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Abstract 

The purpose of this paper is to provide the calculation methods on worm addendum thickness and 

curvature interference limit line, and find the feasible value range of the technological crossing angle 

to avoiding addendum sharpening and curvature interference for enveloping cylindrical worm drive 

with arc-toothed worm. In accordance with the features of the proposed worm, the mathematical 

models of cutting and working are established. Based on this, the tooth profile geometry of the worm 

in its axial section and the worm addendum thickness are obtained by geometric analysis and 

calculation, and then, the feasible value range of the technological crossing angle is given. In virtue of 

vector rotation and elimination method, the nonlinear equation with one variable for solving the 

interference limit line is determined. In the process of solving nonlinear equation, the method of 

geometric construction is used to judge the existence of solutions and provide an initial value for the 

subsequent iterative calculation. The numerical example results show that with the increases of the 

technological crossing angle, the interference limit line is close to the boundary line of the conjugate 

region of the worm pair, and the hazard of curvature interference evident increases. Generally, a smaller 

value of the technological crossing angle within its available value range can completely avoid the 

occurrence of the curvature interference. 
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1 Introduction 

Arc-toothed cylindrical worm drive, which is usually called Niemann worm drive, was proposed 

by Niemann and Heyer in 1953 and produced in series by the Flender Company in Germany, so it can 

be also called F-I worm [1]. 

Niemann worm with concave surface is formed by machining a cylindrical worm blank with a 

disc-shaped grinding wheel whose generating surface is toroidal [2, 3]. And the corresponding worm 

gear with convex surface is enveloped by the cylindrical hob whose generating surface is the same as 

the worm helicoid. Without doubt, Niemann worm has a series of excellent transmission characterizes, 

such as large bearing capacity and high transmission efficiency [4]. However, in the process of grinding 

the worm blank, the crossing angle between the axes of the grinding wheel and the worm blank is the 

leading angle of the worm on its pitch cylinder [5], which causes the instantaneous contact line between 

the surfaces of the grinding wheel and the worm is a space curve. And inevitably, it makes the worm 

helicoid very complicated. 

Based on this, in 1968, Litvin brought forward a new-type worm by putting the toroidal grinding 

wheel on a special position to machine the cylindrical worm blank, namely Litvin worm or F-II worm 

[1, 5]. In comparison with Niemann worm, Litvin worm has two main features during grinding the 
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worm blank, as follows: (i) the crossing angle is not the leading angle of the worm, it can be selected 

in a given range. (ii) the contact line between the surfaces of them is a planar curve, more exactly, it is 

a segment of circular arc in a section of the worm. Obviously, according to its formation mechanism, 

the worm helicoid machined in this way is easier.  

The curvature interference and addendum pointing are the most common phenomena in worm 

drive, especially for Litvin worm drive, the curvature interference is its inherent defect [5]. Determined 

by the forming principle of grinding the worm blank, the tooth profile of the worm changes 

continuously along its spiral surface when grinding the worm blank, and there is a tendency that the 

addendum changes to tip [6, 7]. Therefore，the worm addendum thickness should be considered first 

in the design. As for the so-called curvature interference refers to the curvature interference limit line, 

i.e., the envelope line of the instantaneous contact line family on the generated tooth surface, enters 

the meshing area of the worm gear tooth surface, which divides the tooth surface into working area 

and nonworking area [8]. Generally，there are two regions may occur interference on the tooth surface 

of the worm gear, one is the dedendum, the other is addendum. they are also called undercutting and 

top cutting [9]. Once the interference occurs, it will not only reduce the bending strength of the tooth 

root, but also affect the running stability of the worm pair [10]. 

In consideration of the importance of this problem, Litvin studied the curvature interference limit 

line with the precise method and the rough method based on the theories of axes and hub lines of 

meshing [5]. After that, many researchers [11-17] have studied the curvature interference 

characteristics of the worm drive and constantly explored the simpler method to solve the curvature 

interference limit line. Among them, the studies of Zhang and Zhao are more in-depth and specific. 

