. Math. Biol. , 29, 315-338.
Carlyle, C. N., Fraser, L. H., & Turkington, R. (2010). Using three pairs of competitive indices to test for changes in plant competition under different resource and disturbance levels. J. Veg. Sci.,  21, 1025-1034.
Chamberlain, S. A., Bronstein, J. L., & Rudgers, J. A. (2014). How context dependent are species interactions?. Ecol. Lett. , 17, 881-890.
Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. , 31, 343-366
Chesson, P. (2003). Quantifying and testing coexistence mechanisms arising from recruitment fluctuations. Theor. Popul. Biol. , 64, 345-357.
Chesson, P. (2018). Updates on mechanisms of maintenance of species diversity. J. Ecol. , 106, 1773-1794.
Chesson, P., & Kuang, J. J. (2008). The interaction between predation and competition. Nature,  456, 235-238.
Clark, N. J., Wells, K., & Lindberg, O. (2018). Unravelling changing interspecific interactions across environmental gradients using Markov random fields. Ecology, 99, 1277-1283.
Dayton, P. K. (1971). Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr. , 41, 351-389.
DiTommaso, A., & Aarssen, L. W. (1991). Effect of nutrient level on competition intensity in the field for three coexisting grass species. J. Veg. Sci., 2, 513-522.
Ellner, S. P., Snyder, R. E., Adler, P. B., & Hooker, G. (2019). An expanded modern coexistence theory for empirical applications. Ecol. Let t., 22, 3-18.
Fowler, N. (1982). Competition and coexistence in a North Carolina grassland: III. Mixtures of component species. The J. Ecol. , 77-92.
Fukaya, K., Okuda, T., Nakaoka, M., & Noda, T. (2014). Effects of spatial structure of population size on the population dynamics of barnacles across their elevational range. J. Anim. Ecol. , 83, 1334-1343.
Gamelon, M., Vriend, S. J., Engen, S., Adriaensen, F., Dhondt, A. A., Evans, S. R., … & Sæther, B. E. (2019). Accounting for interspecific competition and age structure in demographic analyses of density dependence improves predictions of fluctuations in population size. Ecol. Lett. , 22, 797-806.
Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Stat. Sci. , 7, 457-472.
Grainger, T. N., Levine, J. M., & Gilbert, B. (2019). The invasion criterion: A common currency for ecological research. Trends Ecol. Evol. , 34, 925-935.
Grilli, J., Barabás, G., Michalska-Smith, M. J., & Allesina, S. (2017). Higher-order interactions stabilize dynamics in competitive network models. Nature548 , 210-213.2019
Gurevitch, J. (1986). Competition and the local distribution of the grass Stipa neomexicanaEcology , 67, 46-57.
Hubbell, S. P. (2005). Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol. , 19, 166-172.
Ives, A. R., Dennis, B., Cottingham, K. L., & Carpenter, S. R. (2003). Estimating community stability and ecological interactions from time‐series data. Ecol. Monogr. , 73, 301-330.
Jenkins, S. R., Murua, J., & Burrows, M. T. (2008). Temporal changes in the strength of density‐dependent mortality and growth in intertidal barnacles. J. Anim. Ecol.,  77, 573-584.
Kadmon, R. (1995). Plant competition along soil moisture gradients: a field experiment with the desert annual Stipa capensis. J. Ecol. , 83, 253-262.
Kawai, T., & Tokeshi, M. (2007). Testing the facilitation–competition paradigm under the stress-gradient hypothesis: decoupling multiple stress factors. Proc, Roy. Soc. B. , 274, 2503-2508.
Koetke, L. J., Duarte, A., & Weckerly, F. W. (2020). Elk population dynamics when carrying capacities vary within and among herds. Sci. Rep. , 10, 1-9.
LaManna, J. A., Mangan, S. A., Alonso, A., Bourg, N. A., Brockelman, W. Y., Bunyavejchewin, S., … & Myers, J. A. (2017). Plant diversity increases with the strength of negative density dependence at the global scale. Science,  356, 1389-1392.
LaManna, J. A., Walton, M. L., Turner, B. L., & Myers, J. A. (2016). Negative density dependence is stronger in resource‐rich environments and diversifies communities when stronger for common but not rare species. Ecol. Lett. , 19, 657-667.
Levine, J. M., Bascompte, J., Adler, P. B., & Allesina, S. (2017). Beyond pairwise mechanisms of species coexistence in complex communities. Nature , 546, 56-64.
Lillegård, M., Engen, S., Sæther, B. E., GrØtan, V., & Drever, M. C. (2008). Estimation of population parameters from aerial counts of North American mallards: a cautionary tale. Ecol. Appl. , 18, 197-207.
Lines, E. R., Zavala, M. A., Ruiz‐Benito, P., & Coomes, D. A. (2020). Capturing juvenile tree dynamics from count data using Approximate Bayesian Computation. Ecography, 43, 406-418.
Maguire Jr, B. (1973). Niche response structure and the analytical potentials of its relationship to the habitat. Am. Nat. , 107, 213-246.
