REFERENCES
Alcázar, R. & Parker, J.E. (2011) The impact of temperature on balancing immune responsiveness and growth in Arabidopsis .Trends in Plant Science 16: 666-675.
Allan, A.C., Hellens, R.P. & Laing, W.A. (2008) MYB transcription factors that colour our fruit. Trends in Plant Science 13: 99-102.
An, J.P., Xu, R.R., Liu, X., Zhang, J.C., Wang, X.F., You, C.X., et al. (2021) Jasmonate induces biosynthesis of anthocyanin and proanthocyanidin in apple by mediating the JAZ1-TRB1-MYB9 complex.Plant Journal 106: 1414-1430.
An, X.H., Tian, Y., Chen, K.Q., Liu, X.J., Liu, D.D., Xie, X.B., et al. (2015) MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples.Plant Cell Physiology 56: 650-662.
Balfagón, D., Sengupta, S., Gómez-Cadenas, A., Fritschi, F.B., Azad, R.K., Mittler, R., et al. (2019) Jasmonic Acid Is Required for Plant Acclimation to a Combination of High Light and Heat Stress.Plant Physiology 181: 1668-1682.
Baudry, A., Heim, M.A., Dubreucq, B., Caboche, M., Weisshaar, B. & Lepiniec, L. (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis inArabidopsis thaliana . Plant Journal 39: 366-380.
Borevitz, J.O., Xia, Y.J., Blount, J., Dixon, R.A. & Lamb, C.(2000) Activation tagging identifies a conserved MYB regulator of phenypropanoid biosynthesis. Plant Cell 12: 2383-2393.
Busch, W., Wunderlich, M. & Schöffl, F. (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways inArabidopsis thaliana . Plant Journal 41: 1-14.
Charng, Y.Y., Liu, H.C., Liu, N.Y., Chi, W.T., Wang, C.N., Chang, S.H., et al. (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance inArabidopsis . Plant Physiology 143: 251-262.
Chen, S.T., He, N.Y., Chen, J.H. & Guo, F.Q. (2017) Identification of core subunits of photosystem II as action sites of HSP21, which is activated by the GUN5-mediated retrograde pathway inArabidopsi s. Plant Journal 89: 1106-1118.
Chen, S., Kong, Y., Zhang, X., Liao, Z., He, Y., Li, L., et al.(2021) Structural and functional organization of the MYC transcriptional factors in Camellia sinensis . Planta 253: 93.
Chen, X., Wang, D.D., Fang, X., Chen, X.Y. & Mao, Y.B. (2019) Plant Specialized Metabolism Regulated by Jasmonate Signaling.Plant Cell Physiology 60: 2638-2647.
Clarke, S.M., Cristescu, S.M., Miersch, O., Harren, F.J.M., Wasternack, C. & Mur, L.A.J. (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana .New Phytologist 182: 175-187.
Clough, S.J. & Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium -mediated transformation ofArabidopsis thaliana . Plant Journal 16: 735-743.
Ding, M., He, Y., Zhang, K., Li, J., Shi, Y., Zhao, M., et al.(2022) JA-induced FtBPM3 accumulation promotes FtERF-EAR3 degradation and rutin biosynthesis in Tartary buckwheat. Plant Journal doi: 10.1111/tpj.15800.
Ding, Y. & Lawrence, C.E. (2003) A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Research 31: 7280-7301
Du, H., Liu, H. & Xiong, L. (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Frontiers in Plant Science 4: 397.
Friedrich, T., Oberkofler, V., Trindade, I., Altmann, S., Brzezinka, K., Lämke, J., et al. (2021) Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress inArabidopsis . Nature Communications 12: 3426.
Gonzalez, A., Zhao, M., Leavitt, J.M. & Lloyd, A.M. (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant Journal 53: 814-827.
Gu, L., Jiang, T., Zhang, C., Li, X., Wang, C., Zhang, Y., et al. (2019) Maize HSFA2 and HSBP2 antagonistically modulate raffinose biosynthesis and heat tolerance in Arabidopsis . Plant Journal 100: 128-142.
