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Abstract

Complex civil  structures  require  the  cooperation  of  many building  materials.

However, it is difficult to accurately monitor and evaluate the inner damage states of

various material systems. Based on a convolutional neural network (CNN) and the

acoustic emission (AE) time-frequency diagram, we used the transfer learning method

for classifying the AE signals of different materials under external loads. The results

show  the  CNN  model  can  accurately  classify  cracks  that  come  from  different

materials based on AE signals. The recognition accuracy can reach 90% just by  re-

training the full connection layer of the pre-trained model, and its accuracy can reach

97% after  re-training the top 2 convolutional layers of this model. A realization of

cracking source identification mainly depends on the differences in mineral particles

in materials. This work highlights the great potential for real-time and quantitative

monitoring of the health status of composite civil structures.
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1 Introduction

Composite structures made of concrete-concrete, concrete-rock or rock-rock are

widely found in civil engineering, such as in underground constructions,1,2 tunnels,3

lined rock caverns (LRC).4-6 During their serving periods, these civil structures are

inevitably subjected to the comprehensive effects of environmental erosions (such as

high  temperatures,  freezing  and  thawing),  impact  geo-pressure,  engineering

disturbances (blasting, digging, etc.) and sudden disasters (e.g., earthquakes). Cracks

are initiated, extended and accumulated in structures, reducing service performance or

even  triggering  fatal  failure.7,8 Understanding  the  damage  status  of  structures  is

critical.

The micro-compositions of different civil materials are various, which makes a

material’s  crack  mechanism  and  related  acoustic  emission  signals  different.  The

acoustic  emission  (AE)  technique  is  a  widely  used  tool  for  structural  health

monitoring (SHM). The principle of AE technique is that infer the cracking behavior

of  structures  via  the  released  AE signals.9-12 AE signals  carry  information  on the

energy,  frequency,  and coordinates  of  cracks,  which  can be used to  quantitatively

evaluate  the  damage  processes  of  structures  in  real-time13-16.  For  example,

distinguishing  failure  mechanisms,17,18 monitoring  damage  locations,19,20 and

determining  crack  types.21,22 Although  various  studies  have  proved  that  there  are
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significant differences in the AE characteristics of different  civil materials,23,24 it  is

difficult to identify and cluster AE signals that come from different material systems

in real-time. When a material starts cracking, a large number of AE signals is formed.

AE signals that come from different material systems are intertwined and collected in

the form of a wave-stream. Therefore, it is hard to accurately monitor and evaluate the

damage state of composite engineering structures via existing AE techniques from the

perspective of on-site application (see Figure 1).

With rapid advances in computer capabilities and sensing techniques over the

past  decade,  machine  learning  algorithms  have  been  widely  applied  in  civil

engineering  for  numerous  tasks,  for  example,  for  the  prediction  of  mechanical

properties of materials,25,26 design and analysis of eco-friendly materials,27,28 and the

assessment and warning of accidents in construction.29,30 As a typical algorithm in

machine learning, convolutional neural networks (CNN) have advantages in image

recognition.31 In previous studies, CNN (or improved-CNN) algorithms were used for

identifying  structural  cracks  in  buildings  in  combination  with  advanced  image

acquisition  techniques.  For  example,  to  overcome the  interference  of  strong  light

spots  and  shadow  changes  in  actual  measurements,  Cha  et  al.32 designed  a  new

method for detecting concrete cracks using the deep architecture of CNN, which does

not  need to calculate  defect  characteristics.  Kim et al.33 introduced a  CNN-related

method  for  determining  the  existence  and  location  of  surface  cracks  on  concrete

structures and built a classification model based on accelerated robust features and

CNN. Li et al.34 proposed a new method for auto-classifying image blocks from 3-D
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road  images  using  CNN and  trained  four  supervised  CNN models  with  different

receiving field sizes (with a classification accuracy higher than 94%). To realize crack

detection under complex road conditions,  Fan et al.35 used CNN for learning crack

structures from original images without any pre-processing and proposed a strategy to

adjust the ratio of positive and negative samples to solve the problem of serious data

imbalance. Gopalakrishnan et al.36 trained deep CNN using the open-source database

ImageNet and tried to train the classifier with a combination of HMA-surfaced and

PCC-surfaced images with different  surface features. To reduce the residual  noise

generated by the crack edge detection method in binary images,  Dorafshan et al.37

proposed a hybrid method that combines deep CNN and edge detector reducing the

noise by 24 times.  Park et al.38 put forward a method that used CNN based on laser

sensors, which provides the possibility for real-time monitoring of structural surface

cracks. The  abovementioned  studies  significantly  contributed  to  engineering

applications of SHM. However, they used data collected by vision techniques, so that

only surface cracks could be studied, ignoring inner cracks. In fact, compared with

surface  cracks,  inner  cracks  have  a  more  substantial  effect  on  the  performance,

reliability, and service life of structures.

