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“All models are wrong; some are useful” George Box, 1951 69 

“Entities should not be multiplied without necessity” a version of Occam’s razor 70 

"Predictive Ecology marks a step in science... towards the humble questions that can be 71 

answered" RH Peters 1992, Critique for Ecology 72 

Abstract 73 

Prediction from models and data in Ecology has a long history and can be made from many 74 

types of statistical, simulation, and other classes of models. To date, our ability to use the 75 

predictive approach as a tool for developing, validating, updating, integrating and applying 76 

models across scientific disciplines and to influence management decisions, policies and the 77 

public has been hampered by disparate perspectives on prediction and inadequate tools. We 78 

present a coherent perspective that follows a Predictive Ecology approach based on 5 79 

principles: Reusable, Freely available and Interoperable models, built around a Continuous 80 

workflow, which are Tested automatically (PERFICT). We describe the SpaDES toolkit that 81 

helps implement these principles. We outline some benefits for society of working with these 82 

principles, including 1) speeding up scientific advances; 2) data science advances; and 3) 83 

improving science-policy integration.  84 

Introduction 85 

All ecologists hope that their models will prove useful. As a result, it is easy to read George 86 

Box’s famous quote and feel complacent if one’s models are not being particularly useful since 87 

all other models can be collectively criticized as they too are “wrong”. It is also widely accepted 88 

that ecologists should rely on Occam ’s razor which reflects the concept of parsimony to drive 89 

our science. Both concepts, however, pivot on a deep subjectivity. Occam’s razor is 90 

simultaneously an excellent guideline for scientific model development and an ironic jest to the 91 
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inherent subjectivity of the scientific method. It is easy to allow subjectivity to creep into our 92 

perception of data, model choice and structure (Berryman 1992), and decisions based on those. 93 

Ecologists continue to build models that are largely under-tested beyond the original study. If 94 

ecologists can reconcile these subjective delineations between useful/not useful (or with and 95 

“without necessity”), perhaps their relationships with models would also achieve reconciliation. 96 

In the case of models informing management and policy -- as one indicator of usefulness -- 97 

applied scientific disciplines have long histories (Boutin & Hebert 2002; O’Neill 2002; Fahey et 98 

al. 2010) with COVID-19 being the most recent and glaring example of how variable the 99 

success has been (see Figure 8 in Rijs & Fenter 2020). Within the context of ecological 100 

forecasting in the 21st century (Clark 2001), a subjective assessment of a model’s usefulness or 101 

necessary complexity is no longer a matter of statistical debate: ecologists need the best 102 

forecasts for the pressing problems of today (Dietze 2017). 103 

 104 

To address these deep struggles along the objectivity-subjectivity continuum during model 105 

development, scientists have advocated for a predictive approach to valuing ecological models 106 

(Peters 1977, 1991; McGill et al. 2007; Houlahan et al. 2015; Mouquet et al. 2015; Travers et al. 107 

2019). Under this general framework, models that successfully predict the state of a system are 108 

inherently more useful than those that do not (Peters 1977). Early calls to this included a critique 109 

of mechanistic ecological models that allowed for better “understanding” but had predictions that 110 

were difficult or impossible to test (Peters 1986). Recent “Ecological Forecasting” allows for a 111 

balance between prediction without concern for underlying causes (“empirical” or 112 

“phenomenological”) and prediction from mechanistic models that may enable forecasting 113 

outside of historical conditions (Peters 1991; McGill et al. 2007; Evans 2012; Evans et al. 2012; 114 

Houlahan et al. 2015; Mouquet et al. 2015; Radchuk et al. 2019; Travers et al. 2019), echoing 115 

“hybrid” models (e.g., Kimmins et al. 1999; Boulangeat et al. 2014). In parallel, a call for near-116 

term forecasting and a “continuous” perspective on the adaptive modeling following the “predict-117 
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test-update-predict” cycle has been made (Dietze et al. 2018; White et al. 2019). This would 118 

dramatically speed up ecological model improvements, be they theoretical, applied, 119 

phenomenological, simple or complex. Indeed, economists and weather forecasters update 120 

forecasts at regular intervals. Similarly, finding the right level of model complexity is a constant 121 

challenge (Anderson et al. 2000; Horne & Garton 2006; Aho et al. 2014). When model selection 122 

is between models of vastly different types -- e.g., a simple mathematical model of population 123 

dynamics or a complex, spatially-explicit, many-parameter population simulation model -- how 124 

do scientists decide what to recommend to assist managers in making decisions about 125 

conserving a declining species? We suggest that we still lack (i) a combination of a foundational 126 

framework for predictive ecology (PE) as the basis for delineating the thresholds that Box and 127 

Occam’s razor identified, and (ii) a sufficient toolkit to support this framework. 128 

 129 

Ecologists’ abilities to build on, reuse and objectively evaluate all but the simplest (e.g., 130 

mathematical) models especially in new contexts is rudimentary. This is true for models that 131 

vary in complexity from simple statistical models (<5 parameters) to complex simulation models 132 