Taking Niemann worm as the research object, Zhang [11] elaborated the characteristics of curvature 

interference, especially the influences of the main parameters of the worm pair and the technological 

parameters of the worm on it. Zhao [13, 14], taking the conical worm as an example, explained the 

calculation method of the interference limit line, and then applied this method to calculate the 

interference limit line of Niemann worm [17]. 

Compared with Niemann worm, Litvin worm has obvious advantages in manufacturing. However, 

in many published literatures, there are few specific solution methods and detailed numerical 

simulation data for curvature interference and addendum sharpening of Litvin worm, and there is no 

clear explanation on how to avoid these problems. There is no doubt that these will hinder the 

popularization and application of this kind of worm. 

In this paper, based on differential geometry, the calculation formulae of the worm addendum 

thickness and curvature interference limit line are strictly derived. The tooth profile geometry of the 

worm in its axial section and the nonlinear equation with one variable for solving the curvature 

interference limit line are obtained. According to numerical simulation analysis, the influences of the 

technological crossing angle on worm addendum thickness and the positions of curvature interference 

limit line on the surfaces of the worm gear and worm are analyzed. Finally, according to its 

characteristics of the proposed worm, the recommended value range of the technological crossing 

angle to avoid interference and addendum sharpening is given. 

2 Geometry of generating surface of grinding wheel 

As shown in Fig. 1, a disk-shaped grinding wheel that can be used to grind the worm blank is 

rigidly connected to the right-handed coordinate system  d d d d d; , ,O i j k . Unit vector dk  lies along 

the central axis of the grinding wheel. The circular arc AB with radius   is the profile line of the 

grinding wheel in the axial section and its location of the origin gO  with respect to 
dO  is determined 

by 0R  and  . According to the sphere and circle vector function [18], the vector equation of the 

generating surface d  of the grinding wheel in coordinate system d  can be represented as  
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( )d d g g d d d d d dd
O O O P x y z= + = + +r i j k                     (1) 

where ( )d 0sin cosx R  = +  , ( )d 0sin siny R  = +  , d cosz  = +    and 0 g nsinR R  = −  . 

Here,   and   are the curvilinear coordinates of 
d , n  is profile angle of the grinding wheel at 

the point Q  and gR  is the nominal radius of the grinding wheel. 

By means of the definition [19], the unit normal vector of 
d  can be expressed as  

( )

( ) ( )

( ) ( )
( )

d dd d

d d d dd

d dd d

, sin cos sin sin cos
 

      

 

 


 
= = − = − − −

 


 

r r

n m i j k
r r

     (2) 

Obviously, its direction is from the space points to the internal entity of the grinding wheel, as 

shown in Fig. 1. 

Besides, based on two principal directions and a unit normal vector, a right-handed movable 

orthogonal frame  P 1 2; , ,P g g n  on 
d  at any point P  can be formed. From differential geometry 

[18], the first and second principal directions 1g  and 2g  of d  can be worked out on the grounds 

of Eqs. (1) and (2), the results in d  is  

( )

d d

1 d d

d d

( )

( )
( )

 





= =




r

g g
r

, ( )2 d d 1 d d( ) ( ) , =  =g n g n                (3) 

According to Eq. (3), the first and second principal directions of 
d  are  -line and  -line directions, 

respectively. Thus, the parameter curve net of d  is also curvature line net. 

Accordingly, the two principal curvatures along the principal directions of 1 d( )g   and 2 d( )g  

can be obtained, respectively, as below 

1

0

sin

sin
k

R



 
=

+
, 2

1
k


=                           (4) 
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Fig.1 Generating surface of grinding wheel in coordinate system a  

3 Mathematical modeling of cutting meshing of Litvin worm 

3.1 Relative motion of grinding wheel and worm blank 

As shown in Fig. 2(a), during grinding the worm blank, the static coordinate systems d  with 

red dotted line and o1  are used to indicate the initial positions of the grinding wheel and the worm 

blank, respectively. The unit vector o1k  lies along the axis of the worm blank and vectors di  and o1i  

lie along the common perpendicular of the axes between them. In addition, the rotating coordinate 

system 1  is rigidly fixed with the worm blank to denote its current position. 

