REFERENCES
Alcázar, R. & Parker, J.E. (2011) The impact of temperature on
balancing immune responsiveness and growth in Arabidopsis .Trends in Plant Science 16: 666-675.
Allan, A.C., Hellens, R.P. & Laing, W.A. (2008) MYB
transcription factors that colour our fruit. Trends in Plant
Science 13: 99-102.
An, J.P., Xu, R.R., Liu, X., Zhang, J.C., Wang, X.F., You, C.X.,
et al. (2021) Jasmonate induces biosynthesis of anthocyanin and
proanthocyanidin in apple by mediating the JAZ1-TRB1-MYB9 complex.Plant Journal 106: 1414-1430.
An, X.H., Tian, Y., Chen, K.Q., Liu, X.J., Liu, D.D., Xie, X.B.,
et al. (2015) MdMYB9 and MdMYB11 are involved in the regulation of the
JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples.Plant Cell Physiology 56: 650-662.
Balfagón, D., Sengupta, S., Gómez-Cadenas, A., Fritschi, F.B.,
Azad, R.K., Mittler, R., et al. (2019) Jasmonic Acid Is Required for
Plant Acclimation to a Combination of High Light and Heat Stress.Plant Physiology 181: 1668-1682.
Baudry, A., Heim, M.A., Dubreucq, B., Caboche, M., Weisshaar, B.
& Lepiniec, L. (2004) TT2, TT8, and TTG1 synergistically specify the
expression of BANYULS and proanthocyanidin biosynthesis inArabidopsis thaliana . Plant Journal 39: 366-380.
Borevitz, J.O., Xia, Y.J., Blount, J., Dixon, R.A. & Lamb, C.(2000) Activation tagging identifies a conserved MYB regulator of
phenypropanoid biosynthesis. Plant Cell 12: 2383-2393.
Busch, W., Wunderlich, M. & Schöffl, F. (2005) Identification
of novel heat shock factor-dependent genes and biochemical pathways inArabidopsis thaliana . Plant Journal 41: 1-14.
Charng, Y.Y., Liu, H.C., Liu, N.Y., Chi, W.T., Wang, C.N.,
Chang, S.H., et al. (2007) A heat-inducible transcription factor,
HsfA2, is required for extension of acquired thermotolerance inArabidopsis . Plant Physiology 143: 251-262.
Chen, S.T., He, N.Y., Chen, J.H. & Guo, F.Q. (2017)
Identification of core subunits of photosystem II as action sites of
HSP21, which is activated by the GUN5-mediated retrograde pathway inArabidopsi s. Plant Journal 89: 1106-1118.
Chen, S., Kong, Y., Zhang, X., Liao, Z., He, Y., Li, L., et al.(2021) Structural and functional organization of the MYC transcriptional
factors in Camellia sinensis . Planta 253: 93.
Chen, X., Wang, D.D., Fang, X., Chen, X.Y. & Mao, Y.B. (2019)
Plant Specialized Metabolism Regulated by Jasmonate Signaling.Plant Cell Physiology 60: 2638-2647.
Clarke, S.M., Cristescu, S.M., Miersch, O., Harren, F.J.M.,
Wasternack, C. & Mur, L.A.J. (2009) Jasmonates act with salicylic acid
to confer basal thermotolerance in Arabidopsis thaliana .New Phytologist 182: 175-187.
Clough, S.J. & Bent, A.F. (1998) Floral dip: a simplified
method for Agrobacterium -mediated transformation ofArabidopsis thaliana . Plant Journal 16: 735-743.
Ding, M., He, Y., Zhang, K., Li, J., Shi, Y., Zhao, M., et al.(2022) JA-induced FtBPM3 accumulation promotes FtERF-EAR3 degradation
and rutin biosynthesis in Tartary buckwheat. Plant Journal doi:
10.1111/tpj.15800.
Ding, Y. & Lawrence, C.E. (2003) A statistical sampling
algorithm for RNA secondary structure prediction. Nucleic Acids
Research 31: 7280-7301
Du, H., Liu, H. & Xiong, L. (2013) Endogenous auxin and
jasmonic acid levels are differentially modulated by abiotic stresses in
rice. Frontiers in Plant Science 4: 397.