(with >100s of parameters). Attempting to reuse a model built for one place and time to another 133 

is, at a minimum, challenging (Yates et al. 2018). This can be fraught with challenges arising 134 

from data dependencies, software updates, hardware obsolescence, fixed or difficult to get 135 

parameters, and continual changes in collaborations with associated loss of expertise (pers. 136 

obs. by authors). Some online model banks (e.g., NetLogo model directory 137 

https://ccl.northwestern.edu/netlogo/models/) exist but there are no explicit tools for reusing these 138 

models (with new data, new study area, or new parameters), apart from becoming equally as 139 

proficient with the model code as was the original developer. Alternatively, some models have 140 

been built as part of simulation platforms (LANDIS-II: Scheller et al. 2007; BIOME-BGC: Bond-141 

Lamberty et al. 2015), some with enormous success (Wilensky 1999; Akçakaya & Root 2005; 142 

Scheller & Miranda 2015; Schumaker & Brookes 2018). Nevertheless, simulation models are 143 

https://ccl.northwestern.edu/netlogo/models/
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often detached from data and thus require user-driven, and sometimes very extensive, 144 

parameterization done independently from running the model. Furthermore, many of the 145 

ecological challenges facing the world today cross disciplinary boundaries (Schmolke et al. 146 

2010). These platforms have generally been developed within particular disciplines, and often in 147 

programming languages that are little known to ecologists, thereby limiting reuse (outside of the 148 

original field) and rapid, iterative model development. Therefore, ecologists need a framework 149 

for models that can be used widely, that can be deeply rooted in data, and that can transcend 150 

disciplinary boundaries, that will combine the rich ideas from the long history of PE (Peters 151 

1982), with near-term, iterative forecasting studies (Dietze et al. 2018; White et al. 2019) and 152 

principles of FAIR (Stall et al. 2019) and ARTful (Bodner et al. 2020) data. 153 

 154 

Here, we present a new framework outlining a reimagined foundation for predictive Ecology, 155 

using a PERFICT approach. We then present SpaDES, a toolkit built in R that facilitates an 156 

implementation of this framework. We demonstrate numerous benefits that emerge from this 157 

framework and show how it is benefiting an applied ecological example currently underway. 158 

The PERFICT approach  159 

The PERFICT approach is an approach to Predictive Ecology that is based on 5 principles: 160 

Reusable, Freely available and Interoperable models, built around a Continuous workflow, 161 

which are Tested automatically (Supp. Mat. A for brief version). 162 

Reusable 163 

We define reusability as the ability to take the algorithms, methods and results of previous 164 

studies “off the shelf” and use them in the same or a new context with little to no changes. 165 

Reusability is not a binary: i.e., there are are levels of reusability with the benefits of reusability 166 
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increasing with higher reusability (see Fig. 1), e.g., reusable on the same computer, reusable for 167 

a different species or system, reusable for a different study area etc. Reusability has the 168 

following characteristics about an analysis: it must 1) be scripted, 2) produce the same answer 169 

with the same inputs, 3) produce a different, but equivalent, answer with different inputs, 4) have 170 

defined inputs and outputs, and 5) work from any system configuration. We consider 171 

reproducibility as (Borregaard & Hart 2016) a special case of reusability that addresses the 172 

characteristics 1 and 2 (Begley & Ellis 2012; Klein et al. 2014; Nature Editorial 2014; Munafò et 173 

al. 2017). In our experiences, when inheriting code from a previous project, it has been difficult 174 

to arrive at equivalent results. This has been due to several challenges, e.g., final versions of 175 

the code and data were difficult to identify (Vines et al. 2014), imprecise pseudo-code, manual 176 

interventions, missing steps, broken code and unavailable datasets. In some cases, reusability 177 

can be achieved by creating functions as they have argument values that can be changed. 178 

Often these can be put in a package and hosted in online repositories (e.g., CRAN -- 179 

https://cran.r-project.org/). However, functions alone are not sufficient to achieve a robust level 180 

of reusability that we present here (see Fig. 2). To leapfrog from one published result to a new 181 

project, ecologists need access to actual analyses and model calls, not just the functions 182 

themselves. 183 

Freely available 184 

There are many contributions discussing how open science and free, available, interoperable 185 

and reusable (FAIR) data helps with the pace of innovation, with transparency, and with the 186 

accountability of model predictions (Reichman et al. 2011; Stall et al. 2019). Having open code 187 

and documents allows other scientists to evaluate the implementation of the science, not just 188 

the description of the science within a publication. This makes them readily usable and thus 189 

testable by others. When model development is open, discussions and challenges can be 190 

transparent (e.g., on GitHub issues) and solutions can more rapidly propagate through the 191 

https://cran.r-project.org/
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community. While a critical component of PERFICT, we do not elaborate on this further here as 192 

the benefits for models echo those for data as elaborated elsewhere (Stall et al. 2019). We note 193 

that until all data are FAIR, a hybrid approach to data handling will be required (Fig. 1 light and 194 

dark blue module will both be part of many studies). 195 

Interoperable 196 

Interoperability is created by using both modularity and standards. Modularity is a description of 197 

a component with explicit inputs and outputs with no hidden elements (See Fig. 2). Modular 198 

systems have components that can be deconstructed and recombined. The two most important 199 

modular design criteria are that modules should 1) be able to run either independently (i.e., 200 

decomposable) or as a subcomponent of a larger model (i.e., composable) and 2) communicate 201 

with other modules via their defined inputs and outputs (Reynolds & Acock 1997; Voinov et al. 202 