During the generating process, the grinding wheel performs translational motion along the axis 

o1k , while the worm blank performs rotational motion around its axis o1k . At the present position 

shown in Fig. 2(a), the rotation angle of the worm blank is  , in the meantime, because the worm is 

right-handed, the grinding wheel moves p  along the negative direction of the axis o1k . Herein, p 

is the screw parameter of the screw motion of the worm. 

As shown in Fig. 2(b), at the initial moment, the shortest distance between the axes of the grinding 

wheel and the worm blank is technological center distance da  during the cutting engagement, and it 

can be expressed as 
d g 1 2a R d= +  . Here, 1d   is the diameter of the worm on its pitch cylinder. 

Besides, the included angle   between the axes of dk  and o1k  is so-called technological crossing 

angle. The origin 1O  is located at the middle of the worm thread length. 
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(a) Coordinate system of relative motion between grinding wheel and worm blank 

 

 

Fig. 2 (b) Position relationship of grinding wheel machining worm blank 

Based on the above analysis, it can be learned that the angular velocity of the grinding wheel is 

zero, that is ( )d d
0= . So, it is reasonable to assume that the angular velocity of the worm blank is 1 

rad/s. In this case, the angular velocity vector of the worm blank in coordinate system d  can be 

expressed as ( )1 d dd
sin cos=  +  j k . Correspondingly, the relative angular velocity vector between 

the grinding wheel and the worm blank can be worked out as ( )d1 d dd
sin cos= −  −  j k . Moreover, 
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from Fig. 2(a), it can be seen that ( )1 d d d d d
d

sin cosO O a p p = −  − i j k . Based on this, the relative 

velocity vector between them can be obtained as below 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1 d

d
d1 d1 d 1 1 d d1 d d1 d d1 dd d dd d

d

d

x y z
O O

O O V V V


=  −  + = + +V r i j k        (5) 

where 
( )

d1 d dcos sin
x

V y z=  −  , 
( ) ( )d1 d d cos sin
y

V x a p= − +  −  , 
( ) ( )d1 d d sin cos
z

V x a p= +  −  . 

In accordance with the definition [15], the meshing function of the cutting engagement for Litvin 

worm can be acquired from Eqs. (2) and (5) as 

( ) ( ) ( )d d1 d dd d
, sin cosA B    = = −n V                   (6) 

where ( )d dsin cos sin sin cosA p a  =  +  +    and d 0 dsin cos sin cosB R a p=  +  −  . The 

coefficient dA  of meshing function contains an unknown  , and it is the installing parameter   of 

the grinding wheel, which needs to be determined. 

In view of the meshing feature of Litvin worm, the instantaneous contact line on the grinding 

wheel during the cutting engagement is a planar curve. From differential geometry, it can be known 

that torsion describes the degree of the curve deviating from the plane curve and reflects the degree of 

curve distortion [18]. Therefore, the necessary and sufficient condition for a curve to be a planar curve 

is that its torsion is zero. Considering the gear meshing theory and from Eqs. (1) and (6), the equation 

of the instantaneous contact line can be represented as 

( )( ) ( ) ( ) ( )d d d d d d dd
, , ,x y z      = + +r i j k , ( )d , 0   =            (7) 

where   and   are unknown parameters. 

From Eq. (7), it can be obtained that the torsion of the instantaneous contact line is 

( ) ( ) ( )2 3

d d dd d d

2 3

d d d
0

d d d  

 
= 

  

， ，
r r r

. In the process of solving the partial derivative of ( )d , r , it can be 

found that parameters   and   have no functional relationship. And the value of   is a constant 

value d
0

0

cot
arccos

a p

R
 

− 
= − . Based on this, the value range of the technological crossing angle 

  can be obtained as  

d 1 n

arctan arctan
2+ sin

p p

a d  
                         (8) 

It is indicated that the value of   can be selected in a certain range, which is beneficial to improve 

the meshing performance of the worm pair. Besides, substituting the expression 0  into d 0A = , the 

parameter value    of the installing position of the grinding wheel can be determined, and the 

outcome is ( )0 dtan cota p = −  + . 