Friedrich, T., Oberkofler, V., Trindade, I., Altmann, S.,
Brzezinka, K., Lämke, J., et al. (2021) Heteromeric HSFA2/HSFA3
complexes drive transcriptional memory after heat stress inArabidopsis . Nature Communications 12: 3426.
Gonzalez, A., Zhao, M., Leavitt, J.M. & Lloyd, A.M. (2008)
Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb
transcriptional complex in Arabidopsis seedlings. Plant
Journal 53: 814-827.
Gu, L., Jiang, T., Zhang, C., Li, X., Wang, C., Zhang, Y., et
al. (2019) Maize HSFA2 and HSBP2 antagonistically modulate raffinose
biosynthesis and heat tolerance in Arabidopsis . Plant
Journal 100: 128-142.
Hao, X.Y., Tang, H., Wang, B., Yue, C., Wang, L., Zeng, J.M., et
al. (2018a) Integrative transcriptional and metabolic analyses provide
insights into cold spell response mechanisms in young shoots of the tea
plant. Tree Physiology 38: 1655-1671
Hao, X.Y., Wang, B., Wang, L., Zeng, J.M., Yang, Y.J. & Wang,
X.C. (2018b) Comprehensive transcriptome analysis reveals common and
specific genes and pathways involved in cold acclimation and cold stress
in tea plant leaves. Scientia Horticulturae 240: 354-368.
He, Y., Zhang, X., Li, L., Sun, Z., Li, J., Chen, X., et al.(2021) SPX4 interacts with both PHR1 and PAP1 to regulate critical steps
in phosphorus-status-dependent anthocyanin biosynthesis. New
Phytologist 230: 205-217.
Hu, Y., Zhang, M., Lu, M., Wu, Y., Jing, T., Zhao, M., et al.(2022) Salicylic acid carboxyl glucosyltransferase UGT87E7 regulates
disease resistance in Camellia sinensis . Plant Physiology188: 1507-1520.
Huang, W., Khaldun, A.B., Chen, J., Zhang, C., Lv, H., Yuan, L.,
et al. (2016) A R2R3-MYB Transcription Factor Regulates the Flavonol
Biosynthetic Pathway in a Traditional Chinese Medicinal Plant,Epimedium sagittatum . Frontiers in Plant Science7: 1089.
Jiang, X., Huang, K., Zheng, G., Hou, H., Wang, P., Jiang, H.,
et al. (2018) CsMYB5a and CsMYB5e from Camellia sinensisdifferentially regulate anthocyanin and proanthocyanidin biosynthesis.Plant Science 270: 209-220.
Jing, T., Du, W., Gao, T., Wu, Y., Zhang, N., Zhao, M., et al.(2021) Herbivore-induced DMNT catalyzed by CYP82D47 plays an important
role in the induction of JA-dependent herbivore resistance of
neighboring tea plants. Plant Cell Environment44: 1178-1191.
Katsir, L., Chung, H.S., Koo, A.J. & Howe, G.A. (2008)
Jasmonate signaling: a conserved mechanism of hormone sensing.Current Opinion in Plant Biology 11: 428-435.
Kim, S., Hwang, G., Lee, S., Zhu, J.Y., Paik, I., Nguyen, T.T.,
et al. (2017) High Ambient Temperature Represses Anthocyanin
Biosynthesis through Degradation of HY5. Frontiers in Plant
Science 8: 1787.
Kong, Y., Wang, G., Chen, X., Li, L., Zhang, X., Chen, S., et
l. (2021) OsPHR2 modulates phosphate starvation-induced OsMYC2
signalling and resistance to Xanthomonas oryzae pv.oryzae . Plant Cell & Environment 44: 3432-3444.
Li, B., Gao, K., Ren, H. & Tang. W. (2018) Molecular
mechanisms governing plant responses to high temperatures. Journal
of Integrative Plant Biology 60: 757-779.