In this paper, we propose a method for identifying in which material systems

inner  cracks  occur  via  CNN  models  and  AE signals.  This  method  combines  the

advantages of CNN and AE techniques, while avoiding the respective shortcomings,

as discussed above. We proved that this method is reliable  through a series of lab

experiments. In our experiments, firstly, the AE waveforms of 3 types of concrete and
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3 types of rocks were collected during Brazilian split. Then, all AE waveforms were

transformed into time-frequency diagrams by wavelet transform. Next, we randomly

selected 90% of the AE time-frequency diagrams of the entire database as training

data. Afterward, the remaining 10% of the AE time-frequency diagrams were used as

testing data to determine the recognition accuracy of the trained CNN model. Finally,

the recognition accuracy of the CNN model was analyzed. The proposed method is

one  of  the  necessary  steps  for  reaching  automation  in  health  monitoring  and

evaluation of complex civil structures.

2 Experimental apparatus

2.1 Specimen preparation

In this  paper,  three types of rocks and three types of concretes were used as

specimens.  The  rock  blocks  (sandstone,  dolomite  and  granite)  were  collected  in

Chongqing,  Southwest  China.  The  concretes  were  made  from cement,  sand  and

water (different proportions). All concretes were stirred and vibrated to ensure that

the specimens are homogeneous and bubble-free, and then maintained in a standard

curing  room  for  28  days.  By  curing,  cutting,  and  end  grinding,  disc-shaped

specimens  with  a  height-to-diameter  ratio  of  1:2  were  made.  According  to  the

recommendations  of  the  International  Society  of  Rock  Mechanics  (ISRM),  the

perpendicularity and parallelism of all specimens were controlled to within the range

of ±0.02 mm. The physical properties of the testing specimen are as shown in Table

1,  where  ρ  is  the density,  σc  denotes  the  uniaxial  compressive  strength,  σt is  the

uniaxial tensile strength, E is the elastic modulus and v is Poisson’s ratio.
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2.2 Apparatus

The  Shimadzu  AGI-250 high-precision  material  testing  machine  was  used  to

perform mechanical experiments. With a maximum load of 250 kN and a stiffness of

15 GN/m, this machine can perform uniaxial compression, Brazilian split, three-point

bending  and  other  mechanical  experiments  by  force/displacement  control  loading

methods  and  record  stress-strain  data  in  real-time.  The  accuracies  of  the

measurements for force and deformation are ±0.5% and ±0.1%, respectively.

The DISP series of digital AE workstations produced by the American Physical

Acoustics Corporation (PAC) was used to identify and collect AE signals during the

entire the process of the mechanical experiments. The Nano-30 ceramic-surface AE

sensors (produced by PAC) with a resonant response of about 300 kHz and a good

frequency  response  in  the  range  of  125-750  kHz  were  uniformly  fixed  on  the

specimen.  The 2/4/6  AE pre-amplifier  was  used  to  amplify  weak AE signals  and

improve the signal-to-noise ratio related to cable noise during signal transmission. It

was supplied  with  a  gain  of  20/40/60 dB (switched to  40 dB in this  study).  The

threshold and pre-amplification were set to 45 dB and 40 dB, respectively, to obtain

effective AE signals. The peak defined time, hit defined time and hit lock time were

set to 50 μs, 100 μs and 300 μs, respectively.