2004). A modularity framework facilitates model comparison and hypothesis testing, while 203 

promoting utility, flexibility, adaptability and scientific longevity (Reynolds & Acock 1997). To 204 

ensure these modular pieces are interoperable, they must follow standards that define how 205 

modules can communicate. This often raises objections, the most common being, “whose 206 

standard?” In the case of ecological sciences, this concern is alleviated, in part, as a large 207 

community already uses a common language for analyses: the R language. Further alleviating 208 

concerns, if the standard is easy to achieve, it is more likely to be used. 209 

Continuous Workflow 210 

Recently, several authors have brought some of the tools and approaches used in the data 211 

sciences to ecology and advocated for such workflows to allow for near-term forecasting (Dietze 212 

et al. 2018; Anderson et al. 2019; White et al. 2019). A common way for ecologists to implement 213 

a continuous workflow is through coding all steps, such as data loading, compiling, simulating 214 



10 

and reporting, into a single script file. This is generally insufficient due to several challenges. For 215 

instance, long computational steps are common and are often manually skipped by a 216 

researcher. This manual intervention often masks broken steps as users can make ad hoc 217 

adjustments. Further, linear scripts become increasingly challenging to update and understand 218 

as they become longer. Building continuous workflows with modular code pieces circumvents 219 

many of these challenges (Fig. 1). To support the building of continuous workflows, shared 220 

version control tools such as git and cloud hubs such as https://github.com are invaluable. We 221 

emphasize that continuous workflows are important in many contexts other than near-term 222 

forecasting for specific applied questions. Longer term, strategic planning in many applied fields, 223 

e.g., forestry, requires repeated updating of short term goals with long term planning (Paradis et 224 

al. 2013).  225 

Testing automatically 226 

Testing ecological models is challenging (Oreskes et al. 1994). We distinguish two facets of 227 

ecological model testing from computer science and ecological science. From a computer 228 

science perspective, the testing is to evaluate current and future errors in the implementation of 229 

the algorithms, such as the software design and translation of mathematics to code. A robust 230 

approach to doing each of these comes from software development fields and relies on model 231 

creators using abundant code “assertions” (Rosenblum 1995); with assertions active, each time 232 

a model runs it is also being tested. Further, developers can create “unit tests” on individual 233 

components (e.g., functions). It is only a few extra steps to attach this code to automated 234 

continuous integration (CI) systems e.g., such as online services such as GitHub Actions (e.g., 235 

via https://github.com). On the other hand, an ecological model can always be improved through 236 

calibrating from training data and validating using additional data as our understanding, models, 237 

and data are improved. When automated tests are evaluating fit to data (e.g., validations), 238 
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models can be iteratively improved (Dietze 2017; Parrott 2017) through identifying breakages 239 

and validation failures. 240 

Implementing the PERFICT approach: SpaDES 241 

Implementing these principles requires the development of a powerful yet flexible and extensible 242 

toolbox. That toolbox would need to have a number of characteristics, especially broad 243 

exposure to as many ecological scientists as possible. Therefore, we developed a number of R 244 

packages within the SpaDES meta-package (Chubaty & McIntire 2019). If a user uses good 245 

coding practices in, say R, version control and continuous integration, they have a strong 246 

foundation for creating some aspects of the PERFICT approach. The SpaDES collection of 247 

packages further promotes freely available and elevates the reusability, interoperability, 248 

continuous workflow and automated testing required for an operational, yet achievable, 249 

implementation of these principles (see Box 1 -- Best Practices). 250 

 251 

SpaDES currently comprises five open source packages on CRAN: SpaDES.core, 252 

SpaDES.tools, SpaDES.addins, reproducible, quickPlot, plus several others not on 253 

CRAN (but available on https://github.com) including SpaDES.shiny, SpaDES.experiment, 254 

SpaDES.project, petools, and pemisc (see https://spades.predictiveecology.org for links 255 

to all packages). The SpaDES.core package is built around the concepts of modules and 256 

events, similar to other discrete event simulators (e.g., Banks et al. 2005). Indeed, some 257 

aspects of SpaDES were derived from existing tools with which we had experience (e.g., 258 

SELES: Fall & Fall 2001). This foundation provides a generic platform for scheduling arbitrary 259 

sequences of modules, enabling pipelining of simple to complex (e.g., linear, cyclic, conditional) 260 

sequences. It is indifferent to the data or modeling paradigm (individual/agent based modeling, 261 

population modeling, landscape modeling, GIS/raster-based models, statistical models, etc.). 262 

https://github.com/
https://spades.predictiveecology.org/


12 

SpaDES facilitates the integration of many model components within and among disciplines as 263 

connections are made through shared data. Furthermore, SpaDES provides the infrastructure to 264 

build scenarios, experiments, replicates, and ensemble runs, taking advantage of R’s 265 

parallelism and high performance computing (HPC) capacities. SpaDES packages are freely 266 

available and open source and every user-facing function is documented and has examples of 267 

use as per CRAN policy. The quickPlot package allows for visualizations created by 268 

interoperable modules (e.g., attempts by one module to plot do not interact with another 269 

module’s plots). The more detailed descriptions of all of SpaDES functionalities are beyond the 270 

scope of this manuscript: several vignettes are available on CRAN (https://cran.r-271 

project.org/package=SpaDES) and also can be found in both GitHub 272 

(https://github.com/PredictiveEcology) and PredictiveEcology websites 273 

(https://spades.predictiveecology.org). While R can interact with code from other languages 274 

