REFERENCES
Adams, J.M., Faure, H., Faure-Denard, L., McGlade, J.M., & Woodward, F.I. (1990). Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature , 348 , 711–714. https://doi.org/10.1038/348711a0
Allison, V.J. (2002). Nutrients, arbuscular mycorrhizas and competition interact to influence seed production and germination success in Achillea millefolium . Functional Ecology , 16 , 742–749.
Bai, Y., Wu, J., Clark, C.M., Naeem, S., Pan, Q., Huang, J., Zhang, L., & Han, X. (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Global Change Biology , 16 , 358–372. https://doi.org/10.1111/j.1365-2486.2009.02142.x
Basto, S., Thompson, K., Phoenix, Gl, Sloan, V., Leake, J., & Rees, M. (2015). Long-term nitrogen deposition depletes grassland seed banks.Nature Communications , 6 , 6185. https://doi.org/10.1038/ncomms7185
Bogdziewicz, M., Crone, E.E., Steele, M.A., Zwolak, R., & Rafferty, N. (2017). Effects of nitrogen deposition on reproduction in a masting tree: benefits of higher seed production are trumped by negative biotic interactions. Journal of Ecology , 105 , 310–320. https://doi.org/10.1111/1365-2745.12673
Bowman, W.D., Gartner, J.R., Holland, K., & Wiedermann, M. (2006). Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: are we there yet? Ecological Applications , 16 , 1183–1193.
Brys, R., Jacquemyn, H., & De Blust, G. (2005). Fire increases aboveground biomass, seed production and recruitment success ofMolinia caerulea in dry heathland. Acta Oecologica ,28 , 299–305. https://doi.org/10.1016/j.actao.2005.05.008
Crowley, K.F., McNeil, B.E., Lovett, G.M., Canham, C.D., Driscoll, C.T., Rustad, L.E., Denny, E., Hallett, R.A., Arthur, M.A., Boggs, J.L., Goodale, C.L., Kahl, J.S., McNulty, S.G., Ollinger, S.V., Pardo, L.H., Schaberg, P.G., Stoddard, J.L., Weand, M.P., & Weather, K.C. (2012). Do nutrient limitation patterns shift from nitrogen toward phosphorus with increasing nitrogen deposition across the Northeastern United States?Ecosystems , 15 , 940–957. https://doi.org/10.1007/s10021-012-9550-2
DiManno, N.M., & Ostertag, R. (2016). Reproductive response to nitrogen and phosphorus fertilization along the Hawaiian archipelago’s natural soil fertility gradient. Oecologia , 180 , 245–255. https://doi.org/10.1007/s00442-015-3449-5
Domingues, T.F., Ishida, F.Y., Feldpausch, T.R., Grace, J., Meir, P., Saiz G., Sene, O., Schrodt, F., Sonké, B., Taedoumg, H., Veenendal, E.M., Lewis, S., & Lloyd, J. (2015). Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon. Oecologia , 178 , 659–672. https://doi.org/10.1007/s00442-015-3250-5
Elser, J.J., Bracken, M.E.S., Cleland, E.E., Gruner, D.S., Harpole, G.W., Hillebrand, H., Ngai, J.T., Seabloom, E.W., Shurin, J.B., & Smith, J.E. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters , 10 , 1135–1142. https://doi.org/10.1111/j.1461-0248.2007.01113.x
Fujita, Y., Venterink, H.O., Van Bodegom, P.M., Douma, J.C., Heil, G., Hölzel, N., Jabłońska, E., Kotowski, W., Okruszko, T., Pawlikowski, P., de Ruiter, P.C., & Wassen, M.J. (2014). Low investment in sexual reproduction threatens plants adapted to phosphorus limitation.Nature , 505 , 82–86. https://doi.org/10.1038/nature12733
George, T.S., Hinsinger, P., & Turner, B.L. (2016). Phosphorus in soils and plants–facing phosphorus scarcity. Plant and Soil ,401 , 1–6. https://doi.org/10.1007/s11104-016-2846-9
Graciano, C., Goya, J.F., Frangi, J.L., & Guiamet, J.J. (2006). Fertilization with phosphorus increases soil nitrogen absorption in young plants of Eucalyptus grandis . Forest Ecology and Management , 236 , 202–210. https://doi.org/10.1016/j.foreco.2006.09.005
Groom, P.K., & Lamont, B.B. (2009). Phosphorus accumulation in Proteaceae seeds: a synthesis. Plant and Soil , 334 , 61–72. https://doi.org/10.1007/s11104-009-0135-6
Harpole, W.S., Ngai, J.T., Cleland, E.E., Seabloom., E.W., & Borer, E.T. (2011). Nutrient co-limitation of primary producer communities.Ecology Letters , 14 , 852–862. https://doi.org/10.1111/j.1461-0248.2011.01651.x
