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Abstract 

Both cognitive abilities and dispersal tendencies can vary strongly between individuals. Since

cognitive abilities may help dealing with unknown circumstances it is conceivable that 

dispersers may rely more heavily on learning abilities than residents. However, cognitive 

abilities are costly and leaving a familiar place might result in losing the advantage of having 

learned to deal with local conditions. Thus, individuals which invested in learning to cope 

with local conditions may be more reluctant to leave their natal place. In order to 

disentangle the complex relationship between dispersal and learning abilities we 

implemented individual-based simulations. By allowing for developmental plasticity, 

individuals could either develop a `resident´ or `dispersal´ cognitive phenotype.

In line with our expectations, the correlation between learning abilities and dispersal could 

take any direction, depending how much time individuals had to recoup their investment in 

cognition. Both, longevity and the timing of dispersal within lifecycles determine the time 

individuals have to recoup that investment and thus crucially influence this correlation. We 

therefore suggest that species´ life-history will strongly impact the expected cognitive 

abilities of dispersers, relative to their resident conspecifics, and that cognitive abilities 

might be an integral part of dispersal syndromes.
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Introduction

Individuals of the same species differ in their cognitive abilities (Boogert et al. 2018; 

Cauchoix M. et al. 2018; Liedtke and Fromhage 2019a) and behaviour (e.g. personalities

(Kralj-Fišer and Schuett 2014; Réale et al. 2007; Sih et al. 2004)), including dispersal. 

Regarding the latter, there is accumulating evidence that dispersing individuals are often a 

non-random subset of their source population. For example, under intraspecific competition 

it is assumed that weaker individuals are driven out and thus more likely to disperse (D. 

Bonte and de la Pena 2009). However, under the perspective of inclusive fitness, it has been 

suggested that kin competition can lead to stronger and more competitive individuals 

leaving their natal place and compete with non-kin in new patches (D. Bonte and de la Pena 

2009; Gyllenberg et al. 2008). Dispersal is a complex process which can be divided in three 

phases: departure, transfer and settlement (Bowler and Benton 2005). Because all three 

phases involve challenges different to the day-to-day challenges an individual faces when 

staying at its natal place, dispersing individuals may adjust their phenotypic traits 

accordingly. When multiple such traits are shaped in concert this is called a `dispersal 

syndrome´ (Clobert et al. 2009; Cote and Clobert 2012; Legrand et al. 2016). Such `super 

dispersers´ can have different morphological features to facilitate movement (e.g wing- or 

body-size; reviewed in Dries Bonte et al. 2012), or may be expected to have different 

behavioural responses e.g. towards predators  (compare Geffroy et al. 2020), or unknown 

objects (compare Mettke-Hofmann et al. 2005). 

While cognitive abilities may be beneficial during all three dispersal stages (Clobert et al. 

2009; Cote and Clobert 2012; Delgado M. M. et al. 2014; Edelaar et al. 2017; Maspons et al. 
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2019; McNamara and Dall 2011), there is not much known about how individual differences 

in cognitive abilities may relate to differences in dispersal tendencies. Furthermore, cognitive

abilities, in general, are expensive and when dispersers settle in an environment in which 

these abilities are less needed, the costs may outweigh their benefits. Thus, under some 

circumstances it may be better for dispersers to have lower cognitive abilities in order to 

save these costs. It is therefore conceivable that cognitive abilities can be developmentally 

adjusted for dispersal, thus being an integral part of `dispersal syndromes´. 

In another study we showed that dispersal tendency and learning abilities can evolve in a 

correlated manner in a metapopulation setting (Liedtke and Fromhage 2021), where distinct 

trait combinations emerged across different habitat (patch) types. That study, however, 

made the simplifying assumption that an individual’s learning abilities were fully determined 

by its genotype, regardless of whether it dispersed or not. This essentially meant that 

different traits could not influence each other during development, thus precluding the 

evolution of an optionally expressed ‘dispersal syndrome’ involving multiple traits. The 

present study is designed to relax this constraint. To this end, we model the evolution of a 

genotypic strategy that can encode two independently evolving alternative phenotypes – a 

‘resident’ and a ‘disperser’ phenotype which are expressed in these respective contexts. 

