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Abstract

The stability and boundedness for delayed impulsive SDEs driven by fBm are

studied in this paper. Two kinds of noises, i.e, additive fBm noise and mul-

tiplicative fBm noise are both taken into consideration. By using stochastic

Lyapunov technique and impulsive control theory, sufficient criteria for pth mo-

ment exponential stability and mean square ultimate boundedness are derived,

for two kinds of fBm driven delayed impulsive SDEs, respectively. As appli-

cation, the obtained results are used to do practical synchronization w.r.t. a

class of chaotic systems, in which the response system is perturbed by additive

fBm noises. Finally, A Chua chaotic oscillator is given to verify the validity and

applicability of the derived results.
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1. Introduction

Compared with ordinary differential equations (ODEs), stochastic differen-

tial equations (SDEs) are better tools to deal with the ubiquitous environmental

disturbances and uncertainties in dynamical systems. In 1968, Mandelbrot [1]

originally studied fractional Brownian motion (fBm), which is an effective tool

to model the property of long range dependence and the phenomenon of self-

similarity, it is widely applied in the fields such as hydrology [2], finance [3],

telecommunication [4], etc. Thus there have been many researchers studied S-

DEs driven by fBm, for instance [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and the

reference there in. The property of fBm BH(t) relies heavily on the Hurst pa-

rameter H. If H ∈ ( 1
2 , 1), it exhibits the property of long range dependence,

sometimes also called long memory. If H ∈ (0, 12 ), it exhibits a short memory.

If H = 1
2 , it reduces to a Brownian motion (Bm). Although fBm is the gener-

alization of Bm, the properties of fBm and Bm varies very different. Contrast

with Bm, fBm is neither Markov nor semimartingale, thus the classical stochas-

tic analysis theories are not applicable to fBm when H 6= 1
2 . Therefore, it is a

challenging and difficult problem to study fBm driven SDEs, new theories and

methods are required. Fortunately, there have been some new attempts in this

direction, for example, in 2000 year, Duncan et al. [16] initially introduced a

new type of stochastic integral w.r.t. fBm using the Wick product, this defi-

nition satisfy the following property: E
∫ t
0
f(s)dBH(s) = 0. The advantages of

this definition are two-fold. Firstly, the above property coincides with a common

assumption: the random perturbation in SDEs should not affect the mean rate

of change. Secondly, it may facilities some calculations when we do stability

analysis. Thus in this paper, we utilize this definition.

On the other hand, impulses, as effective tools to describe the abrupt changes

in systems, has been widely studied for a long time. The earlier works on impul-

sive systems can be founded in [17, 18]. Since impulses in systems have effects

(active effects or negative effects) to the performance of systems, stability anal-

ysis of impulsive systems is always a research focus. During the past decades,
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the existence and stability analysis for different types of impulsive SDEs (IS-

DEs) have been investigated by many researchers[19, 20, 21, 22, 23, 24, 25, 26].

However, most of the above mentioned stability results concerned with ISDEs

driven by Bm, as for ISDEs driven by fBm, the stability results are very few.

On the other hand, as we know, Lyapunov second method is a useful tool to do

stability analysis in ODEs. During the last decades, many researchers aim to

generalize the Lyapunov method from ODEs to SDEs. When the SDEs is driv-

en by Bm , the stochastic Lyapunov method was established in the pioneering

work by Khasmiskii [27]. Besides, stability analysis for some more general SDEs

driven by Bm can be found in monograph by Mao [28]. In 2014, Zeng et al. [29]

established a new stochastic Lyapunov technique to evaluate the stochastic sta-

bility of SDEs driven by fBm. However, to the best of our knowledge, stochastic

Lyapunov stability criteria for fBm driven SDEs with delayed impulses have not

been derived yet.

In this paper, we aim to establish some new criteria for stability and bound-

edness of delayed impulsive SDEs with fBm. The main contributions are list as

follows. 1) Delayed impulsive SDEs with fBm are investigated as a first attemp-

t. 2) Two kinds of noises, i.e, multiplicative fBm noise and additive fBm noise,

are both taken in to consideration, pth moment exponentially stability criteria

and bounded analysis results are presented correspondingly. 3) as application,

some new criteria for practical synchronization are derived when the response

systems are perturbed by additive fBm noises.