Harpole, W.S., & Suding, K.N. (2011). A test of the niche dimension hypothesis in an arid annual grassland. Oecologia , 166 , 197–205. https://doi.org/10.1007/s00442-010-1808-9
Harpole, W.S., Sullivan, L.L., Lind, E.M., Firn, J., Adler, P.B., Borer, E.T., Chase, J., Fay, P.A., Hautier, Y., Hillebrand, H., MacDougall, A.S., Seabloom, E.W., Williams, R., Bakker, J.D., Cadotte, M.W., Chaneton, E.J., Chu, C., Cleland, E.E., D’Antonio, C., Davies, K.F., Gruner, D.S., Hagenah, N., Moore, J.L., Morgan, J.W., Prober, S.M., Risch, A.C., Schuetz, M., Stevens, C.J., & Wragg, P.D. (2016). Addition of multiple limiting resources reduces grassland diversity.Nature , 537 , 93–96. https://doi.org/10.1038/nature19324
HilleRisLambers, J., Harpole, W.S., Schnitzer, S., Tilman, D., & Reich, P.B. (2009). CO2, nitrogen, and diversity differentially affect seed production of prairie plants. Ecology , 90 , 1810–1820. https://doi.org/10.2307/25592691
Johnson, D., Leake, J.R., & Lee, J.A. (1999). The effects of quantity and duration of simulated pollutant nitrogen deposition on root-surface phosphatase activities in calcareous and acid grasslands: a bioassay approach. New Phytologist , 141 , 433–442. https://doi.org/10.1046/j.1469-8137.1999.00360.x
Li, X., Li, Q., Yang, T., Nie, Z., Chen, G., & Hu, L. (2016a). Responses of plant development, biomass and seed production of direct sown oilseed rape (Brassica napus ) to nitrogen application at different stages in Yangtze River Basin. Field Crops Research , 194 , 12–20. https://doi.org/10.1016/j.fcr.2016.04.024
Li, Y., Hou, L., Song, B., Yang, L., & Li, L. (2017). Effects of increased nitrogen and phosphorus deposition on offspring performance of two dominant species in a temperate steppe ecosystem. Scientific Reports , 7 , 40951. https://doi.org/10.1038/srep40951
Li, Y., Niu, S., & Yu, G. (2016b). Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis.Global Change Biology , 22 , 934–943. https://doi.org/10.1111/gcb.13125
Liu, Y., Mu, J., & Niklas, K. (2012). Global warming reduces plant reproductive output for temperate multi-inflorescence species on the Tibetan plateau. New Phytologist , 195 , 427–436. https://doi.org/10.1111/j.1469-8137.2012.04178.x
Liu, Y., Zhao, C., Guo, J., Zhang, L., Xuan, J., Chen, A., & You, C. (2021). Short-term phosphorus addition augments the effects of nitrogen addition on soil respiration in a typical steppe. Science of the Total Environment , 761 , 143211. https://doi.org/10.1016/j.scitotenv.2020.143211
Long, M., Wu, H.H., Smith, M.D., La Pierre, K.J., Lü, X.T., Zhang, H.Y., Han, X.G., & Yu, Q. (2016). Nitrogen deposition promotes phosphorus uptake of plants in a semi-arid temperate grassland. Plant and Soil , 408 , 475–484. https://doi.org/10.1007/s11104-016-3022-y
Luzuriaga, A.L., Escudero, A., Olano, J.M., & Loidi, J. (2005). Regenerative role of seed banks following an intense soil disturbance.Acta Oecologica , 27 , 57–66. https://doi.org/10.1016/j.actao.2004.09.003
Ma, B., & Herath, A. (2016). Timing and rates of nitrogen fertiliser application on seed yield, quality and nitrogen-use efficiency of canola. Crop & Pasture Science , 67 , 167–180. https://doi.org/10.1071/CP15069
Marcelis, L.F.M., Heuvelink, E., Hofman-Eijer, L.R.B., Bakker, J.D., & Xue, L.B. (2004). Flower and fruit abortion in sweet pepper in relation to source and sink strength. Journal of Experimental Botany ,55 , 2261–2268. https://doi.org/10.1093/jxb/erh245
Marklein, A.R., & Houlton, B.Z. (2012). Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist , 193 , 696–704. https://doi.org/10.1111/j.1469-8137.2011.03967.x
Menge, D.N.L., & Field, C.B. (2007). Simulated global changes alter phosphorus demand in annual grassland. Global Change Biology ,13 , 2582–2591. https://doi.org/10.1111/j.1365-2486.2007.01456.x
Niklas, K.J., Owens, T., Reich, P.B., & Cobb, E.D. (2005). Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth.Ecology Letters , 8 , 636–642. https://doi.org/10.1111/j.1461-0248.2005.00759.x