(e.g., C++, Python, java, julia), the SpaDES framework is currently written in R, requiring that 275 

code written in other languages be wrapped for use in R.  276 

 277 

To create interoperability and enhance reusability, SpaDES operates with modules and events 278 

as the basic structures of organizing code. A module is a code chunk that represents a coherent 279 

idea or concept that is fairly distinct and stand-alone, such as a “statistical analysis of wildlife 280 

collar data”, “fire simulator” or “GIS analysis of area within 500m of a road network“ The 281 

SpaDES system defines a standard for metadata (see Supp. Mat. B for example) that identifies 282 

algorithmically what a module does. Foremost, the metadata identify a module’s expected 283 

inputs and created outputs, making it different from a simple code chunk or function. By building 284 

on expected inputs, rather than the inputs themselves, a SpaDES module is indifferent to where 285 

those inputs come from, enabling interoperability and reuse. With such an algorithmic 286 

representation of its expected inputs and created outputs, a SpaDES module becomes reusable 287 

because the source of the data is not specified. The content of a SpaDES module is arbitrary 288 

https://cran.r-project.org/package=SpaDES
https://cran.r-project.org/package=SpaDES
https://github.com/PredictiveEcology
https://spades.predictiveecology.org/
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and can therefore perform any tasks including data processing, simulation modeling, statistical 289 

modeling, visualization, summarizing, validation, data retrieving, and report building.  290 

 291 

Within a module, events are arbitrarily complex steps. Each module can have one (e.g., “get 292 

tree data from source, clean, and munge it”) or more events (e.g., in a tree dynamics module, 293 

events such as “growth”, “calculate competition”, “mortality”, “dispersal”). Events can be 294 

scheduled at any time, for any time; they can be run once (e.g., a data preparation module) or 295 

many times; at regular intervals or irregular steps; conditional on any arbitrary states or 296 

deterministically run at particular times. The SpaDES formulation encourages events to be 297 

scheduled within the module itself, so they are not dependent on externalities, formalizing 298 

reusability. By formalizing modules with events, arbitrarily complex, modular code chunks can 299 

be built. By collecting these code chunks into events and modules, rather than linear chunks 300 

(e.g., R markdown chunks), they can be included or excluded from a particular project, i.e., 301 

reused in new ways and shared among researchers. 302 

 303 

One of the greatest challenges in creating a continuous workflow is that code must be 304 

constantly run from start to finish and automatically tested or breakages sneak in without being 305 

aware of them. This is prohibitive when there are long computational steps.The reproducible 306 

package has two principle functions to facilitate this. The generic Cache that can be used in any 307 

context, nested at any arbitrary function depth, and, unlike other R versions of caching, is aware 308 

of non-standard R objects that are stored on disk, such as GIS data files. The more specific 309 

prepInputs is a tool to bring arbitrary local or remotely located data into R that uses 310 

checksumming, caching, and a wide array of GIS operations to harmonize spatial data.  311 
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Extensible 312 

Any toolkit developed for implementing the PERFICT approach should be able to handle a large 313 

array of problems and can be extended by anybody at any time. An important feature of 314 

R/SpaDES that distinguishes it from other low-level languages (e.g., Java or C++) or purpose-315 

built modeling platforms (e.g., NetLogo), for example, is that the algorithms can be extended by 316 

the modeler, i.e., it does not require one of the software developers to create, implement and 317 

deploy the new algorithm. For example, we built a custom language, NetLogoR (Bauduin et al. 318 

2019), which is a reimplementation of the NetLogo language (Wilensky 1999), allowing us to 319 

address our GIS needs within individual-based models. Ongoing SpaDES module development 320 

with our collaborators and co-authors of this paper includes modules built in Java, Python, and 321 

C++. The toolkit must be able to develop rich downstream tools, such visualization, web 322 

interfaces (e.g., Supp. Mat. C and D for example web interfaces), analyses of complex 323 

simulation experiments, or validation of models. Creating new tools that work with a generic 324 

SpaDES module allows researchers to reuse rich components in new contexts. As tools 325 

continue to develop, Application Programming Interfaces will likely emerge in other languages 326 

(e.g., Python). 327 

Benefits of the PERFICT approach 328 

Based on our experiences leading to the development of the SpaDES package, we have 329 

identified a wide range of valuable outcomes coming from the implementation of the PERFICT 330 

approach: 1) speeding up scientific advances; 2) data science advances; and 3) improving 331 

science-policy integration (Table 1). 332 

 333 

Speeding up scientific advances. One of the primary objectives for model estimation as a 334 

process that advances science is to avoid overfitting (e.g., via approaches such as AIC). 335 



15 

Minimizing overfitting by using a single dataset will have limited success (Reunanen 2003); 336 

using “independent” data for validation (e.g., predictive validation Power 1993; Wenger & Olden 337 