Specifically, we assume that each individual faces a developmental switch with two options: 

either it expresses its genotypically encoded ‘resident’ phenotype and is then destined not 

to disperse; or it expresses its genotypically encoded ‘disperser’ phenotype and is then 

destined to disperse. This modelling approach seems especially appropriate for species 

where residents and dispersers differ in traits linked to dispersal, even among individuals 

originating from the same patch. Wing-dimorphism, for example, is commonly found in 
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insects, with large-winged (macropterous) individuals constituting the dispersal morph (Roff 

1986), which also may be linked to metabolism specialisation (Van Belleghem and Hendrickx 

2014). Furthermore, whether the investment in cognitive abilities can be recouped, and thus

can be adaptive, crucially depends on how much time animals have available to use these 

abilities (Liedtke and Fromhage 2019b and ref. therein). We therefore investigate the effects 

of longevity and timing of dispersal on the interplay between cognitive abilities and 

dispersal, as both aspects crucially determine the duration of this recouping phase. This 

allows us to assess the role of life-history traits in shaping dispersal syndromes. 

Methods

This model is an extension of a previous (Liedtke and Fromhage 2021) model about the joint 

evolution of cognitive styles and dispersal tendencies. The description of methods is 

therefore largely identical, except for the implementation of developmental plasticity (see 

below) and the exclusion of predation (for simplicity). 

We implemented a metapopulation setting with NPatches habitat patches, which are connected

through random global dispersal, i.e. individuals have the same chance of reaching any of 

the NPatches patches when dispersing (list of abbreviations see Table 1). Carrying capacity of 

each patch is set to NIndividuals and three traits are allowed to evolve independently for 

NGenerations: learning ability L, exploration tendency E, and dispersal tendency D. All three traits 

are continuous with values between 0 and 1. At the end of each generation, individuals 

reproduce asexually in proportion to their fitness. Fitness of individuals is specified by the 

amount of resources they obtain during their lifetime. We assume an `income breeder´ 
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system where individuals may reproduce independently of their survival until the end of 

season.

The length of a season (= generation) is defined by the number of days before dispersal 

Tbefore, plus the number of days after dispersal Tafter. For simplicity, dispersal does not 

consume any time. Cost of dispersal is implemented as mortality risk M during dispersal. 

The lifecycle of individuals proceeds in four phases: 1) time before dispersal in which they 

can collect resources; 2) potential dispersal event i.e. moving with some probability from 

one patch to another, with a mortality risk defined by M; 3) time after dispersal for collecting

resources; 4) asexual reproduction followed by death. After the last phase a new generation 

starts with offspring generated by the parent generation.

Development

Because optimal traits values (L and E) may differ for residents and dispersers, we allow for 

developmental plasticity, by letting the expression of L and E to be conditional on dispersal. 

We implement two loci for learning abilities: one locus determines the L value for residents 

(LR) and the other for dispersers (LD). Similarly, there are two loci for exploration tendency 

with ER encoding exploration for residents and ED for dispersers. Traits do not change at the 

time of dispersal, but instead remain constant throughout an individual’s life. Whether or 

not an individual will disperse is determined at the beginning of its life, depending on its trait

value D and a threshold value between 0 and 1 randomly drawn from a uniform distribution.

When the individual’s dispersal tendency (D) is higher than that threshold the individual will 

disperse; otherwise it will stay at its natal place. If the individual will be a resident, it 

expresses LR and ER; if it will disperse, it expresses LD and ED, respectively. Each locus 

underwent independent mutation as described below and thus could evolve independently. 
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Environment

The environment of a patch is defined by its patch size NIndividuals and the abundance (ARi) of 

different resource types Ri. Abundances are defined as the maximal number of resource 

items of type Ri which an individual can encounter in a given period of time (see below). 

Furthermore, resources are defined by their value VRi in terms of increasing fitness, their 

handling time HRi i.e. how long individuals need to handle them before they can obtain their 

value, and their detectability CRi, i.e. how easy they are to find. 