Hao, X.Y., Tang, H., Wang, B., Yue, C., Wang, L., Zeng, J.M., et al. (2018a) Integrative transcriptional and metabolic analyses provide insights into cold spell response mechanisms in young shoots of the tea plant. Tree Physiology 38: 1655-1671
Hao, X.Y., Wang, B., Wang, L., Zeng, J.M., Yang, Y.J. & Wang, X.C. (2018b) Comprehensive transcriptome analysis reveals common and specific genes and pathways involved in cold acclimation and cold stress in tea plant leaves. Scientia Horticulturae 240: 354-368.
He, Y., Zhang, X., Li, L., Sun, Z., Li, J., Chen, X., et al.(2021) SPX4 interacts with both PHR1 and PAP1 to regulate critical steps in phosphorus-status-dependent anthocyanin biosynthesis. New Phytologist 230: 205-217.
Hu, Y., Zhang, M., Lu, M., Wu, Y., Jing, T., Zhao, M., et al.(2022) Salicylic acid carboxyl glucosyltransferase UGT87E7 regulates disease resistance in Camellia sinensis . Plant Physiology188: 1507-1520.
Huang, W., Khaldun, A.B., Chen, J., Zhang, C., Lv, H., Yuan, L., et al. (2016) A R2R3-MYB Transcription Factor Regulates the Flavonol Biosynthetic Pathway in a Traditional Chinese Medicinal Plant,Epimedium sagittatum . Frontiers in Plant Science7: 1089.
Jiang, X., Huang, K., Zheng, G., Hou, H., Wang, P., Jiang, H., et al. (2018) CsMYB5a and CsMYB5e from Camellia sinensisdifferentially regulate anthocyanin and proanthocyanidin biosynthesis.Plant Science 270: 209-220.
Jing, T., Du, W., Gao, T., Wu, Y., Zhang, N., Zhao, M., et al.(2021) Herbivore-induced DMNT catalyzed by CYP82D47 plays an important role in the induction of JA-dependent herbivore resistance of neighboring tea plants. Plant Cell Environment44: 1178-1191.
Katsir, L., Chung, H.S., Koo, A.J. & Howe, G.A. (2008) Jasmonate signaling: a conserved mechanism of hormone sensing.Current Opinion in Plant Biology 11: 428-435.
Kim, S., Hwang, G., Lee, S., Zhu, J.Y., Paik, I., Nguyen, T.T., et al. (2017) High Ambient Temperature Represses Anthocyanin Biosynthesis through Degradation of HY5. Frontiers in Plant Science 8: 1787.
Kong, Y., Wang, G., Chen, X., Li, L., Zhang, X., Chen, S., et l. (2021) OsPHR2 modulates phosphate starvation-induced OsMYC2 signalling and resistance to Xanthomonas oryzae pv.oryzae . Plant Cell & Environment 44: 3432-3444.
Li, B., Gao, K., Ren, H. & Tang. W. (2018) Molecular mechanisms governing plant responses to high temperatures. Journal of Integrative Plant Biology 60: 757-779.
Li, P., Fu, J., Xu, Y., Shen, Y., Zhang, Y., Ye, Z., et al.(2022) CsMYB1 integrates the regulation of trichome development and catechins biosynthesis in tea plant domestication. New Phytologist 234: 902-917.
Li, P., Ye, Z., Fu, J., Xu, Y., Shen, Y., Zhang, Y., et al.(2022) CsMYB184 regulates caffeine biosynthesis in tea plants.Plant Biotechnology Journal 20: 1012-1014.
Liang, T., Shi, C., Peng, Y., Tan, H., Xin, P., Yang, Y., et al. (2020) Brassinosteroid-Activated BRI1-EMS-SUPPRESSOR 1 Inhibits Flavonoid Biosynthesis and Coordinates Growth and UV-B Stress Responses in Plants. Plant Cell 32: 3224-3239.
Li, S. (2014). Transcriptional control of flavonoid biosynthesis: fine-tuning of the MYB-bHLH-WD40 (MBW) complex.Plant Signal Behavior 9: e27522.
Liu, H.C., Liao, H.T. & Charng, Y.Y. (2011) The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses inArabidopsis . Plant Cell Environment 34: 738-751.
Liu, H.C. & Charng, Y.Y. (2013) Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiology163: 276-290.
Liu, H.C., Lämke, J., Lin, S.Y., Hung, M.J., Liu, K.M., Charng, Y.Y., et al. (2018) Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress. Plant Journal 95: 401-413.