2012) is usually recommended (Reunanen 2003). Nevertheless, the widespread use of 338 

independent data for fitting/validating is limited, because, we believe, most models and projects 339 

are not ready when independent data become available, particularly if the models have complex 340 

data requirements. Using modular, reusable and interoperable models can greatly contribute to 341 

speeding up scientific advances by enabling faster and iterative re-evaluation and updating of 342 

these models (and model fit) -- by the original model creators or others -- when new data 343 

become available for validation and/or prediction. As the number of such models grows, models 344 

can routinely become part of meta-model comparisons and the appropriate level of complexity 345 

can be determined. This will help overcome the “dinosaur problem of simulation models,” where 346 

models get “bigger, bigger, bigger, useless” (H. Kimmins, pers. comm.) because there is always 347 

another process that seems critical to include. Over time, forecast success from models will 348 

improve and the forecast horizon will extend outwards (Petchey et al. 2015). Furthermore, 349 

scientists will have access to complete model objects (e.g., sensu R language), to which 350 

statistical and graphical “methods” (e.g., R functions like predict, AIC, drop) can be applied -- 351 

instead of tables of coefficients -- from published work. Using fully functioning models from other 352 

researchers, we gain more power and flexibility for forecasting, for iterative improvements (e.g., 353 

because they contain the variance-covariance structures), for meta-modelling and testing 354 

alternative hypotheses (e.g. ensemble or consensus forecasts; Marmion et al. 2009), and even 355 

near-automatic meta-analyses across studies and systems (Hedges et al. 1999, Koricheva et al. 356 

2013). Finally, rewriting widely used models, while labour intensive, can be profitable for the 357 

broader community through increased interoperability and reusability (Thiele & Grimm 2015). A 358 

community of contributors accelerates the implementation of new insights (e.g., data 359 

inadequacies, ecological processes) and helps discover and fix bugs (Boisvenue et al. in prep; 360 

Barros et al. in prep) and with internal modularity building and adding new components will be 361 
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easier in the future. With the PERFICT approach, every project can be its own collection of 362 

modules; modules can be added, removed, adjusted depending on their (automatic) testing 363 

against data. This modular complexity is the practical implementation of Occam’s razor. 364 

 365 

Data Science advances. One of the reasons to adopt the PERFICT approach is to build 366 

formalization and thus gain powerful tools from neighbouring data science field – i.e. pipelines 367 

(Beaulieu-Jones and Greene 2017), online databases and repositories (using or building), 368 

online services (e.g., Google Earth Engine, Moore and Hansen 2011), online data visualization 369 

(e.g., leaflet; Crickard III 2014) and web applications (e.g., shiny; Chang et al. 2019) – which 370 

can be algorithmically linked throughout a project. These links can be made by a data-savvy 371 

scientist, built into functions, packages and modules, and then used more broadly. For example, 372 

user access control (UAC) is a reality for many datasets: not all datasets are yet FAIR (Stall et 373 

al. 2019). Building on top of UAC tools (e.g., Google Authentication), users of our SpaDES 374 

modules will be allowed to give credentials when required, without breaking the continuous 375 

workflow. When a new user downloads a module, the module automatically downloads the data 376 

it needs, assisting the user with advanced tools such as checkpointing and spatial cropping, 377 

projecting, masking and data integrity checking. By maintaining the connection to the original 378 

data sources, a user can get updates as needed. These links between data and models also 379 

enable a quicker re-parameterization and re-validation against new data or when using the 380 

model in a new study area. Following the PERFICT approach, parameter estimation modules 381 

and validation modules can be developed and included as a part of a project to link both 382 

calibration data and validation data (See Fig. 1; Barros et al in prep.), and continuous 383 

parameterization and validation can be realized. Furthermore, the PERFICT approach, e.g., via 384 

predictive validation, creates a formal and rapid way to let the data tell us which data are better 385 

for a particular question. This is particularly important in Ecology, where various data sources 386 
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whose quality and quantity range widely, e.g. high quality but modestly sized field data vs. very 387 

large remote sensing datasets (of varying quality).  388 

 389 

Improving science-policy integration. The approach used by the Intergovernmental Panel on 390 

Climate Change (IPCC) provides a template for science-policy integration. The IPCC brings 391 

together more scientists than a typical research project, runs many different models, and 392 

integrates model outputs to test hypotheses, to understand model uncertainty and divergent or 393 

common outputs, to build iterative forecasts of the future, and to compare data as the future 394 

represents a forecasting-based hypothesis test (https://www.ipcc.ch/assessment-report/ar6/). 395 

Replicating this approach for every applied ecological problem will require major improvements 396 

in how ecologists integrate across scientific disciplines and models, utilize large and novel data, 397 

and repeat this process. The PERFICT approach outlines a way to replicate the process of the 398 

IPCC, but with vastly fewer resources. It encourages a nimble approach to applied decision 399 

making (Box 2) that allows for both changeable process complexity (e.g., a simple fire model or 400 

a complex fire model) and management complexity (e.g., manage fire risk in isolation, or within 401 

the context of forest management, species-at-risk, climate change and pest management). 402 