Li, P., Fu, J., Xu, Y., Shen, Y., Zhang, Y., Ye, Z., et al.(2022) CsMYB1 integrates the regulation of trichome development and
catechins biosynthesis in tea plant domestication. New
Phytologist 234: 902-917.
Li, P., Ye, Z., Fu, J., Xu, Y., Shen, Y., Zhang, Y., et al.(2022) CsMYB184 regulates caffeine biosynthesis in tea plants.Plant Biotechnology Journal 20: 1012-1014.
Liang, T., Shi, C., Peng, Y., Tan, H., Xin, P., Yang, Y., et
al. (2020) Brassinosteroid-Activated BRI1-EMS-SUPPRESSOR 1 Inhibits
Flavonoid Biosynthesis and Coordinates Growth and UV-B Stress Responses
in Plants. Plant Cell 32: 3224-3239.
Li, S. (2014). Transcriptional control of flavonoid
biosynthesis: fine-tuning of the MYB-bHLH-WD40 (MBW) complex.Plant Signal Behavior 9: e27522.
Liu, H.C., Liao, H.T. & Charng, Y.Y. (2011) The role of class
A1 heat shock factors (HSFA1s) in response to heat and other stresses inArabidopsis . Plant Cell Environment 34: 738-751.
Liu, H.C. & Charng, Y.Y. (2013) Common and distinct functions
of Arabidopsis class A1 and A2 heat shock factors in diverse
abiotic stress responses and development. Plant Physiology163: 276-290.
Liu, H.C., Lämke, J., Lin, S.Y., Hung, M.J., Liu, K.M., Charng,
Y.Y., et al. (2018) Distinct heat shock factors and chromatin
modifications mediate the organ-autonomous transcriptional memory of
heat stress. Plant Journal 95: 401-413.
Mao, Y.B., Liu, Y.Q., Chen, D.Y., Chen, F.Y., Fang, X., Hong,
G.J., et al. (2017) Jasmonate response decay and defense metabolite
accumulation contributes to age-regulated dynamics of plant insect
resistance. Nature Communications 8: 13925.
Mittler, R., Finka, A. & Goloubinoff, P. (2012) How do plants
feel the heat? Trends Biochemical Science 37: 118-125.
Muthuramalingam, P., Jeyasri, R., Bharathi., K.A.S., Suba, V.,
Pandian, S.T.K. & Ramesh, M. (2020) Global integrated omics expression
analyses of abiotic stress signaling HSF transcription factor genes inOryza sativa L.: An in silico approach. Genomics112: 908-918.
Ogawa, D., Yamaguchi, K. & Nishiuchi, T. (2007) High-level
overexpression of the Arabidopsis HsfA2 gene confers not only
increased themotolerance but also salt/osmotic stress tolerance and
enhanced callus growth. Journal of Experimental Botany58: 3373-3383.
Ohama, N., Sato, H., Shinozaki, K. & Yamaguchi-Shinozaki, K.(2017) Transcriptional Regulatory Network of Plant Heat Stress Response.Trends in Plant Science 22: 53-65.
Pan, C., Yang, D., Zhao, X., Jiao, C., Yan, Y., Lamin-Samu,
A.T., et al. (2019) Tomato stigma exsertion induced by high temperature
is associated with the jasmonate signalling pathway. Plant Cell
Environment 42: 1205-1221.
Qi, T., Song, S., Ren, Q., Wu, D., Huang, H., Chen, Y., et al.(2011) The Jasmonate-ZIM-domain proteins interact with the
WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin
accumulation and trichome initiation in Arabidopsis thaliana .Plant Cell 23: 1795-1814.
Rowan, D.D., Cao, M., Lin-Wang, K., Cooney, J.M., Jensen, D.J.,
Austin, P.T., et al. (2009) Environmental regulation of leaf colour in
red 35S:PAP1 Arabidopsis thaliana . New Phytologist182: 102-115.
Scharf, K.D., Berberich, T., Ebersberger, I. & Nover, L.(2011) The plant heat stress transcription factor (Hsf) family:
structure, function and evolution. Biochim Biophys Acta1819: 104-119.