2.3 Testing procedures

Failure  experiments  were  carried  out  using  the  Brazilian  split  method.39,40 A

schematic  diagram of  the  loading  unit,  the  stress  distribution,  and  a  disc-shaped

specimen with AE sensor locations were as shown in Figure2a-c, respectively.
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The  testing  procedures are  as  follows. First,  8  AE  sensors  were  uniformly

attached  onto the  surfaces  of  the  specimen (see  Figure2c).  Vaseline was  applied

evenly between the contact surfaces of the specimen and the AE sensors acting as

couplant. Then, the  specimen was placed into the loading unit, and a slight contact

between the piston push rod of the Shimadzu testing machine and the upper loading

plate was established. The connectivity of all AE sensors was  detected by the lead-

breaking method before loading.  Finally,  we  loaded the specimen by displacement

mode  until  failure.  The  loading  rate  was  fixed  to  0.1  mm/min.  AE signals  were

collected during the entire process.

3 Neural network calculation

3.1 Data preparation

Due  to  different  materials  containing  different  particle  compositions  and

composition  structures, the  AE  signals  that are  generated  during  the  cracking

processes  of  different  materials  have  a  specific  frequency  and  amplitude.  These

frequency and amplitude features are reflected by AE time-frequency diagrams. This

is meaningful for identifying which material system the related-cracks occurred in.

This process is similar cases in our daily lives:  we can easily  distinguish whether a

sound comes from a fracturing wooden rod or a fracturing plastic rod just by listening.

To  better  cater  to  the  powerful  image  recognition  capabilities  of  the  CNN

technique,31,41 the AE waveforms were transformed into time-frequency diagrams via

the wavelet transform method, as shown in Figure 3.

Different  materials  produce  different  amounts  of  AE  signals  under  external
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stress. To avoid the impact of different numbers of training samples during training on

the recognition accuracy, 1300 pictures were randomly selected from composite (7800

pics in total)  to form the database. We randomly selected 90% of the database to be

the training dataset, and the remaining 10% as the testing dataset (see  Table 2). In

addition, these images were uniformly processed to 256 256 pixels before being used

as input for the CNN model.

3.2 Construction of CNN

3.2.1 VGG16 model and training method

The  CNN model VGG16  was used  in  this  work.  VGG16  contains  13

convolutional layers and 3 full  connected layers (see  Figure 4). The convolutional

layer obtains the detailed characteristics of the time-frequency diagrams, and the fully

connected  layer  adjusts  the  weights  of  the  features  to  obtain  a  high  recognition

accuracy.  The convolutional layer in CNN is good at extracting complex nonlinear

features  from  the  AE time-frequency  diagrams  and  optimizing  the  parameters

(weights and bias) of the convolution kernel during training. The CNN model can

effectively extract and learn the detailed features of the diagrams after training.

Although VGG16 has a high potential in image recognition, it requires a high

amount of data for model training. In relative terms, the amount of data obtained in

our  experiment  was  small,  and  not  enough  to  fully  train  the  entire  CNN  model.

Therefore, we used the transfer learning method for training a pre-trained VGG16.

The learned features in the pre-trained model  were transplanted to different  tasks,

which is called transfer learning.42-45 Specifically, VGG16 was pre-trained by massive
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images  to  obtain many general  image recognition abilities,  such as recognition of

edges,  areas,  stripes,  and  colors. Therefore,  we  only  needed  to  train  the  last  2

convolutional  layers  and  3  fully  connected  layers  using  the  AE  time-frequency

diagrams obtained in our experiments. The advantages of the transfer learning method

make it very effective to use VGG16 for solving small data tasks.

3.2.2 Parameter optimization

The back-propagation algorithm was used in the VGG16 model for parameter

optimization. The specific optimization process included the following 4 steps46,47:

1) Forward propagation: Input training data into the model.  Connect adjacent

layers of the network to each other according to  Equation 1 and  send them to the

output layer after the calculation. Then, output the results.

               

                         (1)

where   is the output result of the  jth neuron in layer  l;  (x)  is the activation

function;  is the weight of the jth neuron connected to the network in layer l by the

kth neuron in layer (l-1);  is the bias of the jth neuron in layer l.

2)  Calculate loss value: The loss value is obtained by comparing the network

output results with the real results. In this work,  “sparse_categorical_crossentropy”
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was used for calculation, which is shown in Equation 2. 

            

        (2)

where n is the number of samples，m is the number of categories. is the real

result, and is the predicted result.

3) Loss value back propagation: According to the calculated loss value, the loss

value generated by each layer of a network is calculated from back to front based on

Equation 3.