This paper is organized as follows. In Sect. 2, basic definitions and nota-

tions needed in this paper are introduced. In Sect. 3, the sufficient conditions

of exponential stability and mean square ultimate boundedness for delayed im-

pulsive SDEs with multiplicative fBm noise and additive fBm noise are derived,

respectively. In Sect. 4, the criteria of practical synchronization are derived,

and the corresponding impulsive controllers are designed. Moreover, a Chua

chaotic oscillator is presented to verify the validity of the theoretical results. In

Sect. 5, conclusions are drawn.
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2. Preliminaries

The common notations and their descriptions in this paper are listed in the

following table.

Table 1: Common notations and their descriptions

Notation Description

N the set of natural numbers

Z+ the set of positive integer numbers

R the set of real numbers

R+ the set of positive real numbers

Rn the n-dimensional real space

Rn×m the n×m-dimensional real space

E the unit matrix with proper dimensions

∗ the symmetric block in the symmetric matrix

E mathematical expectation

Let (Ω,F ,P) be a complete probability space with a filtration (F = Ft)t≥0
satisfying usual conditions. For p > 0, let Sp = {x ∈ Rn : |x| < p}. Let

BH(t), (H ∈ (0, 1), t ≥ 0) be a fBm, which satisfies:

E(BH(t)) = 0, ∀t ∈ R+,

and

E(BH(t)BH(s)) =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
, ∀s, t ∈ R+.

There are different types of definitions of stochastic integral w.r.t. fB-

m. For instance, Wiener type integration was defined in [30], Stratonovich

type integration was introduced in [31, 32]. However, the stochastic integral∫ t
0
f(s)δBH(s) defined above, in general, dose not satisfy the following proper-

ty: E
∫ t
0
f(s)δBH(s) = 0, which is important when dealing with SDEs driven

by fBm. In order to overcome this deficiency, Duncan et al. [16] introduced a
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new type of stochastic integral w.r.t. fBm by using the Wick product, now we

recall this definition.

Definition 1. [16] Let f(t), t ∈ [0, T ] be a stochastic process such that f ∈

L(0, T ). For any time interval [0, T ], denote π : 0 = t0 < t1 < ... < tn = T ,

denote |π| := maxi(ti+1 − ti), let fπ(t) = f(ti) if ti ≤ t < ti+1. The stochastic

integral of f(t) w.r.t. fBm is defined by∫ T

0

f(s)dBH(s) = lim
|π|→0

n−1∑
i=0

fπ(ti) � (BH(ti+1)−BH(ti)),

where H ∈ ( 1
2 , 1) and � denotes the Wick product, this integral satisfies the

following property:

E
∫ T

0

f(s)dBH(s) = 0.

Moreover, if V ∈ C1,2([t0,+∞) × Sp;R+), then it follows from fractional Itô

formula [16] that

dV (t, x(t)) =
[
Vt(t, x(t)) + Vx(t, x(t))f(t, x(t))

+ Vxx(t, x(t))g(t, x(t))

∫ t

0

φ(v, s)g(v, x(v))dv
]
dt

+ Vx(t, x(t))g(t, x(t))dBH(t)

:= LHV (t, x(t))dt+ Vx(t, x(t))g(t, x(t))dBH(t),

where φ(s, t) = H(2H − 1)|s− t|2H−2.

We end this section by recalling some other fundamental definitions and

lemmas.

Definition 2. [33] The equilibrium solution of system (1) is said to be pth

moment exponentially stable if there exist positive constants c0 and λ

E[‖x(t; t0, x0)‖p] ≤ c0|x0|pe−λ(t−t0), t ≥ t0,

for all x0 ∈ Rn.
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Definition 3. [34] The equilibrium solution of system is said to be uniformly

ultimately bounded (UUB) in mean square if there exists a positive constant b

such that

lim
t→+∞

E[‖x(t)‖2] ≤ b.

Definition 4. Define x(t) to be a state of the drive system, y(t) to be a state of

the response system, e(t) = y(t)−x(t) to be an error function. We say the drive

system and the response system are practically synchronized if there exists a

positive constant ε such that

lim
t→+∞

E[‖e(t)‖2] ≤ ε.

where ε is the synchronization error.

Definition 5. [35] The number of impulsive times N(t, T ) in the interval (t, T )

has the following upper bound and lower bound:

T − t
τ∗

−N0 ≤ N(t, T ) ≤ T − t
τ∗

+N0,

where N0 ∈ R+ is the chatter bound and τ∗ is the average dwell time (ADT).