Shan, X., Li, Y., Yang, S., Yang, Z., Qiu, M., Gao, R., et al.(2020) The spatio-temporal biosynthesis of floral flavonols is
controlled by differential phylogenetic MYB regulators in Freesia
hybrida . New Phytologist228: 1864-1879.
Shen, J., Wang, Y., Chen, C., Ding, Z., Hu, J., Zheng, C., et
al. (2015) Metabolite profiling of tea (Camellia sinensis L.)
leaves in winter. Scientia Horticulturae 192: 1-9.
Shen, J., Zhang, D., Zhou, L., Zhang, X., Liao, J., Duan, Y., et
al. (2019) Transcriptomic and metabolomic profiling of Camellia
sinensis L . cv. ’Suchazao’ exposed to temperature stresses reveals
modification in protein synthesis and photosynthetic and anthocyanin
biosynthetic pathways. Tree Physiology 39: 1583-1599.
Stracke, R., Ishihara, H., Huep, G., Barsch, A., Mehrtens, F.,
Niehaus, K., et al. (2007) Differential regulation of closely related
R2R3-MYB transcription factors controls flavonol accumulation in
different parts of the Arabidopsis thaliana seedling. Plant
Journal 50: 660-677.
Su, H., Zhang, X., He, Y., Li, L., Wang, Y., Hong, G., et al.(2020) Transcriptomic Analysis Reveals the Molecular Adaptation of Three
Major Secondary Metabolic Pathways to Multiple Macronutrient Starvation
in Tea (Camellia sinensis ). Genes 11: 241.
Sun, B., Zhu, Z., Cao, P., Chen, H., Chen, C., Zhou, X., et al.(2016) Purple foliage coloration in tea (Camellia sinensis L.)
arises from activation of the R2R3-MYB transcription factor CsAN1.Scientific Reports 6: 32534.
Toledo-Ortiz, G., Huq, E. & Quail, P.H. (2003) TheArabidopsis basic/helix-loop-helix transcription factor family.Plant Cell 15: 1749-1770.
Walker, A.R., Davison, P.A., Bolognesi-Winfield, A.C., James,
C.M., Srinivasan, N., Blundell, T.L., et al. (1999) The TRANSPARENT
TESTA GLABRA1 locus, which regulates trichome differentiation and
anthocyanin biosynthesis in Arabidopsis , encodes a WD40 repeat
protein. Plant Cell 11: 1337-1350.
Wang, W.L., Wang, Y.X., Li, H., Liu, Z.W., Cui, X. & Zhuang,
J. (2018) Two MYB transcription factors (CsMYB2 and CsMYB26) are
involved in flavonoid biosynthesis in tea plant [Camellia
sinensis (L.) O. Kuntze]. BMC Plant Biology 18: 288.
Wang, X.C., Zhao, Q.Y., Ma, C.L., Zhang, Z.H., Cao, H.L., Kong,
Y.M., et al. (2013) Global transcriptome profiles of Camellia
sinensis during cold acclimation. BMC Genomics 14: 415.
Wang, Y., Liu, W., Jiang, H., Mao, Z., Wang, N., Jiang, S., et
al. (2019) The R2R3-MYB transcription factor MdMYB24-like is involved
in methyl jasmonate-induced anthocyanin biosynthesis in apple.Plant Physiology Biochemistry 139: 273-282.
Wasternack, C. & Hause, B. (2013) Jasmonates: biosynthesis,
perception, signal transduction and action in plant stress response,
growth and development. Annals of Botany 111: 1021-1058.
Wasternack, C. & Strnad, M. (2019) Jasmonates are signals in
the biosynthesis of secondary metabolites - Pathways, transcription
factors and applied aspects - A brief review. Nature
Biotechnology 48: 1-11.
Wei, C., Yang, H., Wang, S., Zhao, J., Liu, C., Gao, L., et al.(2018) Draft genome sequence of Camellia
sinensis var. sinensis provides insights into the evolution of
the tea genome and tea quality. Proceedings of the National
Academy of Sciences of the United States of America115: E4151-E4158.