Scientifically, the easier testing of alternative models and hypotheses using the PERFICT 403 

approach offers an objective ground to resolve contradictions from models. From a 404 

management perspective, competing land management goals such as carbon sequestration 405 

and species at risk conservation can be evaluated, crossing traditional scientific disciplines and 406 

synergies can be identified. With new and more data, the predictions from potential models are 407 

checked against data, reported clearly and rapidly, and repeated regularly. This translates 408 

directly to policy spheres that have a regular reporting requirement (e.g., Kurz et al. 2009). It 409 

also brings decision making into a continuous improvement process, allows for the creation of 410 

nimble decisions support systems and builds confidence in science-informed decision-making. 411 

Finally, PERFICT improves science-policy integration by increasing model interoperability 412 



18 

horizontally (e.g. integrating across disciplines) and vertically (Fig. 3). While the literature has a 413 

track record of this sort of science-policy integration happening (e.g., Schmolke et al. 2010), the 414 

PERFICT approach will allow this to become ubiquitous and speed the transfer of vertical 415 

information. This expands the reach of ecological models beyond ecologists and promotes co-416 

production by enabling the direct participation and feedback of non-experts, like policy and 417 

decision makers.  418 

 419 

Conclusion 420 

The future of applied ecology requires solutions that cross disciplines and transcend scientific, 421 

statistical, computational, and human cultural paradigms. Historically, there have been 422 

successes for “wicked” problems (Parrott 2017), but they are too few and too infrequent 423 

(Travers et al. 2019). Ecologists must embrace the current data revolution and the 424 

unprecedented computational power to be at the table of every decision and policy that affects 425 

ecosystems worldwide. Often these situations demand rapid answers that cannot wait for a 426 

grant cycle and multi-year projects to complete: we have to be nimble and ready to give data-427 

driven solutions to new problems or meta-problems. The PERFICT approach and the toolkit we 428 

introduce here provide a path forward. This approach can bring the language of ecologists to 429 

the language of policy makers and land managers through dynamic (e.g., automatically 430 

generated) reporting or web interfaces and through rapid answers to complex trade-offs in 431 

ecosystem management. It provides a readily achievable and objective solution to the inherent 432 

subjectivity of Occam’s razor and George Box’s quote about model utility. The tools identified 433 

here focus around R and the SpaDES ecosystem of packages and modules. These tools are 434 

likely only the first iteration of such a foundation; many meta-tools are emerging on top of the 435 

SpaDES standard. Training the next generation of ecologists to think in the PERFICT approach 436 
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will be a challenge; but tools are now available with minimal training, especially for those who 437 

know R already. This reimagining of Predictive Ecology from the empirical version presented by 438 

Robert H. Peters in the late 1970s (Peters 1977) echoes his utilitarian and objectivity goals, but 439 

expands into the data and computational revolutions of the 21st century. Being at the 440 

management, policy making, and political tables with timely answers to challenging ecological 441 

questions is the ultimate goal.   442 
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 587 

Benefit Example PERFICT approach enables the benefit by: 

Speeding up 
scientific 
advances 

Occam’s razor Allowing for an objective evaluation of how much 
complexity is right for a given project as models of 
arbitrary complexity can be readily compared 

Informative priors Easing the process of moving from a previous study’s 
Bayesian posteriors to a new study’s priors, lessening 
the problems with specifying uninformative priors 
(Northrup & Gerber 2018) 

Forecast horizon Repeatedly iterating a forecasting model with regularly 
updated data and model, expanding the forecast 
horizon  

Community of 
contributors 

Allowing manageable projects with 100s of 
contributors to quickly update our understanding of a 
system 

Predictive 
validation 

Facilitating use of predictive validation. Using truly out-
of-sample data to test models becomes easier with 
reusable, interoperable modules 

Rewriting models Encouraging rewriting in a widely known language 
(R/SpaDES) allowing many experts to see and 
understand code.  

Many eyes Establishing a modeling standard that is 
understandable by many scientists with sufficient 
capacity. Bug fixes and improvements are identified 
and implemented very quickly. 

Data Science 
advances 

Building on data 
science tools 

Facilitating the use of sophisticated cloud repositories, 
user access control, data caching, cloud services etc. 
for researchers who do not have the capacity or time 
to learn and develop them.  

Data quality and 
quantity 

Building a complete data-model-validation pipeline 
from reusable components allowing for assessment of 
different data sources 

Linking models to 
data 

Keeping the linkage between canonical, original data 
sources and models live at all times. This allows for 
rapid reparameterization and updating with continual 
testing 

Cross disciplinarity Lessening the technological, data and cultural barriers 
that make cross disciplinary work challenging 
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Improving 
science-policy 
integration 

Regular reporting Lowering the effort required to produce regular 
updates for policy reporting 

IPCC-like process Allowing lower budget projects to achieve IPCC-like 
integration with its benefits such as regular updating, 
ensemble modeling, and direct policy making 

Different users Creating a complete framework that allows for all types 
of expertise -- from land managers, rights holders and 
the public, to scientists and computer programmers -- 
to interact (Fig. 3) 

Web and decision 
support 
applications 

Allowing for the development of generic web and 
decision support tools that can be reused widely  