Lemma 1. [36] Let X ∈ Rn, Y ∈ Rn, and a scalar ε > 0, then it holds that

XTY + Y TX ≤ εXTX + ε−1Y TY.

3. Main results

In this section, two kinds of fractional noise in SDEs with delayed impulses

are considered, i.e., the multiplicative fBm noise and the additive fBm noise.

For the multiplicative fBm noise case, the exponential stability in pth moment

criteria are established. For the additive fBm case, the UUB in mean square

criteria are presented.
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3.1. Delayed impulsive SDEs with multiplicative fBm noise.

In this subsection, we study a class of delayed impulsive SDEs with multi-

plicative fBm noise in the form dx(t) = f(t, x(t))dt+ g(t, x(t))dBH(t), t 6= tk,

x(t+) = I(x(t− − τ)), t = tk, τ = τk,
(1)

where x(t) ∈ Rn is the system state, BH(t) is the n-dimensional fBm, x(t−k )

and x(t+k ) are left and right limit of x(t) at time tk, respectively. We assume

that the state of system (1) is left continuous, i.e., x(t) = x(t−). We assume

that function f , g and I is smooth enough such that system (1) exists a unique

solution on (t0,+∞). Let τk = (1 − δ)(tk − tk−1), (δ ∈ (0, 1], k ∈ Z+) denote

delays of impulses, note that the delay τk is depend on both impulsive sequence

{tk} and the delayed impulse parameter δ ∈ (0, 1], in particular, if δ = 1, then

τk = 0. If tk = k, then τk changes into a constant delay τ = 1 − δ. The time

sequences {tk, k ∈ N} satisfy 0 = t0 < t1 < ... < tk = T .

Remark 1. We note that in system (1), function g(t, x(t)) is depend on the

system state x(t), thus system (1) perturbed by a multiplicative noise. Multi-

plicative noise [37] frequently appeared in microscope images, synthetic aperture

radar images and laser images etc.

In the following, the exponential stability criteria are established by Lya-

punov technique.

Theorem 1. Let the Lyapunov fucntion V (t, x(t)) of system (1) satisfying:

(i) V (t, x(t)) is continuously once differentiable in t and twice in x(t) on each of

the intervals (tk−1, tk]× Rn, k ∈ Z+,

(ii) there exist positive constants p, c1 and c2 > 0 satisfying

c1‖x‖p ≤ V (t, x(t)) ≤ c2‖x‖p, (2)

(iii) there exists a positive constant c3 satisfying

LHV (t, x) ≤ −c3V (t, x), (3)
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(iv) there exists a constant d satisfying

V (t+k , x(t+k )) ≤ exp(d)V (t−k − τk, x(t−k − τk)), (4)

where V (t−k , x(t−k )), V (t+k , x(t+k )) are left limit and right limit of V (tk, x(tk)),

respectively, let V (t−k , x(t−k )) = V (tk, x(tk)),

(v) the ADT τ∗ of impulses satisfies

τ∗ >
d

c3δ
. (5)

Then the equilibrium solution of system (1) is pth moment exponentially stable.

Proof . Let x(t) = x(t, t0, x0) be the solution of system (1) through (t0, x0).

We will use induction to show that ∀t ∈ (tk, tk+1], k ∈ N,

EV (t, x(t)) ≤ V0 exp(−c3(t−
k∑
i=0

τi − t0) + kd), (6)

where V0 = V (t0, x(t0)), τ0 = 0.

For t ∈ [t0, t1], utilizing fractional Itô formula to exp(c3(t− t0))V (t, x(t)), it

follows that

exp(c3(t− t0))V (t, x(t))

= V0 +

∫ t

t0

exp(c3(s− t0))
(
c3V (s, x(s)) + LH(s, x(s))

)
ds

+

∫ t

t0

exp(c3(s− t0))Vx(s, x(s))g(s, x(s))ds,

(7)

taking expectation on both sides of (7), it can be get that

E exp(c3(t− t0))V (t, x(t))

= V0 + E
∫ t

t0

exp(c3(s− t0))
(
c3V (s, x(s)) + LH(s, x(s))

)
ds,

(8)

combing with condition(iii) yields that

E[V (t, x(t))] ≤ V0 exp(−c3(t− t0)), t ∈ [t0, t1],
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thus inequality (6) holds for k = 0. For k = m, assuming that ineq. (6) holds,

namely,

EV (t, x(t)) ≤ V0 exp(−c3(t−
m∑
i=0

τi − t0) +md), (9)

now we show it holds for k = m+ 1, noting that tm+1− τm+1 = δ(tm+1− tm) ∈

(tm, tm+1], thus from (9) we have

EV (tm+1 − τm+1, x(tm+1 − τm+1)) ≤ V0 exp(−c3(tm+1 −
m+1∑
i=0

τi − t0) +md).