Learning

Learning is implemented as a reduction in handling-time (HRi) of resources due to gaining 

experience with specific resource types, reflecting the idea that some feeding techniques 

need to be practiced repeatedly before succeeding (such as tool use in primates (Boesch et 

al. 2019) and birds (Kenward et al. 2006), or hunting techniques in dolphins (Guinet and 

Bouvier 1995)). Up to ten different resource types are implemented, with R1 being a simple-

to-access resource whose handling requires no learning. R2 to R10 are resources for which 

individuals need experience before they can exploit them. Therefore, individuals get better 

at exploiting resource items of type R2 through R10 with time. Learning experience with 

specific resource types can be carried over to new settlement patches if dispersers will find 

the same resource type in the new patch. A detailed description of how learning was 

calculated follows below.

 

Resource intake 
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First, we calculate the maximum number of resource items per type (Ri) an individual can 

collect before dispersal, by multiplying the abundances (ARi) in patch Pi with the time it has to

do so (i.e. Tbefore). Based on the results found in a previous study (Liedtke and Fromhage 

2019a), we assumed that individuals will at least move every second time step. Whether 

individuals would also move in the other timesteps depends on their exploration tendency 

(Ei). The higher its Ei the more likely an individual moves and encounters further resources, 

such that its maximum number of resource items of type Ri is given by

NRi = ARi * Tbefore * (1 + Ei) 1.

This formulation implies that individuals with Ei = 0 move with a slow pace and gain 

maximally half of what individuals with Ei = 1 gain. 

Next, we take into account the individuals’ exploration tendency Ei and the detectability of 

resource types CRi. We assume that the faster an individual explores, the less thoroughly it 

can search; and the harder the items are to detect (i.e. low CRi), the less likely the individual 

will find a resource. This changes the calculation of collected resources as:

NRi’ = NRi * (1 - (1 - CRi) * Ei) 2.

Thereafter, we take into account each individual’s efficiency of handling resources as 

influenced by its learning speed L and the number of resource items collected, i.e. how much

experience it gained with a specific resource type. This changes the calculation of collected 

resources as:

8

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

13
14



NRi’’ = ∑
j=1

round (NRi ’)

max
❑

(0 ,1−
√HRi−1

√ j∗L
) 3.

where HRi is the handling-time of Ri. This formula was selected because it describes a decline 

of handling time at a decelerating rate. This functional shape appears biologically plausible 

because perfection may often be difficult to reach, which may slow progress down once 

more progress has been made. Note that resources with high H need to be handled multiple 

times before they can be exploited by a given individual. 

Finally, we take into account intraspecific competition over resources within a patch. First 

we estimate the maximum total amount of resources Rmaxi potentially collected by all 

individuals in a given patch, adjusted by a competition factor Ф that controls the severity of 

the competition: 

Rmaxi = Tbefore * ARi * NIndividual / Ф 4.

Then we divide this by the sum of resources collected by all individuals as estimated by eq. 3,

to obtain the ratio Rmaxi / ∑NRi’’. If this ratio is <1, then the focal resource type is completely 

depleted, and the share collected per individual is reduced by competition as:

NRi’’’ = NRi’’ * Rmaxi / ∑NRi’’ 5.
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For example, if (according to pre-competition calculations) resource type R2 was collected 10

times more often than its Rmaxi value for this patch, then for every individual in this patch its

amount of collected R2 items is multiplied by 0.1. 

Dispersal

After this foraging phase, individuals could disperse to a randomly chosen patch. An 

individual’s decision to disperse or not was determined at the beginning of its life as 

described above. Due to the stochasticity of this process some patches may have lower, 

other patches higher numbers of individuals after the dispersal phase. Dispersal costs are 

implemented as mortality risk M which was set to 0.01 in all cases. Whenever an individual 

attempts to disperse, a random number between 0 and 1 is drawn from an uniform 

distribution. If this number is lower than M, the individual dies; otherwise it successfully 

disperses.

After the dispersal phase, surviving individuals are allowed to collect resources again. 

Resource intake and competition are calculated as in the pre-dispersal phase (eqns. 1 – 5) 

with the only difference being that the duration of the post-dispersal phase is defined by 

Tafter. 