Mao, Y.B., Liu, Y.Q., Chen, D.Y., Chen, F.Y., Fang, X., Hong, G.J., et al. (2017) Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance. Nature Communications 8: 13925.
Mittler, R., Finka, A. & Goloubinoff, P. (2012) How do plants feel the heat? Trends Biochemical Science 37: 118-125.
Muthuramalingam, P., Jeyasri, R., Bharathi., K.A.S., Suba, V., Pandian, S.T.K. & Ramesh, M. (2020) Global integrated omics expression analyses of abiotic stress signaling HSF transcription factor genes inOryza sativa L.: An in silico approach. Genomics112: 908-918.
Ogawa, D., Yamaguchi, K. & Nishiuchi, T. (2007) High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. Journal of Experimental Botany58: 3373-3383.
Ohama, N., Sato, H., Shinozaki, K. & Yamaguchi-Shinozaki, K.(2017) Transcriptional Regulatory Network of Plant Heat Stress Response.Trends in Plant Science 22: 53-65.
Pan, C., Yang, D., Zhao, X., Jiao, C., Yan, Y., Lamin-Samu, A.T., et al. (2019) Tomato stigma exsertion induced by high temperature is associated with the jasmonate signalling pathway. Plant Cell Environment 42: 1205-1221.
Qi, T., Song, S., Ren, Q., Wu, D., Huang, H., Chen, Y., et al.(2011) The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana .Plant Cell 23: 1795-1814.
Rowan, D.D., Cao, M., Lin-Wang, K., Cooney, J.M., Jensen, D.J., Austin, P.T., et al. (2009) Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana . New Phytologist182: 102-115.
Scharf, K.D., Berberich, T., Ebersberger, I. & Nover, L.(2011) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta1819: 104-119.
Shan, X., Li, Y., Yang, S., Yang, Z., Qiu, M., Gao, R., et al.(2020) The spatio-temporal biosynthesis of floral flavonols is controlled by differential phylogenetic MYB regulators in Freesia hybrida . New Phytologist228: 1864-1879.
Shen, J., Wang, Y., Chen, C., Ding, Z., Hu, J., Zheng, C., et al. (2015) Metabolite profiling of tea (Camellia sinensis L.) leaves in winter. Scientia Horticulturae  192: 1-9.
Shen, J., Zhang, D., Zhou, L., Zhang, X., Liao, J., Duan, Y., et al. (2019) Transcriptomic and metabolomic profiling of Camellia sinensis L . cv. ’Suchazao’ exposed to temperature stresses reveals modification in protein synthesis and photosynthetic and anthocyanin biosynthetic pathways. Tree Physiology 39: 1583-1599.
Stracke, R., Ishihara, H., Huep, G., Barsch, A., Mehrtens, F., Niehaus, K., et al. (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant Journal 50: 660-677.
Su, H., Zhang, X., He, Y., Li, L., Wang, Y., Hong, G., et al.(2020) Transcriptomic Analysis Reveals the Molecular Adaptation of Three Major Secondary Metabolic Pathways to Multiple Macronutrient Starvation in Tea (Camellia sinensis ). Genes 11: 241.
Sun, B., Zhu, Z., Cao, P., Chen, H., Chen, C., Zhou, X., et al.(2016) Purple foliage coloration in tea (Camellia sinensis L.) arises from activation of the R2R3-MYB transcription factor CsAN1.Scientific Reports 6: 32534.
Toledo-Ortiz, G., Huq, E. & Quail, P.H. (2003) TheArabidopsis basic/helix-loop-helix transcription factor family.Plant Cell 15: 1749-1770.
Walker, A.R., Davison, P.A., Bolognesi-Winfield, A.C., James, C.M., Srinivasan, N., Blundell, T.L., et al. (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis , encodes a WD40 repeat protein. Plant Cell 11: 1337-1350.
Wang, W.L., Wang, Y.X., Li, H., Liu, Z.W., Cui, X. & Zhuang, J. (2018) Two MYB transcription factors (CsMYB2 and CsMYB26) are involved in flavonoid biosynthesis in tea plant [Camellia sinensis (L.) O. Kuntze]. BMC Plant Biology 18: 288.
Wang, X.C., Zhao, Q.Y., Ma, C.L., Zhang, Z.H., Cao, H.L., Kong, Y.M., et al. (2013) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14: 415.