Applying condition (iv), it follows that

EV (t+m+1, x(t+m+1)) ≤ V0 exp
(
− c3(tm+1 −

m+1∑
i=0

τi − t0) + (m+ 1)d
)
.

Similarly, ∀t ∈ (tm+1, tm+2] , by utilizing fractional Itô formula to exp(c3(t−

tm+1))V (t, x(t)), taking expectation and combining with condition (iii) yields

that

EV (t, x(t)) ≤ EV (t+m+1, x(t+m+1)) exp(−c3(t− tm+1))

≤ V0 exp
(
− c3(t−

m+1∑
i=0

τi − t0) + (m+ 1)d
)
.

(10)

Hence by induction, inequality (6) holds for any k ∈ N.

Noting that

k∑
i=0

τi =

k∑
i=1

(1− δ)(ti − ti−1) = (1− δ)(tk − t0),

and

−c3(t−
k∑
i=0

τi − t0) = −c3(t− t0 − (1− δ)(tk − t0))

= −c3δ(t− t0)− c3(1− δ)(t− tk)

≤ −c3δ(t− t0).

Thus

E[V (t, x(t))] ≤ V0 exp(−c3δ(t− t0) +N(t, t0)d),
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where N(t, t0) denotes the number of impulse times in interval (t0, t], in terms

of Definition 5, we have

−c3δ(t− t0) +N(t, t0)d ≤ N0d+ (
d

τ∗
− c3δ)(t− t0),

thus

E[V (t, x(t))] ≤ V0 exp(N0d+ (
d

τ∗
− c3δ)(t− t0)),

it then follows from condition (i) that

E[‖x‖p] ≤ c0‖x0‖p exp(−λ(t− t0)),

where c0 = c2
c1
eN0d, λ = − d

τ∗ + c3δ, where λ > 0 is guaranteed by inequality

(15), this completes the proof of Theorem 1.

3.2. Delayed impulsive SDEs with additve fBm noise.

In this subsection, the following delayed impulsive SDEs with additve fBm

noise is considered. dx(t) = f(t, x(t))dt+ σ(t)dBH(t), t 6= tk,

x(t+) = I(x(t− − τ)), t = tk, τ = τk,
(11)

where σ(t) is independent of system state x(t), thus system (11) perturbed by

an additive noise. Additive noises are used to represent external noises such as

environment disturbances.

In what follows, the sufficient conditions for UUB in mean square are estab-

lished by Lyapunov technique.

Theorem 2. Let the Lyapunov function V (t, x(t)) of system (1) satisfying:

(i) V (t, x(t)) is continuously once differentiable in t and twice in x(t) on each of

the intervals (tk−1, tk]× Rn, k ∈ Z+,

(ii′) there exist positive constants c1, c2 such that

c1‖x‖2 ≤ V (t, x(t)) ≤ c2‖x‖2, (12)

(iii′) there exist positive constants c3, c4 such that

LHV (t, x) ≤ −c3V (t, x) + c4, (13)
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(iv) there exists a positive constant d such that

V (t+k , x(t+k )) ≤ exp(d)V (t−k − τk, x(t−k − τk)), (14)

(v) the ADT τ∗ of impulses satisfies

τ∗ >
d

c3δ
. (15)

Then the equilibrium solution of system (11) is mean square UUB .

Proof. We will use induction to show that for all t ∈ (tk, tk+1], k = 2, 3, ...,

the following estimation holds,

EV (t, x(t)) ≤ (V0 −
c4
c3

) exp
(
− c3(t−

k∑
i=1

τi − t0) + kd
)

+
c4
c3

k−1∑
j=1

exp
(
− c3(t− tj −

k∑
i=j+1

τi) + (k + 1− j)d
)

− c4
c3

k−1∑
j=1

exp
(
− c3(t− tj −

k∑
i=j+1

τi) + (k − j)d
)

+
c4
c3

exp(−c3(t− tk) + d)− c4
c3

exp(−c3(t− tk)) +
c4
c3
.

