References
Santos, V. S., Ribeiro, A. P. B., & Santana, M. H. A. (2019). Solid
lipid nanoparticles as carriers for lipophilic compounds for
applications in foods. Food Research International , 122:610-626.
https://doi.org/10.1016/j.foodres.2019.01.032.
Panigrahi, S. S., Syed, I., Sivabalan, S., & Sarkar, P. (2019).
Nanoencapsulation strategies for lipid-soluble vitamins. Chemical
Papers , 73:1-16. https://doi.org/10.1007/s11696-018-0559-7.
Poovi, G., Vijayakumar, T. M., & Damodharan, N. (2019). Solid Lipid
Nanoparticles and Nanostructured Lipid Carriers: A Review of the Effect
of Physicochemical Formulation Factors in the Optimization Process,
Different Preparation Technique, Characterization, and Toxicity.Current Nanoscience , 15: 436-453.
https://doi.org/10.2174/1573413714666180809120435.
Tan, C. X. (2019). Virgin avocado oil: An emerging source of functional
fruit oil. Journal of Functional Foods , 54:381-392.
https://doi.org/10.1016/j.jff.2018.12.031.
Rydlewski, A. A., Pizzo, J. S., Manin, L. P., Galuch, M. B., Santos, P.
D., Zapiello, C., Santos, O. O, & Visentainer, J. V. (2020) Evaluation
of possible fraud in avocado oil-based products from the composition of
fatty acids by GC-FID and lipid profile by ESI-MS. Chemical
Papers 74: 2799-2812. https://doi.org/10.1007/s11696-020-01119-z.
Santos, O. V. D., Corrêa, N. C. F., Soares, F. A. S. D. M., Gioielli, L.
A., Costa, C. E. F., & Lannes, S. C. S. (2012). Chemical evaluation and
thermal behavior of Brazil nut oil obtained by different extraction
processes, Food Research International , 47:253-258.
https://doi.org/10.1016/j.foodres.2011.06.038.
Spilimbergo, S., Luca, G., Elvassore, N., & Bertucco, A. (2006) Effect
of high-pressure gases on phase behaviour of solid lipids. The
Journal of Supercritical Fluids , 38:289-294.
https://doi.org/10.1016/j.supflu.2005.11.016
Akbari, Z., Amanlou, M., Karimi-Sabet, J., Golestani, A., & Shariaty
Niassar, M. (2020). Application of Supercritical Fluid Technology for
Preparation of Drug Loaded Solid Lipid Nanoparticles.International Journal of Nanoscience and Nanotechnology ,
16:13-33.
Yang, T. M., Li, J. S., Yeh, T. F., & Su, C. S. (2020). Correlation of
solid solubilities of sulfonamides in supercritical carbon dioxide and
use of rapid expansion of supercritical solutions for microparticle
production. Chemical Engineering & Technology , 43:1115-1123.
https://doi.org/10.1002/ceat.201900646.
Ciftci, O. N., & Temelli, F. (2014). Melting point depression of solid
lipids in pressurized carbon dioxide. The Journal of Supercritical
Fluids , 92:208-214. https://doi.org/10.1016/j.supflu.2014.05.009.
Jenab, E., & Temelli, F. (2012). Density and volumetric expansion of
carbon dioxide-expanded canola oil and its blend with fully-hydrogenated
canola oil. The Journal of Supercritical Fluids , 70:57-65.
https://doi.org/10.1016/j.supflu.2012.03.018.
Cornelio-Santiago, H. P., Gonçalves, C. B., de Oliveira, N. A., & de
Oliveira, A. L. (2017). Supercritical CO2 extraction of
oil from green coffee beans: solubility, triacylglycerol composition,
thermophysical properties and thermodynamic modelling. The Journal
of Supercritical Fluids , 128:386-394.
https://doi.org/10.1016/j.supflu.2017.05.030
Huang, F. H., Li, M. H., Lee, L. L., Starling, K. E., & Chung, F. T.
(1985). An accurate equation of state for carbon dioxide. Journal
of Chemical Engineering of Japan , 18:490-496.
https://doi.org/10.1252/jcej.18.490.
AOAC. Method 969.33, 16th ed., Official methods of analysis of AOAC
International, Gaithersburg, MD, USA, 2005.
Svečnjak, L., Chesson, L.A., Gallina, A., Maia, M., Martinello, M.,
Mutinelli, F. … & Waters, T. A. Standard methods for Apis
mellifera beeswax research. Journal of Apicultural Research , 58,
2 1-108. https://doi.org/10.1080/00218839.2019.1571556.
Sousa, A. R. S., Calderone, M., Rodier, E., Fages, J., & Duarte, C. M.
(2006). Solubility of carbon dioxide in three lipid-based biocarriers.The Journal of Supercritical Fluids , 39:13-19.
https://doi.org/10.1016/j.supflu.2006.01.014.
McHugh, M., & Krukonis, V. (2013). Supercritical fluid extraction:
principles and practice. Elsevier.
Rad, H. B., Sabet, J. K., & Varaminian, F. (2019). Determination of
valsartan solubility in supercritical carbon dioxide: Experimental
measurement and molecular dynamics simulation. Journal of
Molecular Liquids , 294:111636.
https://doi.org/10.1016/j.molliq.2019.111636.
Rodrigues, J. E., Araújo, M. E., Azevedo, F. F. M., & Machado, N. T.
(2005). Phase equilibrium measurements of Brazil nut (Bertholletia
excelsa) oil in supercritical carbon dioxide. The Journal of
Supercritical Fluids , 34:223-229.
https://doi.org/10.1016/j.supflu.2004.11.018.
Table 1. Solubility of binary mixtures beeswax and avocado oil and
beeswax and Brazil nut oil (g/Kg CO2) in supercritical
CO2 (60 °C) at different pressures and contact times.