Wei, K., Wang, L., Zhang, Y., Ruan, L., Li, H., Wu, L., et al.(2019) A coupled role for CsMYB75 and CsGSTF1 in anthocyanin
hyperaccumulation in purple tea. Plant Journal97: 825-840.
Wu, N., Yao, Y., Xiang, D., Du, H., Geng, Z., Yang, W., et al.(2022) A MITE variation-associated heat-inducible isoform of a
heat-shock factor confers heat tolerance through regulation of JASMONATE
ZIM-DOMAIN genes in rice. New Phytologist 234: 1315-1331.
Xiao, H. & Lis, J.T. (1988) Germline transformation used to
define key features of heat-shock response elements. Science239: 1139-1142.
Xin, H., Zhang, H., Chen, L., Li, X., Lian, Q., Yuan, X., et
al. (2010) Cloning and characterization of HsfA2 from Lily
(Lilium longiflorum ). Plant Cell Reports29: 875-885.
Yokotani, N., Ichikawa, T., Kondou, Y., Matsui, M., Hirochika,
H., Iwabuchi, M., et al. (2008) Expression of rice heat stress
transcription factor OsHsfA2e enhances tolerance to environmental
stresses in transgenic Arabidopsis . Planta227: 957-967.
Yoshida, T., Ohama, N., Nakajima, J., Kidokoro, S., Mizoi, J.,
Nakashima, K., et al. (2011) Arabidopsis HsfA1 transcription
factors function as the main positive regulators in heat
shock-responsive gene expression. Molecular Genetics and Genomics286: 321-332.
Zhai, Q., Zhang, X., Wu, F., Feng, H., Deng, L., Xu, L., et al.(2015) Transcriptional Mechanism of Jasmonate Receptor COI1-Mediated
Delay of Flowering Time in Arabidopsis . Plant Cell27: 2814-2828.
Zhang, F., Gonzalez, A., Zhao, M., Payne, C.T. & Lloyd, A.(2003) A network of redundant bHLH proteins functions in all
TTG1-dependent pathways of Arabidopsis . Development130: 4859-4869.
Zhang, H., Li, G., Hu, D., Zhang, Y., Zhang, Y., Shao, H., et
al. (2020a) Functional characterization of maize heat shock
transcription factor gene ZmHsf01 in thermotolerance. Peer
J 8: e8926.
Zhang, J., Liu, B., Li, J., Zhang, L., Wang, Y., Zheng, H., et
al. (2015) Hsf and Hsp gene families in Populus: genome-wide
identification, organization and correlated expression during
development and in stress responses. BMC Genomics16: 181.
Zhao, L., Gao, L., Wang, H., Chen, X., Wang, Y., Yang, H., et
al. (2013) The R2R3-MYB, bHLH, WD40, and related transcription factors
in flavonoid biosynthesis. Functional Integrative Genomics13: 75-98.
Zhang, X., Xu, W., Ni, D., Wang, M. & Guo, G. (2020b)
Genome-wide characterization of tea plant (Camellia sinensis ) Hsf
transcription factor family and role of CsHsfA2 in heat tolerance.BMC Plant Biology 20: 244.
Zhang, X., He, Y., Li, L., Liu, H. & Hong, G. (2021).
Involvement of the R2R3-MYB transcription factor MYB21 and its homologs
in regulating flavonol accumulation in Arabidopsis stamen.Journal of Experimental Botany 72: 4319-4332.
Zhou, Y., Zeng, L., Hou, X., Liao, Y. & Yang, Z. (2020) Low
temperature synergistically promotes wounding-induced indole
accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of
jasmonic acid signaling in Camellia sinensis . Journal of
Experimental Botany 71: 2172-2185.
Zhu, T., Herrfurth, C., Xin, M., Savchenko, T., Feussner, I.,
Goossens, A. et al. (2021) Warm temperature triggers JOX and
ST2A-mediated jasmonate catabolism to promote plant growth. Nature
Communications 12: 4804.
Zimmermann, I.M., Heim, M.A., Weisshaar, B. & Uhrig, J.F.(2004) Comprehensive identification of Arabidopsis thaliana MYB
transcription factors interacting with R/B-like BHLH proteins.Plant Journal 40: 22-34.