(16)

For t ∈ (t0, t1], using fractional Itô formula to exp(c3(t−t0)V (t, x(t)), taking

expectation and combining with condition (iii′) yields that

E
[

exp
(
(c3(t− t0)

)
V (t, x(t))

]
= EV0 + E

{∫ t

t0

exp
(
c3(s− t0)

)[
c3V (s, x(s)) + LHV (s, x(s))

]
ds
}

≤ EV0 + c4

∫ t

t0

exp
(
c3(s− t0)

)
ds

= EV0 +
c4
c3

(
exp(c3(t− t0))− 1

)
,

(17)

or

EV (t, x(t)) ≤ (EV0 −
c4
c3

) exp(−c3(t− t0)) +
c4
c3
, (18)
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where V0 = V (t0, x(t0)), noting that t1 − τ1 ∈ (t0, t1], together with condition

(iv), we arrive at

EV (t+1 , x(t+1 )) ≤ (EV0 −
c4
c3

) exp(−c3(t1 − τ1 − t0) + d) +
c4
c3

exp(d). (19)

For t ∈ (t1, t2], using fractional Itô formula to exp(c3(t− t1)V (t, x(t)), similarly,

we get

EV (t, x(t)) ≤ (EV (t+1 , x(t+1 ))− c4
c3

) exp(−c3(t− t1)) +
c4
c3
, (20)

combining with inequality (19), we obtain

EV (t, x(t)) ≤ (V0 −
c4
c3

) exp
(
− c3(t− τ1 − t0) + d

)
+
c4
c3

exp
(
− c3(t− t1) + d

)
− c4
c3

exp(−c3(t− t1)) +
c4
c3
.

(21)

Similarly, for all t ∈ (t2, t3], it can be get that

EV (t, x(t)) ≤ (V0 −
c4
c3

) exp
(
− c3(t− τ2 − τ1 − t0) + 2d

)
+
c4
c3

exp
(
− c3(t− τ2 − t1) + 2d

)
− c4
c3

exp(−c3(t− τ2 − t1) + d)

+
c4
c3

(−c3(t− t2) + d)− c4
c3

(−c3(t− t2)) +
c4
c3
,

(22)

thus ineq. (16) holds for k = 2. For k = m, assuming that ineq. (16) holds,

now we show it holds for k = m+ 1.

Noting that tm+1 − τm+1 ∈ (tm, tm+1], thus from inequality (16) we have

EV (tm+1 − τm+1, x(tm+1 − τm+1))

≤ (V0 −
c4
c3

) exp
(
− c3(tm+1 − τm+1 −

m∑
i=1

τi − t0) +md
)

+
c4
c3

m−1∑
j=1

exp
(
− c3(tm+1 − τm+1 − tj −

m∑
i=j+1

τi) + (m+ 1− j)d
)

− c4
c3

m−1∑
j=1

exp
(
− c3(tm+1 − τm+1 − tj −

m∑
i=j+1

τi) + (m− j)d
)

+
c4
c3

exp(−c3(tm+1 − τm+1 − tm) + d)− c4
c3

exp(−c3(tm+1 − τm+1 − tm)) +
c4
c3
.

(23)
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taking condition (iv) into consideration, we arrive at

EV (t+m+1, x(t+m+1)) ≤ exp(d)EV (tm+1 − τm+1, x(tm+1 − τm+1))

≤ (V0 −
c4
c3

) exp
(
− c3(tm+1 −

m+1∑
i=1

τi − t0) + (m+ 1)d
)

+
c4
c3

m∑
j=1

exp
(
− c3(tm+1 − tj −

m+1∑
i=j+1

τi) + (m+ 2− j)d
)

− c4
c3

m∑
j=1

exp
(
− c3(tm+1 − tj −

m+1∑
i=j+1

τi) + (m+ 1− j)d
)

+
c4
c3

exp(d).