Coping with 
contradictions 

Opening the science informed decision-making and 
policy-making process to shed light on cases where 
models contradict one another and offering an 
objective way to resolve those contradictions 

Table 1: Benefits and examples of the PERFICT approach and how these benefits can be 588 

realized. See text for details. 589 

  590 
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Figure Legends 591 

Fig. 1. Example abstraction of a PERFICT approach to a study. In this view, the study can be 592 

nimble as many components are reused, the entire workflow is continuous, changing data 593 

availability is accommodated, alternative modules for the same process are explicit, each sub-594 

project has high modularity (few arrows cross sub-project boundaries), and there are very few 595 

data sources that are external to each module demonstrating that the cross-disciplinary 596 

connections are minimal. For a given sub-project, a ubiquitous workflow is to have 2 generic 597 

modules (one for parameter estimation -- hexagon -- and one for forecasting or predicting -- 598 

square), with zero or more idiosyncratic modules. In cases of maximum reusability, ρ is the only 599 

idiosyncratic dataset that must be supplied. In our experience, each project begins with many 600 

idiosyncratic datasets and non-reusable modules to deal with those idiosyncratic datasets, in 601 

part because we do not yet know what is reusable. But as we identify the components that are 602 

reusable, over time and use, more and more elements move from idiosyncratic modules to 603 

generic modules (e.g., elements in G are moved to H). Similarly, as all the data in a project 604 

become freely available, the idiosyncratic modules may be dropped, simplifying the project, and 605 

maximizing reusability. We include an alternative collection ζ that represents the same 606 

ecological process as γ; the two together can inform “consensus” forecasts, be treated as 607 

alternative hypotheses, help to estimate model uncertainty etc. Modules J and K can be built to 608 

provide feedbacks into any arbitrary modules. Where there is a need to use heuristic 609 

optimization (e.g., pattern oriented modeling: Grimm & Railsback 2012), a single objective 610 

function can be developed to update arbitrary parameters (not shown). A common, traditional 611 

Ecology study would include h and G, i.e., closed data and low reusability models. Squares 612 

(forecasting, prediction) and hexagons (statistical or parameter estimation) represent modules; 613 

circles represent data. Arrows represent data-module connections with freely (solid lines), and 614 

not freely (dashed) available data. Greek letters indicate sub-projects which are collections of 615 
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modules that create a coherent data-module workflow for a single idea (e.g., “fire forecasting”), 616 

which could be from a scientific publication. Alphabet letters are arbitrary labels for data 617 

(lowercase) or modules (uppercase) showing that data input expectations will generally (though 618 

not necessarily) be unique for a given module. Within the data types, green is proprietary or 619 

truly idiosyncratic data, yellow is freely available and open data, beige is data inputs and 620 

(possibly) outputs of modules, orange is outputs that are not inputs (e.g., for visualization, 621 

reporting etc.), and purple is shared data. We show data in different colors to emphasize their 622 

different roles; within a project, they are simply arbitrary data objects. Within the module types, 623 

the darkness of the coloration indicates how generic it is, therefore how reusable it is in different 624 

contexts. We differentiate estimation modules from forecasting modules by shape to identify 625 

their different roles; the modules have no structural differences. ρ is the study area for a project. 626 

 627 

Fig. 2. Functions are the foundation of many models. Functions are deeply modular, and if 628 

collections of functions are wrapped into packages, there are many tools that enable easy 629 

dissemination, quality control, continuous integration, documentation, and writing. Functions 630 

may have default values for arguments, but they are not intended to do something without the 631 

user understanding the function and providing input arguments. We define modules to be similar 632 

to functions because they have inputs and convert those inputs into some output. However, 633 

modules are collections of one or more functions that have computer readable metadata 634 

describing their inputs and outputs. Unlike functions, this module metadata contains the 635 

information that describes how modules fit (or do not) together. Modules, as we present them 636 

here, are the basic unit of code that enables and facilitates all the elements of the PERFICT 637 

approach. In analogy, functions are Lego® pieces, often supplied in a package (similar to 638 

collections of functions), and modules are Lego® structures made with those pieces, such as 639 

trucks, houses, roads, space shuttles etc. A given structure has inherent value, i.e., a truck can 640 

be the end goal of a project and can stand alone. The metadata (implicit in Lego®) describe the 641 
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ways these structures interact, i.e., a road can take things with wheels (input); a bus has wheels 642 

(output) so can go on a road, but a house does not so cannot. Using a structure by itself or 643 

combining multiple structures together makes simple to complex “models”, such as 644 

neighbourhoods, villages, cities, space stations, etc. Many modules fit together (a truck and a 645 

road); others do not (a truck and a space station). The structures can be used in many new 646 

ways, pieces added to structures, and collected into complex meta-structures. If we want to 647 

build a Lego® city, we could either start with raw blocks or build a new configuration by reusing 648 

some or all pre-existing structures. Furthermore, other toy “brands” -- or computer languages, 649 

e.g., Python, C++ -- can be added to the city. Using the PERFICT approach, ecologists can 650 

build robust, reusable modules, enabling rapid creation, use, testing and reformulating of 651 

models. 652 

 653 

Fig. 3. The different users, and their contributions to applied decision making (arrow-heads 654 

show increasing importance), who interact with ecological modeling and their forecasts. The 655 