Ostertag, R. (2010). Foliar nitrogen and phosphorus accumulation responses after fertilization: an example from nutrient-limited Hawaiian forests. Plant and Soil , 334 , 85–98. https://doi.org/10.1007/s11104-010-0281-x
Patel, K.D., Chawla, S.L., Patil, S., & Sathyanarayana, E. (2017). Interaction effect of nitrogen and phosphorus on growth, flowering and yield of bird of paradise (Strelitzia reginae ).International Journal of Current Microbiology and Applied Sciences , 6 , 1566–1570. https://doi.org/10.20546/ijcmas.2017.609.192
Peñuelas, J., Poulter, B., Sardans, J., Ciais, P., van der Velde, M., Bopp, L., Boucher, O., Godderis, Y., Hinsinger, P., Llusia, J., Nardin, E., Vicca, S., Obersteiner, M., & Janssens, I.A. (2013). Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications , 4 , 2934. https://doi.org/10.1038/ncomms3934
Peng, Y., Li, F., Zhou, G., Fang, K., Zhang, D., Li, C., Yang, G., Wang, G., Wang, J., & Yang, Y. (2017). Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe. Global Change Biology , 23 , 5249–5259. https://doi.org/10.1111/gcb.13789
Petraglia, A., Tomaselli, M., Mondoni, A., Brancaleoni, L., & Carbognani, M. (2014). Effects of nitrogen and phosphorus supply on growth and flowering phenology of the snowbed forb Gnaphalium supinum L. Flora , 209 , 271–278. https://doi.org/10.1016/j.flora.2014.03.005
Phoenix, G.K., Emmett, B.A., Britton, A.J., Caporn, S.J.M., Dise, N.B., Helliwell, R., Jones, L., Leake, J.R., Leith, I.D., Sheppard, L.J., Sowerby, A., Pilkington, M.G., Rowe, E.C., Ashmore, M.R., & Power, S.A. (2012). Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long‐term field experiments. Global Change Biology , 18 , 1197–1215. https://doi.org/10.1111/j.1365-2486.2011.02590.x
Pierce, S., Bottinelli, A., Bassani, I., Ceriani, R.M., & Cerabolini, B.E.L. (2014). How well do seed production traits correlate with leaf traits, whole-plant traits and plant ecological strategies? Plant Ecology , 215 , 1351–1159. https://doi.org/10.1007/s11258-014-0392-1
Ronnenberg, K., Hensen, I., & Wesche, K. (2011). Contrasting effects of precipitation and fertilization on seed viability and production ofStipa krylovii in Mongolia. Basic and Applied Ecology ,12 , 141–151. https://doi.org/10.1016/j.baae.2010.12.002
Ruffel, S., Krouk, G., Ristova, D., Shasha, D., Birnbaum, K.D., & Coruzzi, G.M. (2011). Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand. Proceedings of the National Academy of Sciences of the United States of America , 108 , 18524–18529. https://doi.org/10.1073/pnas.1108684108
Shi, Y., Gao, S., Zhou, D., Liu, M., Wang, J., Knops, J.M.H., & Mu, C. (2017). Fall nitrogen application increases seed yield, forage yield and nitrogen use efficiency more than spring nitrogen application inLeymus chinensis , a perennial grass. Field Crops Research ,214 , 66–72. https://doi.org/10.1016/j.fcr.2017.08.022
Sims, L., Pastor, J., Lee, T., & Dewey, B. (2012a). Nitrogen, phosphorus and light effects on growth and allocation of biomass and nutrients in wild rice. Oecologia , 170 , 65–76. https://doi.org/10.1007/s00442-012-2296-x
Sims, L., Pastor, J., Lee, T., & Dewey, B. (2012b). Nitrogen, phosphorus, and light effects on reproduction and fitness of wild rice.Botany , 90 , 876–883. https://doi.org/10.1139/b2012-057
Singh, S., Thenua, O., & Singh, V. (2018). Effect of phosphorus and sulphur fertilization on yield and quality of mustard & chickpea in intercropping system under different soil moisture regimes.Journal of Pharmacognosy and Phytochemistry , 7 , 1520–1524.
Solis, A., Vidal, I., Paulino, L., Johnson, B.L., & Berti, M.T. (2013). Camelina seed yield response to nitrogen, sulfur, and phosphorus fertilizer in South Central Chile. Industrial Crops and Products ,44 , 132–138. https://doi.org/10.1016/j.indcrop.2012.11.005
Stephenson, A.G. (1981). Flower and fruit abortion: Proximate causes and ultimate functions. Annual Review of Ecology and Systematics ,12 , 253–279.
