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ABSTRACT 

The potential developed on a membrane with fixed charge plays crucial roles in many biological

and engineering systems.  The classic Teorell-Meyer-Siever (TMS) theory gives an analytical

expression of the membrane potential only for limited cases of simple solutions.  A numerical

method that can be applied to the general cases was developed in this study.  With a boundary

updating  scheme,  a  numerical  solution  to  the  Nernst-Planck-Poisson equations  was obtained

rigorously without the commonly used simplifications and assumptions in previous studies.  The

features  of the membrane potentials  with different  fixed charges  were investigated  with this

numerical method under various conditions.  The validity of this numerical method was verified

by identical values of Donnan potential obtained with well-established analytical methods.  The

suitability  and  applicability  of  analytical  TMS  model  were  assessed  by  comparison  to  the

numerical method.
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1. Introduction

When  a  permselective  membrane  separates  two  electrolyte  solutions  of  difference

composition or concentration, an electrical potential usually develops on the membrane, which

can be a result of differential diffusion of cations and anions [1, 2], Donnan effect of the fixed

charge on the membrane [3, 4], or both [5, 6].  Membrane potential plays an important role in

many biological and engineering systems, such as signal generation and transmission in neural

system [7-9], proton transport in fuel cell [10], and desalination in electrodialysis [11, 12].  It

was recently reported that the change of membrane potential beyond its normal range could be

used to diagnose cancers from normal cells [13-15].  Therefore, it is paramount importance to

develop the methods that can determine the membrane potential accurately. 

Development of potential on a membrane is a very complex phenomenon involves many

processes, such as convection of liquid, differential diffusion of ions, electrostatic draft of ions,

and more.  The magnitude of membrane potential is also affected by the properties of membrane

and  solutions.   Although  it  is  well  established  that  the  membrane  potential  is  governed  by

Poisson equation coupled with the Nernst-Planck equation for the ion concentration distribution

along the  membrane  thickness,  the  analytical  expression of  the  classic  Teorell-Meyer-Siever

(TMS) model is only applicable to a few special  cases with simple solutions [3, 16, 17].  It

remains a serious challenge to quantify the membrane potential for more general cases [18, 19].

An optional  method for the membrane potential  is to seek numerical solutions of the

coupled  Nernst-Planck  and  Poisson  (NPP)  equations  directly.   Usually,  when  a  numerical

solution of governing equations is pursued, it is preferred to do it rigorously without making

simplifications  or  assumptions.   However,  most  of  the  reported  numerical  methods  of  NPP

equations were obtained with some unreasonable assumption of boundary conditions [20-22].
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The single standing-out obstacle for more rigorous form of numerical solutions is the setup of the

appropriate boundary conditions of potential and ion concentration at the membrane surfaces [2,

23].  The potentials and ion concentrations at the boundaries cannot be assigned easily because

they are interdependent and must satisfy certain relationship,  which can only be known after

solution of NPP equations is obtained.   But the boundary conditions  are required before the

solution procedure can be started.  This deadlock is the main reason for the use of the unrealistic

assumptions (e.g., electroneutrality) in the numerical solution procedures.  

The recently reported boundary updating scheme [24] is a numerical method that can

handle  the  boundary  conditions  of  NPP  equations  rigorously.   With  this  scheme,  the  NPP

equations can be solved numerically under the true boundary conditions pertinent to the realistic

problems.  It was demonstrated that the scheme worked well for the membranes of no-fixed-

charge.  The numerical solution was verified with the analytical solution when it was applied to

the simplified case, from which the analytical solution was derived.  The new numerical method

for the first time was able to reveal the true features of ion transport and membrane potential

without using unrealistic assumptions to distort the problem. 

The main objective of this current paper is to apply the boundary updating scheme to

study numerically the potential developed on the membranes with fixed charge.  The numerical

solutions of NPP equations for the membranes with various levels of fixed charge were obtained

and  the  suitability  and  accuracy  of  the  numerical  method  were  discussed.   The  impact  of

membrane  fixed  charge  on  the  membrane  potential  and  potential  components  were  studied.