             

                       (3)

where  is the loss value generated in the lth layer;  is the weight matrix in

the (l+1)th layer;  is the result output in the lth layer; is the Hadamard product,

which is used for point-to-point multiplication between matrices.

4)  Parameter  optimization  via gradient  descent  method: The  parameter

optimization includes weight optimization and bias optimization.  Putting Equation 3

into Equations 4 and 5, we can calculate the gradient descent of the weight and bias.

     

                (4)
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                  (5)

Therefore, we obtained the weight gradient  of the kth neuron in the (l-1)th

layer that is connected to the jth neuron in the lth layer.  is the bias gradient of the jth

neuron in the lth layer. Also, we can calculate the updated parameter matrix by adding

the original parameter matrix and the gradient matrix.  Using the above-mentioned

calculations,  the optimal parameters can be obtained after several iterations of the

network.

3.2.3 Feature extraction

CNN  can  extract  the  time  series  characteristics  of  AE  parameters  such  as

amplitude and frequency. The implementation process of the data feature extraction is

as follows (see Figure 5): three convolution kernels are applied to sequentially obtain

the brightness features, range features,  and strip features,  which correspond to the

information on the energy magnitude, energy range and frequency range, respectively.

When performing convolution calculations, data information similar to the features of

the convolution kernel will be amplified. After a series of convolution operations on

the data set, it will output feature data with the same number of convolution kernels.

Each datapoint can show the information of that feature is enlarged. Then the it will

be input into the next convolution operation. After continuous convolution processing,

11

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

21
22



the feature information of the data is continuously enlarged, the size is continuously

reduced and the field of view of the convolution kernel is continuously expanded.

Finally, stable classification features are obtained and input into the fully connected

layer for classification. The image convolution process can be expressed by Equation

6:

                       

                     (6)

where f is the area of an image that is as large as the convolution kernel. g is the

convolution kernel. m, n and c represent the pixels in the mth row and nth column in the

cth image channel, respectively.

It should be pointed out that after a series of convolution operations, feature data

information similar to the convolution kernel is  amplified,  and non-similar feature

information is suppressed. However, the suppressed information has not disappeared,

and still consumes computing resources. Therefore, a pooling layer is used to remove

the suppressed information and only retain the main feature information. As shown in

Figure  5,  the  main  information  of  the  image  is  not  lost  after  the  pooling  layer

processing. This method is very helpful in reducing computational cost, while also

preventing overfitting. Therefore, based on the feature extraction capabilities of CNN,

it will be able to effectively extract AE signal features from time-frequency diagrams

after supervised training.

In the VGG16 network, 13 convolutional layers are divided into 5 groups. These
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convolutional layers can sequentially extract image details and macro-features, and

the fully connected layer integrates all features for classifying the AE type. Therefore,

in transfer learning the part of the convolutional layer is generally retained, and the

fully connected layer is trained for specific problems to achieve image classification

weight training, and then, a stable fully connected layer (classification function) is

obtained.  If  the  ideal  classification  effect  cannot  be  obtained  based  on  the

classification function, the top 2 convolutional layers of the pre-trained network are

trained to obtain the characteristics of the broad features of the AE time-frequency

map. At the same time, the pre-training network for image detail feature extraction is

retained,  which  in  turn  helps  with  providing  the  image  recognition  effect  of  the

network. We added a softmax layer as a classifier to the new network for solving a

multi-classification problem.

Loss  functions  are  critical  for  model  training.  They  are  used  to  quantify

differences between the model predictions and the real objects. Loss functions are the

basis for adjusting the training weight and bias of the CNN model. In this work, the

“sparse_categorical_crossentropy”  was  applied.  Compared  with  the  calculation

methods  of  other  loss  functions  (e.g.,  the  “squared_difference”),  this  method  can

amplify the value of the loss function when the prediction results deviate greatly and

improve the convergence speed of the network.

To improve memory utilization and operating efficiency, we set the batch size to

32 during the training process. Model validation was carried out at each epoch after

model training. In contrast to during training, in the testing process, only the test set
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(after normalization) was fed to the classifier to compute the categorical_crossentropy

and prediction accuracy without model optimization. The result of the value of the

validation loss was used as criterion for ending the training process. If the value of the

validation loss no longer dropped and remained stable, the training  was  ended. The

model with the minimum value of validation loss was taken to be the optimal model

and selected.