Reproduction

After estimating the total resource income of all individuals, reproductive success (fecundity)

is calculated as:

F = VTotal*(1-L*α) 8,
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where L is an individual’s learning ability, α a cost coefficient which specifies the cost of 

learning, and VTotal is the sum of value of all resources collected by this individual. We do not 

include any explicit cost of E because costs of exploration are implicit in the risks of 

overlooking resources. The next generation is recruited in each patch independently, by 

using F of local individuals as the independent sampling probability. Thus, the higher F of a 

focal individual is compared to all other individuals in the same patch, the more likely it 

contributes offspring to the total NIndividuals.

Mutation 

Mutation probabilities for all three traits (L, E, D) are set to µ = 0.1. Traits evolve 

independently and new values are chosen randomly from a normal distribution with the 

parental trait value as mean and SD of 0.1. 

Extinction

To increase the incentive to disperse, it is common practice in modelling studies to 

implement random extinction of patches (Poethke et al. 2003). We do so by erasing, with a 

given frequency, all individuals of a randomly selected patch in the end of a generation. The 

empty patch can only be recolonised by emigrants from other patches within the 

metapopulation. 

Initialisation
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Initially we heuristically explored the parameter space in order to find parameter settings 

allowing the evolution of different cognitive styles which can coexist both within (compare 

Liedtke and Fromhage 2019a) and between patches. 

For simplicity, the main results presented here are derived from simulations in which 

detectabilities of resources (CRi) were the same and thus E of all individuals evolved to be 

similar. This allows us to concentrate on the effects of learning abilities on dispersal and vice 

versa, which is our main interest here. 

Parameter settings for each of the presented simulation sets are given in tables (Table 3, 

Table 3). All simulations presented were replicated 10 times with identical parameter 

settings in order to check for consistency. All replicate runs produced qualitatively similar 

results.

Results

Season length (i.e. Tbefore and Tafter) crucially determines whether dispersers had higher or 

lower L than residents (see Figure 1). With very short lifespans individuals did not invest into 

higher learning speed and both LR and LD were low accordingly. However, since dispersal 

tendency D was very high, there were only very few residents present and thus selection for 

LR was low. Due to mutation-selection balance (Crow and Kimura 1970), LR was pushed 

upwards (Fig.1, SL = 4 and 10), i.e. closer to the value 0.5 expected for a selectively neutral 

trait. With slightly longer season length, residents, which, by definition, stayed in their birth 

patch their whole life, became able to exploit hard-to-access resources if they invested 
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strongly into learning abilities (i.e. LR). This led to a huge increase in LR compared to learning 

abilities of dispersers (i.e. LD) which were unable to exploit hard-to-access resources within 

their given time (Fig. 1, SL = 20 and 30). When increasing the total season length further, also

dispersers were able to exploit hard-to-access resources (both in their natal and new 

settlement patches) and invested highly into L. As a result, the differences between LR and LD 

first becomes insignificant (Fig. 1, Tab. 2, SL=50) and then, with increased SL, reverses 

direction i.e. LR becomes significantly lower than LD. (Fig. 1, Tab. 2, SL > 50). 

Changing the timing of dispersal within the life cycle strongly influenced the cognitive style 
of disperses. When dispersal took place in the middle of life, dispersers invested little in 
learning when they didn’t have enough time to learn either at their birthplace or at the new 
patch. However, when dispersal took place either early or late in life (e.g. breeding 
dispersal), then dispersers had time to adapt to at least one set of local conditions, hence 
investing in L similarly to residents (see Fig. 2).
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Discussion

Our model revealed strong effects of longevity and the timing of dispersal on evolved 

patterns in learning abilities. While sufficient longevity was generally needed for the 

evolution of high learning abilities, the timing of dispersal modulated the relationship 

between learning abilities and dispersal, which could be either positive or negative.