Finally,  the  TMS  model  was  compared  and  assessed  with  the  numerical  method  for  its

applicability and limitations.

2. Materials and Methods
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2.1. Governing equations

The problem under consideration is to determine the membrane potential at steady state

as schematically shown in Fig. 1.  A permselective membrane of fixed charge X separates two

solutions of concentration Cb0 and CbL, respectively. There is a transition layer on each side of the

membrane  between  the  membrane  surface  and  the  bulk  solution.  While  electroneutrality  is

always maintained in the bulk solutions, charge is usually unbalanced in transition layers because

the attraction of counter-ions and repulsion of co-ions by the charge on the membrane.  As a

result, both ion concentrations and potential on the membrane surfaces differ from those in the

bulk solutions, as schematically described by the lines for concentrations and potential in Fig. 1.

The ion concentrations and potential on a membrane are governed by the coupled Nernst-

Planck and Poisson (NPP) equations, 
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Fig. 1. Schematic of ion transport across a membrane with fixed charge 
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where  Ci is the concentration of ion  i,  Di is the diffusion coefficient of ion  i,  x is the spatial

coordinate perpendicular to the membrane, zi is the valance of ion i, F is the Faraday constant, R

is the gas constant, ψ is the potential, X is the density of the fixed charge, and ϵ  is the dielectric

constant of the membrane material.  

One challenging issue for the solution of the NPP equations is that there is usually not

sufficient information to specify the appropriate boundary conditions.  The reasons are that the

ion concentrations and potential on the boundaries (membrane surfaces) are related to each other

and that the relationship cannot be known before the equations have been solved.  The unsteady

state Nernst-Planck equation is used for the steady state problem because it helps to handle the

boundary conditions effectively.

2.2. Boundary updating scheme

The boundary updating scheme was developed to overcome the difficulty in specifying

the boundary conditions for the NPP equations at steady state.  The scheme starts with a known

state of boundaries of the membrane.  For example, with an initially neutral membrane, there is

no potential on the membrane (referring to the bulk solutions) and the ion concentrations at the

boundaries (on the membrane surfaces) are equal to the bulk solutions, i.e.

C i0=Cib 0 (3)

C iL=C ibL (4)

6



ψ0=0 (5)

dψ
dx |x=L=0 (6)

where  C i0and  C iL are the concentrations  of ion  i on the left  surface and right surface of the

membrane, respectively, C ib0 and C ibL are the concentrations of ion i in the bulk solutions on the

left and right sides of the membrane, respectively, and ψ0 is the potential on the left surface of

the membrane, and  
dψ
dx |x=L is the derivative of membrane potential at the right surface of the

membrane. The ion concentrations on the membrane surfaces equal to the bulk solutions because

there are not electrical forces on the neutral membrane to repel co-ions and to attract counter-

ions.

 The  governing  equations  Eqs.  (1)  and  (2)  with  boundary  conditions  Eqs.  (3)  -  (6)

completely define the membrane transport problem and can be solved with common numerical

methods,  e.g.,  Crank-Nicolson method for  Nernst-Planck equation  and central  difference  for

Poisson equation.  From the numerical solutions, the ion fluxes at the two boundaries can be

determined, 

J i|0∨L=−Di( d Cidx +
F
RT

dψ
dx
ziC i)|

0∨L

(7)

where J i is the flux of ion i. The derivatives of concentration and potential at the two membrane

surfaces are calculated from the numerical solutions.

The net charges in the two transition layers can be calculated with
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Q0=Q 0
'
−∑

i

Fzi J i|0∆ t (8)

and 

QL=QL
'
+∑

i

Fz i J i|L∆ t (9)

where  Q0 and  QL are  the  net  charges  in  the  transient  layers  on  left  and  right  sides  of  the

membrane, respectively, Q0
' and QL

' are the net charges at the previous time step in the transient

layers on left and right sides of the membrane,  respectively,  and  ∆ t  is timestep.  At the first

timestep, Q0
'
=0 and QL

'
=0 for an initially neutral membrane.