(24)

For all t ∈ (tm+1, tm+2] , by utilizing fractional Itô formula to exp(c3(t −

tm+1))V (t, x(t)), taking expectation and combining with condition (iii′) yields

that

EV (t, x(t)) ≤ (EV (t+m+1, x(t+m+1))− c4
c3

) exp(−c3(t− tm+1)) +
c4
c3

≤ (V0 −
c4
c3

) exp
(
− c3(t−

m+1∑
i=1

τi − t0) + (m+ 1)d
)

+
c4
c3

m∑
j=1

exp
(
− c3(t− tj −

m+1∑
i=j+1

τi) + (m+ 2− j)d
)

− c4
c3

m∑
j=1

exp
(
− c3(t− tj −

m+1∑
i=j+1

τi) + (m+ 1− j)d
)

+
c4
c3

exp(−c3(t− tm+1) + d)− c4
c3

exp(−c3(t− tm+1)) +
c4
c3
,

(25)

thus by induction, inequality (16) holds for all t ∈ (tk, tk+1], k = 2, 3, .... Noting

that

−c3(t− tj −
k∑

i=j+1

τi) = −c3(t− tj −
k∑

i=j+1

(1− δ)(ti − ti−1))

= −c3(t− tj − (1− δ)(tk − tj))

= −c3(δ(t− tj) + (1− δ)(t− tk))

≤ −c3δ(t− tj).

(26)

Moreover, by Definition 5, we have N(t, t0) = k,N(t, tj) = k− j, and N(t, t0) ≤
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t−t0
τ∗ +N0, N(t, tj) ≤ t−tj

τ∗ +Nj , we have

EV (t, x(t)) ≤ (V0 −
c4
c3

) exp
(
− (c3δ −

d

τ∗
)(t− t0) +N0d

)
+
c4
c3

N(t,t1)∑
j=1

exp
(
− (c3δ −

d

τ∗
)(t− tj) + (Nj + 1)d

)

− c4
c3

N(t,t1)∑
j=1

exp
(
− (c3δ −

d

τ∗
)(t− tj) + (Nj)d

)
+
c4
c3

exp(−c3(t− tk) + d)− c4
c3

exp(−c3(t− tk)) +
c4
c3
,

(27)

thus limt→+∞ EV (t, x(t)) ≤ c4
c3

, using condition (ii), we get

lim
t→+∞

E‖x(t)‖2 ≤ c4
c3c1

, (28)

in terms of Definition 3, system (11) is UUB in mean square with ultimate

bound c4
c3c1

, the proof is completed.

4. Applications

New criteria for practical synchronization are derived in this section, the re-

sponse systems are perturbed by additive fBm noises. We consider the following

chaotic system:

dx(t) = Ax(t)dt+Bf(t, x(t))dt, t 6= tk, (29)

where A,B ∈ Rn×n , the map f : Rn → Rn satisfies Lipschitz condition, i.e.,

|f(x(t))−f(y(t))| ≤ L|x(t)−y(t)|,∀x(t), y(t) ∈ Rn, where L = diag{l1, l2, ..., ln}

is a nonnegative constant matrix.

The corresponding response systems are considered in the form dy(t) = Ay(t)dt+Bf(t, y(t))dt+ σ(t)dBH(t), t = tk,

∆y(t) = u(t−), t = tk,
(30)

where ∆y(t) = y(t+)− y(t−) and σ(t) ≤ σ.

Remark 2. We can find some possible applications in real world in which the

response system is perturbed by delayed impulses and additive fBm noises. For

14



example, in the missile tracking system, the disturbance may be caused due to

abrupt strong turbulent airflow and propagation delay, this part of disturbance

can be modeled by delayed impulses. Meanwhile, the response system can be

perturbed by environmental noise, this part of noise can be modeled by fBm.

Let e(t) = y(t) − x(t), consider the impulsive controller with delay in the

form

u(t−) = Ke(t− − τ)− e(t−), t = tk, τ = τk, (31)

where the constant matrix K is the control gain.

Then the error system is given by: de(t) = Ae(t)dt+Bf̃(t, e(t))dt+ σdBH(t), t 6= tk,

e(t+) = Ke(t− − τ), t = tk, τ = τk,
(32)

where f̃(t, e(t)) = f(t, y(t))−f(t, x(t)). In what follows, the sufficient conditions

to assure the error system UUB in mean square is established.

Theorem 3. Assume that there exist constants ε > 0, c4 > 0, d > 0, δ > 0 and

λ > c4 such that  A+AT + εLTL− c4I B

∗ −εI

 < 0, (33)

and  − exp(d) KT

∗ −I

 < 0, (34)

and

τ∗ >
d

(λ− c4)δ
. (35)

Then system (32) is UUB in mean square.