Menge, B. A., & Sutherland, J. P. (1987). Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am. Nat. , 130, 730-757.
Menge, B. A., & Farrell, T. M. (1989). Community structure and interaction webs in shallow marine hard-bottom communities: tests of an environmental stress model.Adv. Ecol. Res. , 19, 189-262.
Menge, B. A. (2000). Recruitment vs. postrecruitment processes as determinants of barnacle population abundance. Ecol. Monogr. , 70, 265-288.
Munroe, D. M., Noda, T., & Ikeda, T. (2010). Shore level differences in barnacle (C. dalli) recruitment relative to rock surface topography. J. Exp. Mar. Biol, Ecol. , 392, 188-192.
Nielsen, M. M., Krause-Jensen, D., Olesen, B., Thinggaard, R., Christensen, P. B., & Bruhn, A. (2014). Growth dynamics of Saccharina latissima (Laminariales, Phaeophyceae) in Aarhus Bay, Denmark, and along the species’ distribution range. Mar. Biol. , 161, 2011-2022.
Noda, T. (2004). Spatial hierarchical approach in community ecology: a way beyond high context-dependency and low predictability in local phenomena. Popul. Ecol.46 , 105-117.
Noda, T., Fukushima, K., & Mori, T. (1998). Daily settlement variability of the barnacle Semibalanus cariosus: importance of physical factors and density-dependent processes. Mar. Ecol. Prog. Ser. , 169, 289-293.
Pasinelli, G., Schaub, M., Häfliger, G., Frey, M., Jakober, H., Müller, M., … & Jenni, L. (2011). Impact of density and environmental factors on population fluctuations in a migratory passerine. J. Anim. Ecol. , 80, 225-234.
Plummer, M. (2015). JAGS Version 4.0.0 user manual.
R Core Team. (2013). R: A language and environment for statistical computing.
Raimondi, P. T. (1990). Patterns, mechanisms, consequences of variability in settlement and recruitment of an intertidal barnacle. Ecol. Monogr. , 60, 283-309.
Rees, M. (2013). Competition on productivity gradients–what do we expect?. Ecol. Lett. , 16, 291-298.
Roy, C., McIntire, E. J., & Cumming, S. G. (2016). Assessing the spatial variability of density dependence in waterfowl populations. Ecography , 39, 942-953.
Sammul, M., Kull, K., Oksanen, L., & Veromann, P. (2000). Competition intensity and its importance: results of field experiments with Anthoxanthum odoratum. Oecologia,  125, 18-25.
Sammul, M., Oksanen, L., & Mägi, M. (2006). Regional effects on competition–productivity relationship: a set of field experiments in two distant regions. Oikos,  112, 138-148.
Street, G. M., Rodgers, A. R., Avgar, T., & Fryxell, J. M. (2015). Characterizing demographic parameters across environmental gradients: a case study with Ontario moose (Alces alces). Ecosphere , 6, 1-13.
Turkington, R., Klein, E., & Chanway, C. P. (1993). Interactive effects of nutrients and disturbance: an experimental test of plant strategy theory. Ecology , 74, 863-878.
Twolan-Strutt, L., & Keddy, P. A. (1996). Above‐and belowground competition intensity in two contrasting wetland plant communities. Ecology , 77, 259-270.
Underwood, N. (2007). Variation in and correlation between intrinsic rate of increase and carrying capacity. . Am. Nat.,  169, 136-141.
Wainwright, C. E., HilleRisLambers, J., Lai, H. R., Loy, X., & Mayfield, M. M. (2019). Distinct responses of niche and fitness differences to water availability underlie variable coexistence outcomes in semi‐arid annual plant communities. J. Ecol. , 107, 293-306.
Weber, M. M., Stevens, R. D., Diniz‐Filho, J. A. F., & Grelle, C. E. V. (2017). Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta‐analysis. Ecography , 40, 817-828.
Wilson, S. D., & Shay, J. M. (1990). Competition, Fire, and Nutients in a Mixed‐Grass Prairie. Ecology , 71, 1959-1967.
Wilson, S. D., & Tilman, D. (1991). Component of plant competition along an experimental gradient of nitrogen availability. Ecology , 72, 1050-1065.
Wood, S. A., Lilley, S. A., Schiel, D. R., & Shurin, J. B. (2010). Organismal traits are more important than environment for species interactions in the intertidal zone. Ecol. Lett. , 13, 1160-1171.
Wood, S. N. (2017). Generalized additive models: an introduction with R . CRC press.
Wootton, J. T. (2005). Field parameterization and experimental test of the neutral theory of biodiversity. Nature , 433, 309-312.
Wootton, J. T., & Emmerson, M. (2005). Measurement of interaction strength in nature. Annu. Rev. Ecol. Evol. Syst. , 36, 419-444.
Zehnder, C. B., & Hunter, M. D. (2008). Effects of nitrogen deposition on the interaction between an aphid and its host plant. Ecol. Entomol. , 33, 24-30.