3.2 Equation of worm helicoid and cutting meshing characteristic parameters 

According to the relative motion relationship between the grinding wheel and the worm blank 

shown in Fig. 2(a), from Eqs. (1) and (2), the equation of the meshing surface o1  of the worm and 

its unit normal vector in o1  can be represented as 

( ) ( ) ( ) ( ) ( )1 o1 d 1 d d 1 d o1 o1 o1 o1 o1 o1o1 d do1 o1

1 0 0

, 0 cos sin

0 sin cos

R O O O O x y z

 
  =  + =  −  + = + +   
   

r i r r i j k   (9) 
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( ) ( ) ( )o1 x o1 y o1 z o1o1 d d

1 0 0

, 0 cos sin +

0 sin cos

R n n n

 
  =  =  −  = +   
   

n i n n i j k            (10) 

where o1 d dx x a= + , o1 d dcos siny y z=  −  , o1 d dsin cosz y z p=  +  −  and x 0cos sinn  = − ,  

y 0cos sin sin sin cosn   = −  +   , z 0sin sin sin cos cosn   = −  −   . The symbol o1,R   i  

denotes the rotation transformation matrices. 

Based on Eq. (9) and coordinate transformation, the equation of the worm helicoid 1  can be 

obtained as  

( ) ( ) ( )1 1 1 1 1 1 1 1 o1 11 o1 o1

cos sin 0

, sin cos 0

0 0 1

R x y z

 

  

 
  = − = − = + +   
  

r k r r i j k           (11) 

where 1 o1 o1cos sinx x y = + , 1 o1 o1sin cosy x y = − + . And here,   and   are the curvilinear 

coordinates of 1 . 

By definition [19], the meshing limit function of the cutting meshing for Litvin worm can be 

acquired from Eq. (6) as 

d
d 0







= =


                              (12) 

Due to d 0 = , the function d 0 =  is automatically satisfied. Therefore, the meshing limit line and 

the instantaneous contact line are coincident during the cutting engagement. 

On the basis of the meshing theory of gears [19], the coefficients of normal vector dN  of the 

instantaneous contact line during the cutting engagement can be worked out as 

( ) ( ) ( ) ( ) ( ) 1
d 1 d1 1 d1 2 2 1d d dd

0

1
sin cos

z

k p
k g k 


= + = − −


V g g   and ( ) ( ) ( ) ( )d 2 d1 2 d1 1d d dd

0k = − =V g g  , 

respectively. Therefore, the expression of ( )d
d

N  in the right-hand orthogonal frame  P 1 2; , ,P g g n  

can be written as  

( ) ( ) ( ) ( ) ( ) ( )1
d d 1 d 2 d 1 2 1 1d d d dd

0

1
sin cos

z

k p
g k   



 
= + = = − − 

 
N g g g g           (13) 

where 2 0sin sin cos cos sinzg   =  −   and its physical meaning will be introduced later. Besides, 

the expression shows that the normal vector dN  of the instantaneous contact line is collinear with 

the first principal direction ( )1 d
g  of the generating surface of the grinding wheel. 

By definition [19] and Eqs. (3), (5) and (13), the curvature interference limit function of cutting 

engagement of Litvin worm can be worked out as  

( ) ( ) ( ) ( ) 1
d d d1 1 2 1 2dd

0 0

1
sin cos sin cos

z z

k p p
g k g    

 

   
= = − − −  

    
V g         (14) 

On the grounds of the knowledge of differential geometry, the induced normal curvatures of the 

generating surface d   and worm helicoid 1  along the directions of ( )1 d
g   and ( )2 d

g  , and the 

induced geodesic torsion 
( )d1

1   along ( )1 d
g   are: ( )

( ) ( ) ( ) ( )
2

2
2

1 dd 1 d 1d1 d d d d
1

d d d

k
 

  

      = = =
g N g g

 ,
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( )
( ) ( ) ( ) ( )

2
2

2 dd 2 d 1d1 d d d

2

d d

0k


 

      = = =
g N g g

  and ( )d1 d d
1

d

0
 




= =  , respectively. Therefore, two 

normal curvatures 
( )1

1k  and 
( )1

2k  in the worm helicoid along the ( )1 d
g  and ( )2 d

g , respectively, and 

the geodesic torsion ( )1

1  along ( )1 d
g  can be obtained as follows 

( ) ( )1 d1 2 0
1 1 1

sin cosz

k

g
k k k

D


= − = , 

( ) ( )1 d1

2 2 2

1
k k k


= − = , ( ) ( )1 d

1 1 0 = =           (15) 

where 2 0sin cosk zD g p =  − . Here, 
( )1

1 0 =  indicates that the direction it is in is the principal 

direction of the worm helicoid. 