Similar to a previous model (Liedtke and Fromhage 2019a), resource composition 

determines whether or not different cognitive styles can coexist within the same patch. The 

coexistence depends on individuals specialising on different resource types, such that some 

individuals specialize on more abundant and easy-to-handle resources, whereas others 

specialise on hard-to-access resources with higher value. Since individuals compete over 

these resources, negative frequency-dependence stabilises the coexistence. For the hard-to-

access resources, individuals need to invest into learning speed (L) in order to be able to 

learn to exploit them within the available time (i.e. lifespan). With very short lifespans time 

is not sufficient for learning and thus no investment in L occurred. Once there is enough time

for learning to exploit these resources, any further increase in lifespan leads to a reduced 

investment in L because of relaxed time pressure (i.e., individuals can reduce learning costs 

by learning more slowly, provided there is enough time; compare (Liedtke and Fromhage 

2019b)). This non-linear link between lifespan and investment into learning speed is the 

underlying cause of the effect of lifespan on dispersal in the present model. With very short 

lifespans, individuals do not invest in higher L and consequently residents and dispersers 

adopt similar cognitive styles with low learning abilities (Figure 1, leftmost datapoints). Yet, if

lifespan is just long enough for learning to handle hard-to-access resources, individuals need 

to invest highly in L in order to exploit these resources. Crucially, only if fast-learning 
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individuals encounter these resources throughout their whole life, they can recoup the 

investment into high L. So, if hard-to-access resources differ between patches, and learning 

progress is not transferable between resource types, then dispersers are unable to exploit 

hard-to-access resources either at their natal or at the settlement patch. Therefore, 

dispersers cannot recoup their investment into high L. Consequently, individuals investing 

into high L are better off staying in their natal place, and dispersers are better off investing 

little into L, specialising on easy-to-access resources instead (Figure 1, centre). 

With increased lifespans, the pattern reverses because above a given minimal lifespan, there

is sufficient time for learning to handle resources both at the natal place as well as in new 

environments faced after dispersal. Meanwhile, since residents only need to learn one type 

of hard-to-access resource they have more time to do so and can afford to learn slower and 

pay less cost of L. Accordingly, dispersers have higher L than residents (Figure 1, right half). 

With further increase in lifespan also dispersers have more time to learn and thus can 

likewise afford to reduce their investment in L. 

A similar effect occurs when considering the timing of dispersal within the lifecycle of a 

species. Dispersal early in life allows dispersers to adjust to local conditions of the settlement

patch where they spend most of their life. Provided that lifespan is not too long (see above) 

this promotes the investment into L for dispersers, to a similar extent as in residents. 

Likewise, dispersal at the end of the lifecycle (i.e. breeding dispersal) allows individuals to 

adjust to local conditions of the natal place where they spend most of their life. Again, this 

leads to minimal differences in L between residents and locals. If, however, dispersal takes 

place in the middle of life, it divides the available time in any one place in such a way as to 
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prevent dispersers from investing in L. Under these circumstances we can find different 

values of L for residents and dispersers. This relationship, of course, depends greatly on the 

species’ total lifespan. With very short lifespans, no investment in L is expected whereas 

with very long lifespan, as in long-living vertebrates such as primates or parrots, even 

dispersal somewhere in the middle of life should allow to adjust both to the natal and the 

new patch. 

Comparing our present results with those of a model without developmental plasticity

(Liedtke and Fromhage 2021), we can summarize that under both approaches a correlation 

between learning abilities and dispersal occurs under a wide range of environmental 

circumstances. However, the differences between dispersers and residents are clearer when 

they are based on developmental plasticity. The intuitive explanation for this is that plasticity

allows selection to shape alternative specialized phenotypes, for a life that either involves 

dispersal or not (see e.g. Roff 1986). 

Whether such plasticity is to be expected in natural systems depends on the species and, in 

particular, on the ecological factors that trigger dispersal. As described in the introduction, 

dispersal is often a conditional process. When triggering conditions occur early in life, such 

as conspecific density, predation pressure or kin competition, the developmental trajectory 

of dispersing individuals may be adjusted accordingly. Thus, under these circumstances we 

suppose that cognitive abilities, like other traits, may differ substantially between residents 

and dispersers and, in some cases, eventually produce dispersal syndromes. By contrast, 

when triggering conditions occur after the developmental phase and are not predictable 

beforehand, for example operational sex-ratio, sudden droughts, flooding, or fire events, 

individuals are restricted in their adjustment to dispersal. In this case a correlation between 
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learning abilities and dispersal can arise at the population level through local adaptation, e.g.

if some habitat types favour higher values in both learning ability and dispersal tendency

(Liedtke and Fromhage 2021). However, according to our simulations, such correlations tend

to be less pronounced (and hence may be harder to detect empirically) than under the 

developmental plasticity scenario.  