Proof. Chose the Lyapunov candidate V (t, e(t)) = exp(−λt)eT (t)e(t), where

λ > c4. Denote by c5 = sup exp(−λt)t2H−1. It is obvious that V (t, e(t)) satisfy

condition (i) and condition (ii′) in Theorem 2. Moreover, in terms of Lemma 1

15



and LMI (33), we have

LHV (t, e(t)) = −λ exp(−λt)eT (t)e(t) + 2 exp(−λt)eT (t)[Ae(t)

+Bf̃(t, e(t))] + 2σ2 exp(−λt)
∫ t

0

φ(t, s)ds

≤ −λ exp(−λt)eT (t)e(t) + exp(−λt)[eT (t)(A+AT )e(t)

+ ε−1eT (t)BBT e(t) + εFT (e(t))F (e(t))]

+ 2σ2 exp(−λt)t2H−1

≤ −λ exp(−λt)eT (t)e(t) + exp(−λt)[eT (t)(A+AT

+ ε−1BBT + εLTL)e(t)] + 2σ2 exp(−λt)t2H−1

≤ −(λ− c4) exp(−λt)eT (t)e(t) + 2σ2 exp(−λt)t2H−1

≤ −(λ− c4)V (t, e(t)) + 2σ2c5.

(36)

On the other hand, by virtue of LMI (34), we have KTK − exp(d) < 0, which

implies that

V (t+, e(t+)) = exp(−λt)eT (t− − τ)KTKe(t− − τ)

≤ exp(d) exp(−λt)eT (t− − τ)e(t− − τ)

≤ exp(d) exp(−λ(t− τ))eT (t− − τ)e(t− − τ)

= exp(d)V (t− − τ, e(t− − τ)),

(37)

it then follows from inequality (35) Theorem 2 that the error system (32) is

UUB in mean square, this completes the proof.

Example 1. Consider the following Chua chaotic oscillator.
dx1(t) = [u(x2(t)− x1(t) + f(x1(t))]dt,

dx2(t) = [x1(t)− x2(t) + x3(t)]dt,

dx3(t) = [−vx2(t)]dt,

(38)

where nonlinear function f(x1(t)) = m1x1(t)+0.5(m0−m1)
(
|x1(t)+1|−|x1(t)−

1|
)

and u, v,m0,m1 are given constants.

Rewrite system (38) of the form

dx(t) = [Ax(t) +Bf(x(t))]dt, (39)

16



where x = (x1, x2, x3)T ,

A =


−u+ um1 u 0

1 −1 1

0 −v 0

 , B = u(m0 −m1)E,

f(x(t)) =


f1(x1(t))

0

0

 ,

in which f1(x1(t)) = 0.5(|x1(t) + 1| − |x1(t)− 1|).

Chose the parameters with (cf.[38]) u = 10, v = 18.432, m0 = −1.4554,

m1 = −0.7853, the initial condition is given by x(0) = (0.11, 0.2,−0.3)T , with

the above parameters, system (39) is chaotic with double scroll attractor as

shown in Fig. 1.

Consider system (39) as the drive system, consider system (30) (in which

tk = k, σ = 1, H = 0.85) as the response system, consider system (32) as

the error system. We will show that system (39) and system (30) achieving

synchronization with the control gain K. Firstly, choose the Lipschitz matrix

L = diag{1, 0, 0}, chose c4 = 0.02 such that LMI (33) holds, let d = 0.01, then

the control gain can be chosen as K =
√
dI = 0.1E, by simple calculation, we

can choose suitable λ > c4 such that inequality (35) holds for all δ ∈ (0, 1], then

system (30) and system (39) achieve synchronization. Fig.2 shows the evolution

of each variable of system (39) and system (30). Fig.3 depicts the trajectory of

synchronization error ‖e(t)‖2 = |e1(t)|2 + |e2(t)|2 + |e3(t)|2 under the conditions

K = 0.1E and τ = 0.1.

5. Conclusion

In this paper, the stability, boundedness and synchronization for delayed

impulsive SDEs with fBm have been investigated. Two kinds of noises, i.e,

additive fBm noise and multiplicative fBm noise are both taken in to consider-

ation. Sufficient criteria for pth moment exponential stability and mean square
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Fig. 1: Chaotic attractor of system(39).

ultimate boundedness have been derived, for two kinds of fBm driven stochastic

differential equations with delayed impulses, respectively. As application, the

obtained results are used to do practical synchronization with respect to a class

of chaotic systems, in which the response systems are perturbed by additive fB-

m noises. The corresponding impulsive controllers are also designed. Examples

have been given to illustrate the validity of the derived results at length.
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