PERFICT approach is a modular framework that allows many entry points into a science-policy 656 

system. The SpaDES toolkit enhances existing open data and tools, facilitates the 657 

implementation of this approach, and improves the ability to engage a wide variety of users.  658 

 659 
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 660 

Box 1 Implementing a PERFICT approach: best practices  661 

To work with the PERFICT approach, best practices begin at project initiation, continue during 662 

project development, and end always in a fully reproducible and reusable state that can become 663 

part of a continuous adaptive management process. In our experience, the extra effort involved 664 

in learning and implementing are relatively modest; the payoffs are large. Below, capital letters 665 

in parentheses indicate which elements of the PERFICT approach are addressed. When the 666 

SpaDES collection of R packages has explicit tools for this, we indicate. See text for details. 667 

1. Use a modular approach to code development (R, I; SpaDES);  668 

2. Follow coding best practices (R) (e.g., Wilson et al. 2014, 2017);  669 

3. Use a standard interface to code (SpaDES);  670 

4. Use data directly from a cloud repository (R, F, I; SpaDES).  671 

5. Use open solutions and approaches unless it is functionally impossible (R, F, SpaDES); 672 

6. Provide worked examples (R, SpaDES); 673 

7. Maintain code to be always functioning (F, I, C; SpaDES); 674 

8. Write, maintain and run tests (R, T; SpaDES);  675 

9. Document code (I, SpaDES); 676 

10. Use version control (R)  677 
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BOX 2 -- PERFICT in action 678 

Pushing against parsimony, it is now clear that we often need heterogeneous models 679 

that integrate across disciplines so that realistic land management challenges can be addressed 680 

(Houlahan et al. 2015). For example, land managers in Northwest Territories, Canada, are 681 

attempting to manage declining woodland caribou populations and listed bird species-at-risk in 682 

the context of protected areas planning and indigenous peoples’ rights (Micheletti et al. in 683 

review in review; S. Haché pers. comm; T. Micheletti pers. comm). This formed the basis for a 684 

pilot project for the PERFICT approach. To forecast these values, there were many ecological 685 

and land management issues that had to be addressed. For example, wildfires had to be 686 

forecasted under changing climate, changing fuels (vegetation), and changing fire suppression 687 

practices. Vegetation is shifting due to direct and indirect effects of climate, such as species and 688 

biome shifts, permafrost melt, tree species drought-induced mortality, and accelerated forest 689 

succession dynamics, to name a few. These landscapes are also currently and historically 690 

inhabited and used by Indigenous peoples (https://native-land.ca/maps/territories/sahtu-dene-691 

and-metis/). There are important road networks for mining and other anthropogenic 692 

development. There are enormous carbon stores in the frozen peatlands that are melting, 693 

releasing these to the atmosphere. The overarching question was how to best manage the 694 

Species-at-Risk, alongside all these other values, given changing climate and indigenous 695 

peoples rights. 696 

To correctly manage these landscapes, all these elements must be included in 697 

forecasting, so decisions can evaluate consequences, synergies and trade-offs across multiple 698 

disciplines. It is likely inappropriate to give any of these issues short shrift and have each project 699 

treat the issues that are not well studied by the team as “externalities”; yet, building large 700 

collaborative projects with models that do not interoperate is extremely onerous, time 701 

consuming, and ultimately very costly. We need to focus on management problems, while 702 

https://native-land.ca/maps/territories/sahtu-dene-and-metis/
https://native-land.ca/maps/territories/sahtu-dene-and-metis/
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including all the best disciplinary models. This challenge led to the creation of a new class of 703 

ecological scientist: the integrator. Like a traditional generalist, this person acts within the big 704 

picture perspective, yet has just enough knowledge of the modules (and potentially the 705 

community of scientists who developed them) to be able to work at the interface between 706 

modules.  707 

For the pilot, we assembled a 24-member collaborative team and brought together 19 708 

modules with 7 lead module developers to assist with this problem (see Supp. Mat. E to see 709 

module interdependency plot). The team included partners from two levels of government, and 710 

scientists from three universities, and the initial pilot was pulled together in four months. With 711 

the PERFICT approach, the technical parts of linking the models were a minor component of the 712 

whole project. The challenges we faced were not from integration, as we were using SpaDES-713 

compatible modules, but from the immature science that some of the 19 modules addressed.  714 

In the expansion of the pilot -- the “Western Boreal Initiative” -- we are working with over 715 

40 modules, with 10 different sub-projects including endangered species conversation, 716 

Indigenous land management, the Pan-Canadian Approach to conservation (Environment and 717 

Climate Change Canada 2018), caribou management and carbon management. Some of these 718 

projects are addressing whole-system management questions, others are very specific. Model 719 

components were either new or were existing; many required improved algorithms or had 720 

access to improved datasets as compared to the pilot. In all cases, each benefited from working 721 

within the PERFICT approach, allowing for nimble updates at any point, swapping out of 722 

previous models, and weaving in new elements including the long term process of Indigenous 723 

rights on the land. These are co-produced, works in progress.  724 

  725 
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Fig. 1 726 
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Fig. 2 730 
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Fig. 3 734 
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