The boundary conditions at any timestep can be directly updated with the cumulative net

charges by 

C i0=Cib 0e
ziF λ 0
RTϵ

Q0 (10)

C iL=C ibLe
zi F λL
RTϵ

QL (11)

ψ0=
−λ0
ϵ
Q0 (12)

dψ
dx |x=L=

1
ϵ
QL (13)

where  λ0 and  λL are  the  Debye  lengths  of  the  solutions  on  the  left  and  right  sides  of  the

membrane, which are calculated by

λ0=√
ϵRT

∑
i

F2 zi
2Cib 0

(14)
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λL=√
ϵRT

∑
i

F2 z i
2C ibL

(15)

Numerical solution of the NPP equation can be obtained for the next timestep with the

updated boundary conditions.  The above procedure can be repeated with the newly obtained

numerical solution to update the boundary conditions for the next timestep until steady state,

which is indicated by the null current condition,  

∑
i

zi J i=0 (16)

With  boundary  updating  scheme,  the  concentration  boundary  conditions  are  always

consistent  with  potential  boundary  conditions  at  any  time  step.   Therefore,  the  appropriate

boundary conditions are guaranteed for the NPP equations at the steady state to ensure that the

right numerical solution is obtained. 

2.3. Calculation of membrane potentials

With the numerical solution at the steady state, the ion fluxes can be calculated by

J i=−D i(
dC i
dx

+
F
RT

dψ
dx
z iC i) (17)

The total membrane potential can be calculated with,

ψT=∆ψ0+∆ψm+∆ψL (18)

where  ψT  is  the  total  potential  of  the  membrane,∆ψm is  the  potential  difference  across  the

membrane, and ∆ψ0 and ∆ψ L are the potential differences across the transition layers on the two

sides  of  the  membrane.   The  potential  difference  across  the  membrane  thickness  can  be
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determined from the numerical solution of the Poisson equation.  The two potential differences

across the transition layers can be calculated from the cumulated charge in the layers with

∆ψ0=
− λ0
ϵ
Q0 (19)

∆ψ L=
λL
ϵ
QL (20)

3. Simulations and discussions

A C++ program of the numerical procedure described above was developed on Visual

Studio  2019  for  the  study  of  potential  on  the  membrane  with  fixed  charged  under  various

conditions.   All  simulations  were  done  on a  PC with  CPU of  Intel  i7-9700 at  3.00Ghz.  A

numerical solution of the governing equations can be obtained in a few seconds.  Unless other

specified, the values of parameters used in the simulations are listed in Table 1.  

Table 1 Default parameter values used in numerical simulations

Parameter Symbol Unit Value

Membrane dielectric constant ϵ F/m 6.92×10-10

Membrane thickness L m 5×10-8

Temperature T K 298.15

Time step ∆t s 10-9

Number of spatial steps N 1000

Number of ions 2

Valence of cation z+ +1

Valence of anion z- -1

Diffusivity of cation D+ m2/s 1×10-10

Diffusivity of anion D- m2/s 2×10-10

Fixed charge X mol/m3 10

Concentration on the left side Cb0 mol/m3 10
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Concentration on the right side CbL mol/m3 5

3.1. The effectiveness of boundary updating scheme 

The numerical solution of NPP equations with the parameters of default values as given

in Table 1 is presented in Fig. 2.  The numerical solution for a membrane of no-fixed-charge

with the same parameters is also shown as a comparison in the figure.  It can be seen in Fig. 2a

that both cation concentration and anion concentration at the membrane surfaces (boundaries)

differ  significantly  from  the  bulk  concentrations,  which  are  10  mol/m3 and  5  mol/m3,

respectively,  on  the  left  and  right  sides  of  the  membrane.   The  different  cation  and  anion

concentrations  at  the  membrane  surfaces  are  an  essential  feature  of  ion transport  across  the