Wang, Y., Liu, W., Jiang, H., Mao, Z., Wang, N., Jiang, S., et al. (2019) The R2R3-MYB transcription factor MdMYB24-like is involved in methyl jasmonate-induced anthocyanin biosynthesis in apple.Plant Physiology Biochemistry 139: 273-282.
Wasternack, C. & Hause, B. (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Annals of Botany 111: 1021-1058.
Wasternack, C. & Strnad, M. (2019) Jasmonates are signals in the biosynthesis of secondary metabolites - Pathways, transcription factors and applied aspects - A brief review. Nature Biotechnology 48: 1-11.
Wei, C., Yang, H., Wang, S., Zhao, J., Liu, C., Gao, L., et al.(2018) Draft genome sequence of Camellia sinensis  var. sinensis  provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America115: E4151-E4158.
Wei, K., Wang, L., Zhang, Y., Ruan, L., Li, H., Wu, L., et al.(2019) A coupled role for CsMYB75 and CsGSTF1 in anthocyanin hyperaccumulation in purple tea. Plant Journal97: 825-840.
Wu, N., Yao, Y., Xiang, D., Du, H., Geng, Z., Yang, W., et al.(2022) A MITE variation-associated heat-inducible isoform of a heat-shock factor confers heat tolerance through regulation of JASMONATE ZIM-DOMAIN genes in rice. New Phytologist 234: 1315-1331.
Xiao, H. & Lis, J.T. (1988) Germline transformation used to define key features of heat-shock response elements. Science239: 1139-1142.
Xin, H., Zhang, H., Chen, L., Li, X., Lian, Q., Yuan, X., et al. (2010) Cloning and characterization of HsfA2 from Lily (Lilium longiflorum ). Plant Cell Reports29: 875-885.
Yokotani, N., Ichikawa, T., Kondou, Y., Matsui, M., Hirochika, H., Iwabuchi, M., et al. (2008) Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis . Planta227: 957-967.
Yoshida, T., Ohama, N., Nakajima, J., Kidokoro, S., Mizoi, J., Nakashima, K., et al. (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Molecular Genetics and Genomics286: 321-332.
Zhai, Q., Zhang, X., Wu, F., Feng, H., Deng, L., Xu, L., et al.(2015) Transcriptional Mechanism of Jasmonate Receptor COI1-Mediated Delay of Flowering Time in Arabidopsis . Plant Cell27: 2814-2828.
Zhang, F., Gonzalez, A., Zhao, M., Payne, C.T. & Lloyd, A.(2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis . Development130: 4859-4869.
Zhang, H., Li, G., Hu, D., Zhang, Y., Zhang, Y., Shao, H., et al. (2020a) Functional characterization of maize heat shock transcription factor gene ZmHsf01  in thermotolerance. Peer J 8: e8926.
Zhang, J., Liu, B., Li, J., Zhang, L., Wang, Y., Zheng, H., et al. (2015) Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses. BMC Genomics16: 181.
Zhao, L., Gao, L., Wang, H., Chen, X., Wang, Y., Yang, H., et al. (2013) The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Functional Integrative Genomics13: 75-98.
Zhang, X., Xu, W., Ni, D., Wang, M. & Guo, G. (2020b) Genome-wide characterization of tea plant (Camellia sinensis ) Hsf transcription factor family and role of CsHsfA2 in heat tolerance.BMC Plant Biology 20: 244.
Zhang, X., He, Y., Li, L., Liu, H. & Hong, G. (2021). Involvement of the R2R3-MYB transcription factor MYB21 and its homologs in regulating flavonol accumulation in Arabidopsis stamen.Journal of Experimental Botany 72: 4319-4332.
Zhou, Y., Zeng, L., Hou, X., Liao, Y. & Yang, Z. (2020) Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis . Journal of Experimental Botany 71: 2172-2185.
Zhu, T., Herrfurth, C., Xin, M., Savchenko, T., Feussner, I., Goossens, A. et al. (2021) Warm temperature triggers JOX and ST2A-mediated jasmonate catabolism to promote plant growth. Nature Communications 12: 4804.
Zimmermann, I.M., Heim, M.A., Weisshaar, B. & Uhrig, J.F.(2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins.Plant Journal 40: 22-34.