In conclusion, we have shown that the interplay of cognitive abilities and dispersal can be 

complex. In our simulations, time is a crucial determinant of whether dispersers should be 

fast learners in order to adjust quickly to new environments, or whether dispersal interferes 

with the ability to reap the potential benefits of learning. More generally speaking, plasticity 

allows individuals to adjust to local conditions which however induces also costs. Whether 

these costs can be recouped depends on how much time the dispersers have after 

settlement. We therefore predict that a species’ lifespan and the timing of dispersal within 

the lifecycle crucially influence the correlation between dispersal and cognitive abilities, 

supporting other findings underlining the importance of lifecycles when considering the 

evolution of dispersal (e.g. Massol and Débarre 2015).  It might be an interesting further 

avenue of research to investigate whether life-history traits such as lifespan and timing of 

dispersal coevolve under changing environmental complexity and predictability. 
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Tables

Table 1: Abbreviations

ABBREVIATION DESCRIPTION

ARI Abundance of different resource types 
CRI Detectability of resource type i
D Dispersal tendency
ED Exploration tendency for dispersers
ER Exploration tendency for residents
F Reproductive success (fecundity) 
HRI Handling-time of resource type i

LD Learning ability for dispersers

LR Learning ability for residents
M Mortality risk 
NGENERATIONS Number of generations
NINDIVIDUALS Carrying capacity of Pi 
NPATCHES Number of patches
NRI Maximum number of resource items per type per individual 
PI Patch number i
RI Resource type i
RMAXI Maximum total amount of resources Rmaxi in a given patch 
TAFTER Length of season after dispersal
TBEFORE Length of season before dispersal
VRI Value of resource type i
VTOTAL Sum of value of all resources collected by a given individual

Α Cost coefficient of learning
Μ Mutation probability
Ф Competition factor 
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Table 2: Parameter settings for simulation presented in figure 1 main text

ABBREVIATION DESCRIPTION PARAMETER SETTING

ARI

Abundance of different resource 
types 

In patch type 1: R1=1, R2=5; In 
patch type 2: R1=1, R3=5

CRI Detectability of resource type i R1=R2=R3=0.5
HRI Handling-time of resource type i R1=1, R2=R3=300
M Mortality risk 0.01
NGENERATIONS Number of generations 300
NINDIVIDUALS Carrying capacity of Pi 100
NPATCHES Number of patches 12

TAFTER Length of season after dispersal
2, 4, 10, 15, 25, 50, 150, 250, 500, 
1000, 2000

TBEFORE Length of season before dispersal
2, 4, 10, 15, 25, 50, 150, 250, 500, 
1000, 2000

VRI Value of resource type i R1=1, R2=R3=10

Α Cost coefficient of learning 1.4

Μ Mutation probability 0.1
Ф Competition factor 2

EXFREQ

Extinction frequency (every x 
generation)

2

EXN

Number of patches getting erased
every EXfreq generation

1
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Table 3: Parameter settings for simulation presented in figure 2 main text

ABBREVIATION DESCRIPTION PARAMETER SETTING

ARI

Abundance of different resource 
types 

In patch type 1: R1=1, R2=5, R3=0
In patch type 2: R1=1, R2=0, R3=5

CRI Detectability of resource type i R1=R2=R3=0.5
HRI Handling-time of resource type i R1=1, R2=R3=150
M Mortality risk 0.01
NGENERATIONS Number of generations 500
NINDIVIDUALS Carrying capacity of Pi 100
NPATCHES Number of patches 12
TAFTER Length of season after dispersal 2, 10, 18
TBEFORE Length of season before dispersal 18, 10, 2
VRI Value of resource type i R1=1, R2=10

Α Cost coefficient of learning 1.4

Μ Mutation probability 0.1
Ф Competition factor 6

EXFREQ

Extinction frequency (every x 
generation)

2

EXN

Number of patches getting erased
every EXfreq generation

1
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500
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