membrane.  The boundary updating scheme can handle this feature of the boundary conditions

effectively.  The scheme is particularly suitable for the membranes of fixed charge because of

bigger differences between cation and anion concentrations at the membrane surfaces than that

for the membrane of no-fixed-charge.
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The anion concentration is  higher  than the cation concentration throughout  the entire

membrane thickness because of the positive fixed charge on the membrane.  It can be seen that

the electroneutrality can only be maintained in the middle section of the membrane thickness,

i.e., the difference between anion concentration and cation concentration is roughly equal to the

fixed  charge  carried  by  the  membrane.   The  lower  anion  concentrations  and  higher  cation

concentrations near the membrane surfaces are the results of ion transfer between the membrane

and solutions.   The distributions  of ions  for the  membrane of  no-fixed-charge are relatively

simple.  The concentrations of anions and cations equal to each other almost through the entire

membrane thickness with exceptions in the narrow regions near the two membrane surfaces.

The  details  of  the  concentration  difference  cannot  be  seen  clearly  in  the  lines  for  ion

concentrations on the membrane of no-fixed-charge.  In fact, the anion is lower in the region at

the left side but higher at the right side.  Interested readers can find more details about the ion

concentration distributions on the membrane of no-fixed-charge in our previous paper [24].

The corresponding potential distributions are presented in Fig 2b.  The potential of the

membrane of no-fixed- charge decreases monotonically from the left surface to the right surface

because of the higher mobility of the anions.  The potential of the membrane of positive fixed

charge changes more complexly than that of no-fixed- charge.  The middle section of the charged

membrane declines with a rate similar to the membrane of no-fixed- charge.  The variation of

potential is obviously due to differential diffusion of ions with different mobilities.  There is a

jump in an initial region and a drop in the final region of the potential for the membrane of fixed

charge.  These variations are because of the repulsion of the co-ions and attraction of counter-

ions by the fixed charge of the membrane,  i.e.  the Donnan effect  of the fixed charge.   The
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potentials at the membrane surfaces were again generated by the boundary updating scheme,

which are intimately corelated to the ion concentrations at the membrane surfaces. Such rigorous

numerical solutions of NPP equation with the well-defined consistent boundary conditions have

not been obtained with any method other than the boundary updating scheme.

3.2.  Impact of the fixed charge

The potential distributions along the membrane thickness at different fixed charges are

presented in Fig. 3.  The line in the middle presents the potential profile for the membrane of no-

fixed-charge.  The potentials for the positively charged membranes are all above the line of the

uncharged membrane while the negatively charged membranes have potentials are below that of

the  uncharged membrane.   This  feature  can  be  attributed  to  the  Donnan effect  of  the  fixed

charge.  The middle sections of all the potential lines decline from the left to the right with about

the same rate, which reflects the impact of differential diffusion of cations and anions on the

potential profiles.   
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Fig. 3 Potential distributions across the membrane thickness for 
membranes with different fixed charge.  The charge density is 
indicated on the lines.     
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An interesting and useful feature of the boundary updating scheme is that the potential

differences  across the transition layers can be determined simultaneously with the numerical

solution of the NPP equations.   The potential  differences  across the transition  layers can be

relatively large for the membranes with fixed charge.  The potential differences across the two

transition  layers  and  across  the  membrane  are  presented  in  Fig.  4,  together  with  the  total

membrane potential, which is the summation of all the three potential components.  It can be

seen that the variation of potential difference across the membrane Djm is the smallest (~5mv)

under the simulation conditions.   The potential  difference across the left  transition layer  Dj0

varies in a range that is more than doubled the range for the membrane potential (~ 10 mv).  The

potential difference across the right transition layer DjL varies the largest in a range of about 25

mv.   Under  the  simulation  conditions,  the  potentials  in  the  transition  layers  are  primarily

controlled by Donnan potential.  The larger absolute value of the potential difference in the right

transition layer is reasonable because the Donnan potential for the same fixed charge is greater

for  the  lower  solution  concentration.   The  total  potential  difference  of  the  membrane  DjT

decreases monotonically throughout the entire range of fixed charge.  