Su, L., Yang, Y., Li, X., Wang, D., Liu, YC., Liu, YZ., Yang, Z., & Li, M. (2018). Increasing plant diversity and forb ratio during the re-vegetation processes of trampled areas and trails enhance soil infiltration. Land Degradation & Development , 29, 4025-4034. https://doi.org/10.1002/ldr.3173
Suriyagoda, L.D., Ryan, M.H., Renton, M., & Lambers, H. (2014). Plant responses to limited moisture and phosphorus availability: a meta-analysis. Advances in Agronomy , 124 , 143–200. https://doi.org/10.1016/B978-0-12-800138-7.00004-8
Tang, Z., Deng, L., An, H., Yan, W., & Shangguan, Z. (2017). The effect of nitrogen addition on community structure and productivity in grasslands: A meta-analysis. Ecological Engineering , 99 , 31–38. https://doi.org/10.1016/j.ecoleng.2016.11.039
Vitousek, P.M., Porder, S., Houlton, B.Z., & Chadwick, O.A. (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications ,20 , 5–15. https://doi.org/10.1890/08-0127.1
Wang, J.F., Xie, J.F., Zhang, Y.T., Gao, S., Zhang, J.T., & Mu, C.S. (2010). Methods to Improve Seed Yield of based on Nitrogen Application and Precipitation Analysis. Agronomy Journal , 102 , 277–281. https://doi.org/10.2134/agronj2009.0254
Wang, M., Hou, L., Zhang, Q., Yu, X., & Zhao, L. (2017). Influence of Row Spacing and P and N Applications on Seed Yield Components and Seed Yield of (Siberian Wildrye L.). Crop Science , 57 , 2205–2212. https://doi.org/10.2135/cropsci2016.08.0713
Willis, S.G., & Hulme, P.E. (2004). Environmental severity and variation in the reproductive traits of Impatiens glandulifera .Functional Ecology , 18 , 887–898. https://doi.org/10.2307/3599117
Willson, M.F. (1983). Plant reproductive ecology. Wiley-Interscience, New York.
Wu, Z.Y., & Raven, P.H. (2006). Flora of China. Vol. 22 (Poaceae). Beijing: Science Press, St. Louis, USA: Missouri Botanic Garden Press.
Xia, J., & Wan, S. (2013). Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe. Annuals of Botany , 111 , 1207–1217. https://doi.org/10.1093/aob/mct079
Xu, D., Fang, X., Zhang, R., Gao, T., Bu, H., & Du, G. (2015). Influences of nitrogen, phosphorus and silicon addition on plant productivity and species richness in an alpine meadow. AoB Plants , 7 , plv125. https://doi.org/10.1093/aobpla/plv125
Yang, G., Liu, N., Lu, W., Wang, S., Ka, H., Zhang, Y., Xu, L., & Chen, Y. (2014). The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability. Journal of Ecology , 102 , 1072–1082. https://doi.org/10.1111/1365-2745.12249
Zhan, S., Wang, Y., Zhu, Z., Li, W., & Bai, Y. (2017). Nitrogen enrichment alters plant N:P stoichiometry and intensifies phosphorus limitation in a steppe ecosystem. Environmental and Experimental Botany , 134 , 21–32. https://doi.org/10.1016/j.envexpbot.2016.10.014
Zhao, A., Liu, L., Xu, T., Shi, L., Xie, W., Zhang, W., Fu, S., Feng, H., & Chen, H. (2018a). Influences of Canopy Nitrogen and Water Addition on AM Fungal Biodiversity and Community Composition in a Mixed Deciduous Forest of China. Frontiers in Plant Science , 9 , 1842. https://doi.org/10.3389/fpls.2018.01842
Zhao, Y., Yang, B., Li, M., Xiao, R., Rao, K., Wang, J., Zhang, T., & Guo, J. (2018b). Community composition, structure and productivity in response to nitrogen and phosphorus additions in a temperate meadow.Science of the Total Environment , 654 , 863–871. https://doi.org/10.1016/j.scitotenv.2018.11.155
Zheng, J., She, W., Zhang, Y., Bai, Y., Qin, S., & Wu, B. (2018). Nitrogen enrichment alters nutrient resorption and exacerbates phosphorus limitation in the desert shrub Artemisia ordosica .Ecology and Evolution , 8 , 9998–10007. https://doi.org/10.1002/ece3.4407
TABLE 1 Results (F ratios) of three-way ANOVAs on the effects of N and P addition on the seed production, inflorescence number, seed number per inflorescence, tiller number, density, and height in a temperate steppe of Inner Mongolia, China.