4 Results and Analysis

4.1 Recognition accuracy

The recognition accuracy of different training stages was separately evaluated in

this  paper. In the first stage,  all  convolution layers are locked (pale blue layers in

Figure 4) and only the fully connected layer is trained. The recognition accuracy of

the CNN model after the first training stage is shown in  Figure 6. The recognition

accuracy  of  the  model  reached  90%  after  12  epochs,  which  was  approximately

maintained after subsequent training. However, a higher recognition accuracy could

not be achieved because the selected parameters of the broad vision layers were not

perfectly  suitable  for  the  AE  time-frequency  diagram  classification  task. This

indicates that the parameters need to be further optimized.

The  second stage  consisted  of  training  the  top  2  convolutional  layers  of  the

VGG16 and making the CNN model more suitable for the time-frequency diagram

classification task. Finally, the pre-trained fully connected layers of the VGG16 model

were trained for a further 50 epochs. All training data was obtained from the AE time-

frequency diagram database gathered in our experiments. The recognition accuracy of

14

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

27
28



the CNN model after the second training stage is shown in Figure 7. After opening the

top  convolutional  layer,  the  trainable  parameters  of  the  CNN  increased  largely.

Consequently,  it can be seen that the recognition accuracy increased rapidly. Lastly,

the  recognition  accuracy  stabilized  at  97%.  Only  a  small part  of  the  AE  time-

frequency diagrams could not be identified, which is because the related cracks were

too similar.

4.2 Pairwise comparison

To find the factors that restrict the recognition accuracy of the CNN model, 15

types of pairwise comparisons were carried out. Firstly, the fully connected layers

were trained for  30 epochs. After the recognition accuracy had stabilized, the top  2

convolutional layers of the pre-training network were trained for 50 epochs. The loss

function used for the binary classification problem was the “binary_crossentropy” and

its expression can be expressed as in Equation 7. 

       (7)

where C is the loss value, is the real result, and is the predicted result.

The recognition accuracy and loss values of the CNN models for all  pairwise

comparisons are shown in Figure 8. It can be seen that the recognition accuracy of the

CNN model  rapidly increased with an increase in the number of training epochs.

From the 30th epoch, the convolutional layer started to be trained, so that the loss

value suddenly increased. After 1-2 epochs of training, the loss value decreased to the

normal  trend  due  to  the  weight  automatically  being  adjusted  after  the  back-
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propagation.

The  recognition  accuracy  by  the  trained  fully  connected  layers (the  first  30

epochs) for dolomite-granite (DL-GN) and sandstone-dolomite (SS-DL) reached over

95%.  The  recognition  accuracy  reached  more  than  99%  after  training  the

convolutional layers (the next 50 epochs). However, the recognition accuracy of CNN

models for concrete was relatively lower. For instance, the recognition accuracy of

CS1:1 and CS2:1 just reached about 88% after the first 20 epochs and 94% after the

next 50 epochs. In the training processes, all CNN model eventually produced over-

fitting.  The recognition accuracy of the network reached an upper  limit.  Figure 9

shows the final recognition accuracy of the CNN model for all pairwise comparisons.

4.3 Reliability evaluation

Although the CNN model indicates the recognition results of the testing dataset,

the reliability of the results still needs to be evaluated. In the process of CNN model

recognition,  the  model  firstly  gives  a  prediction  probability.  Then,  the  classifier

outputs  the  recognition  result  according to  the  training  dataset  and the  prediction

probability. Different classifiers will lead to different numbers of TP (True Positive)

samples and FP (False Positive) samples. Based on this, TPR (True Positive Rate) =

TP / (TP + FN) and FPR (False Positive Rate) = NP / (NP + TN) can be applied.48

A Receiver Operating Characteristic (ROC) curve is drawn according to the TPR

value and the FPR value (see Figure 10). In the ROC graph, the location of point “O”

represents the point at which the true positive rate is equal to the true negative rate.

The distance between point “O” and point (0, 100) is called EER (equal error rate).
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The lower the EER value, the higher the reliability. The closer the OB segment is to

the top axis, the higher is the sensitivity of the model as well as the stronger is the

classifier’s ability to recognize positive cases. The closer the OA segment is to the left

axis, the higher the specificity of the model as well as the better the classifier’s ability

to recognize negative cases. 