The ion fluxes at various fixed charge are listed in Table 2 with corresponding potential

differences across the membrane and the total membrane potentials.  The impact of the fixed

charge on flux is much smaller than on the potentials.  For the given range of fixed charge used

in the simulations, the maximum change in flux is smaller than 50%.  It clearly demonstrates that

the ion flux through the membrane is largely determined by the concentration difference across

the membrane, which is constant at 5 mol/m3 for all fixed charges.  
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Table 2 Potentials and ion fluxes at different fixed charge

Charge (mol/m3) Djm (mv) DjT (mv) Flux (mol/m2.s)

-10.00 -1.74 4.61 1.36×10-2

-7.50 -2.58 2.21 1.40×10-2

-5.00 -3.57 -0.45 1.41×10-2

-2.50 -4.58 -3.24 1.39×10-2

0.00 -5.46 -5.94 1.33×10-2

2.50 -6.09 -8.36 1.25×10-2

5.00 -6.38 -10.37 1.15×10-2

7.50 -6.38 -11.97 1.05×10-2

10.00 -6.13 -13.20 9.55×10-3

Ion flux is  seen to  decrease monotonically  with the increasing positive  fixed charge.

However, ion flux increases initially and then decreases with increasing negative fixed charge.
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In this particular example, the cations are the limiting factor for ion transport because they have

smaller mobility than the anions.  The positive fixed charge will reduce cation concentration in

the membrane and therefore further reduce the capacity of ion transport.  On the other hand, the

negative fixed charge of the membrane can increase cation concentration in the membrane so

that the capacity of ion transport can be increased.  Of cause, the anion concentration would be

reduced by the negative fixed charge.  Because of the larger mobility of anions, the impact on

ion flux by the reduced anion concentration in a certain range would be over-compensated by the

benefit of the increased cation.  Beyond the concentration range, the anion would become the

limiting factor for ion transport.  Further reduction of the anion would reduce the ion flux.  As

shown in Table 2, the ion flux obtains the highest value at the fixed charge of -5 mol/m3. 

3.3.  Donnan potential
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As  a  demonstration  of  the  boundary  updating  scheme,  the  Donnan  potential  was

calculated by solving the NPP equations with equal solution concentrations on both sides of the

membrane.  The concentration and potential distributions from a numerical solution is presented

in Fig. 5.  The concentrations  Cb0 = CbL = 10 mol/m3 and positive fixed charge X = 10 mol/m3

were  used  in  the  simulation.   It  can  be  seen  that  anion  concentration  is  higher  than  cation

concentration throughout the membrane thickness because of the positive fixed positive charge

on  the  membrane.   In  the  middle  section  of  the  membrane  thickness  (~10-40nm),  the

electroneutrality is basically satisfied because difference between anions and cations, which is

about 10 mol/m3, equals to the fixed charge on the membrane.  Lower anion concentration and

higher cation concentration were observed in regions near the membrane surfaces as a result of

ion  exchanges  with  the  solutions.   This  unbalanced  charge  is  actually  the  cause  of  Donnan

potential. The boundary updating scheme is able to set up the appropriate boundary conditions of

ion concentration and potential at membrane surfaces for the NPP equations to determine the

Donnan potential.

The potential distribution is also presented in Fig. 5 for a positively charged membrane.

The potential increases from the membrane surface to the middle of the membrane.  The value of

the plateau of the potential curve is the Donnan potential, which is 12.36 mv in this case.  A

well-established formula for the Donnan potential is [3, 4]

∆ψD=
RT
F
ln [ 12C (X+√X2+4C2 )] (21)

where ∆ψD is the Donnan potential and C is the concentration of 1-1 electrolyte solution.  The

derivation of Eq. (21) was obtained with the electroneutrality assumption that positive charge
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and negative charge are equal to each other inside of the membrane.  The Donnan potentials

determined with the two different methods are presented in Table 3.  It is a good surprise to find

that the two methods give identical values of the Donnan potentials up to 3 effective digits!  It is

a convincing evidence that the numerical method for the membrane potential is very accurate. At

the same time, it also shows that the use of electroneutrality assumption to reach the analytical

expression of the Donnan potential is acceptable though it is unphysical fundamentally.

Table 3 Analytically and numerically calculated Donnan potentials

X (mol/m3) Analytical Numerical Error (%)

-10.00 -12.363 -12.350 -0.105

-7.50 -9.422 -9.415 -0.070

-5.00 -6.358 -6.353 -0.074

-2.50 -3.203 -3.201 -0.066

2.50 3.203 3.201 -0.066

5.00 6.358 6.353 -0.074

7.50 9.422 9.415 -0.070

10.00 12.363 12.360 -0.024

3.4. Comparison of TMS model with numerical method

The membrane potential for the 1-1 electrolyte solution on both sides of a membrane can

be calculated analytically with the TMS model:

∆ φ=
RT
F
ln
CbL
Cb0

√X 2+4Cb0
2
+X

√X2+4CbL2+X
−
RT
F
Uln

√X2+4CbL
2
+UX

√X2+4Cb02+UX
(22)

where U is the mobility coefficient that is defined as 
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U=D
+¿−

D−¿

D+¿+D−¿¿
¿
¿
¿ (23)

where  D+¿¿ and  D−¿ ¿ are  the diffusion coefficient  of cations  and anions,  respectively.    The

membrane potentials calculated analytically with Eq. (22) for various mobility coefficients ware

presented (as dots) in Fig. 6.  In the calculation, concentrations Cb0 = 10 mol/m3 and CbL = 1 mol/

m3 were  employed  on  two  sides  of  the  membrane.   The  numerically  calculated  membrane

potentials for the same conditions were also plotted (as lines) in Fig. 6. 

It  can be seen  that  the  membrane potentials  calculated  analytically  with TMS model

agree well with the values calculated numerically when the ratio of X/Cb0 is smaller than 0.03 or

greater than 30.  There are significant discrepancies between the two membrane potentials in the

range of 0.03 < X/Cb0 < 30.  The analytical calculated values are systematically lower than the

true membrane potentials, with the biggest discrepancy at X/Cb0 = 1.  For example, the analytical
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value (8.71mV) is only about 40% of the numerically determined membrane potential (22.0mV)

for mobility coefficient of 0.9 at this point.

The TMS model is not a rigorous solution of the governing equations because it is simply

impossible.  The assumptions and simplifications (5, 6) that are used in the process to reach the

analytical  solution  bring  certain  divergence  from  the  true  solution  at  the  same  time.   The

numerical  calculated  membrane  potentials  can  be  taken  as  the  true  values  because  no

assumptions and simplifications are made in the process to seek the solution of the governing

equations.  Furthermore, the analytical TMS model can be only used for limited cases with two

ions of equal charge in solutions while the numerical methods can be applied to the general cases

with multiple ions of various charges.

4. Conclusions

The  potential  of  a  membrane  with  fixed  charge  can  be  rigorously  investigated

numerically with the boundary updating scheme.  The numerical method can not only determine

the total membrane potential, but also the potential differences across the transition layers and

across the membrane.  The detailed distributions of ion concentrations and potential along the

membrane  thickness  reveal  the  fundamental  mechanism  for  the  development  of  membrane

potentials.  The well-matched values of Donnan potentials determined separately with analytical

method  and  numerical  method  can  be  a  strong  support  to  the  validity  and accuracy  of  the

numerical method.  It has been demonstrated that the analytical TMS model tends to predict

lower membrane potentials systematically, especially for the membranes with intermediate range

of fixed charge. The numerical method can not only be more accurate than the analytical TMS

model for special cases but also be applicable to the general cases for which the analytical model

is not applicable.  
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