The advantage of the ROC curve is that the quantity distribution of positive and

negative samples will not affect its shape. Therefore, this evaluation tool can reduce

interference caused by using different testing datasets and measure the performance of

the CNN model itself more objectively. The specific evaluation results via ROC curve

are shown in  Figure 11. For instance,  it can be seen that the EER of the model of

dolomite-granite  (DL-GN)  is  small,  which  corresponds  to  the  high  recognition

accuracy. All ROC curves of CNN models exhibit a good sensitivity and specificity,

which indicates that the results determined with the transfer learning method have a

high reliability. At the same time, the sensitivity and specificity of the recognition

results of the models still vary. For example, in the ROC curves of CS2:1-GN, the

curve  did not  fully  fit  the top  axial,  indicating  that  this  model  misrecognized the

cracking AE signals of CS2:1 as the cracking AE signals of granite. In relative terms,

the EER between concrete  recognition results  is  slightly  bigger.  For  example,  the

ROC curve of PC-CS2:1 is at a certain distance from the top  and left axes, which

indicates that the reliability of the model’s recognition result is slightly lower.

The AUC (area under curve) value represents the area between the ROC curve

and the lower axis, which intuitively reflects the recognition reliability of the model.
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The evaluation results of the model’s recognition reliability are shown in Figure 12.

From Figure 9 and  Figure 12, it can be seen that although  the CNN model has the

lowest recognition accuracy for PC-CS2:1, it also achieves an accuracy of over 94%

and a reliability of over 95%. This indicates that the proposed method for classifying

the cracking sources of different engineering media via machine learning is reliable.

4.4 Mechanism analysis

In fact,  there are many differences in mineral particle micro-structures between

different kind of engineering materials, regardless of whether they are natural geo-

mediums  or  man-made  concretes  (see  Figure  13).  We  believe  that  these  micro-

structural  differences cause  significantly  diverse  cracking  AE  signals  in  different

kinds of materials. For example, CNN has a very high recognition accuracy for GN-

Others  (over  99%),  which  indicates  that  the  AE signals  produced  in  granite  are

significantly different from those in other materials. It reflects that the mineral and

structural  composition  of  granite  are  quite  different  from those  of  other  rocks  or

concretes used in this study, which is visualized in Figure 13.

However, the recognition accuracy of the CNN model for PC-CS2:1 and CS2:1-

CS1:1 is relatively lower (94.1% and 94.9%, respectively), indicating that there are

small parts of the cracking AE signals that are too similar for a CNN model to be able

to distinguish between. The main reason is that PC, CS2:1 and CS1:1 have similar

micro-components and manufacturing procedures. The first pairwise comparison with

an  accuracy  recognition  of  higher  than  95%  is  PC-SS  (Figure  9).  The  SEM

observation of PC-SS is shown in Figure 14. It can be seen that there are significant
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differences in the compositions, sizes and shapes of the mineral particles.

In contrast, the results discussed above also reveal that the recognition accuracy

of the CNN model can also reflect similarities in cracking generation. Waveforms

produced by materials with the same mineral composition are similar. Furthermore,

the smaller the differences in composition, the more similar the waveforms are and

the lower is the recognition accuracy of CNN.

5 Conclusion

Based on the  VGG16 CNN model  and the  time-frequency  diagram obtained

using the AE technique,  the transfer  learning method is  used to  classify  cracking

sources from different engineering media (rocks and concretes). The high recognition

accuracy of classification is achieved. The following conclusions can be reached:

(1) Transforming  AE  signals  into  time-frequency  diagrams  through  wavelet

transform can make full use of the image recognition capabilities of the CNN model.

This method can assist the CNN model in monitoring the formation of cracks inside a

structure in real time.

(2) Different types of engineering materials have different mineral particles and

micro-compositions, so that  their time-frequency diagrams of AE signals generated

during the cracking process are also quite different. This physical mechanism makes it

possible for CNN models to be trained and to recognize/classify the cracking sources

of bi- or multi-material mixed engineering structures.

(3) The trained CNN model can recognize the AE signals of rocks and concretes

well, with a classification accuracy higher than 97.3%. The recognition accuracy for a
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concrete-concrete  system  is a little  lower (the lowest  is  95.3% for PC-CS:1).  The

recognition  accuracy  is  directly  related  to  the  degree  of  difference  in  the  micro-

structures of the materials.
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