4 Mathematical modeling of working meshing of worm pair 

4.1 Relative motion of worm pair and equation of tooth surface 

The relative motion relationship of the worm and the worm gear is shown in Fig. 3. Similar to the 

coordinate system o1  and 1  of the worm, the static coordinate system  o2 2 o2 o2 o2; , ,O i j k  is used 

to indicate the initial position of the worm gear and the rotating coordinate system  2 2 2 2 2; , ,O i j k  is 

rigidly connect to the worm gear to express its present position. The origin 
2O  is situated in the middle 

of the tooth width of the worm gear. Unit vector o2k  is consistent with the axis of the worm gear. In 

this paper, the axes of the worm and the worm gear are orthogonal and unit vectors o1i  and o2i  are 

collinear along the direction of the common perpendicular between the axes o1k   and o2k . The 

distance between the common perpendicular of the worm pair is 2 1O O a= . Herein, the symbol a  

denotes the center distance of the worm pair. 

In the process of meshing of the worm pair, the worm rotates the angle 1  around the axis o1k  

at an angle velocity 1ω  shown in Fig. 3 and the worm gear rotates the angle 2  around the axis o2k  

at an angle velocity 2ω . Here, the relationship between the rotation angles 1  and 2  is 

2 1 12/ i = , and 12i  denotes the transmission ratio of the worm pair. 

 
Fig. 3 Coordinate system for studying meshing of worm pair 
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Based on the above analysis, when the worm rotates around its axis o1k , a surface family  1  

will come into being from its helicoid in coordinate system o1 . By means of Eqs. (9) and (10), the 

equation of  1  and its unit normal vector can be represented as 

( )
( ) ( )
( ) ( ) ( )

1 1

* * *

1 1 1 1 o1 o1 o1 o1 o1 o1o1o1

cos sin 0

sin cos 0 +

0 0 1

x y z

   

   

− − − 
 

= − − = + 
 
 

r r i j k              (16) 

( )
( ) ( )
( ) ( ) ( )

1 1

*

1 1 ox o1 oy o1 z o1o1o1

cos sin 0

sin cos 0

0 0 1

n n n

   

   

− − − 
 

= − − = + + 
 
 

n n i j k              (17) 

where ( ) ( )*

o1 o1 1 o1 1cos sinx x y   = − − − , ( ) ( )*

o1 o1 1 o1 1sin cosy x y   = − + −  and  

( ) ( )ox x 1 y 1cos sinn n n   = − − − , ( ) ( )oy x 1 y 1sin cosn n n   = − + − . 

Without loss of generality, it is possible to suppose that the worm rotates around its axis with an 

angle velocity 1 1 rad / s=ω , and the angle velocity of the worm gear is 2 121  rad / si=ω  on the basis 

of their transmission ratio. According to the relative motion relationship shown in Fig. 3, the angle 

velocity vectors of the worm and the worm gear are ( )1 o1o1
= k  and ( )2 o1o1

12

1

i
= − j   in o1  , 

respectively. Hence, the relative angle velocity vector between them in o1  is  

( ) ( ) ( )12 1 2 o1 o1o1 o1 o1
12

1

i
= − = +   j k                      (18) 

Due to ( )2 1 o1
o1

O O a= − i , from Eqs. (16) and (18), the relative velocity vector between the worm 

and the worm gear can be figured out in o1 , the result is  

( ) ( ) ( ) ( ) ( ) ( ) ( )* * * *

12 12 1 2 2 1 o1 12 o1 o1 o1 o1 o1 o1o1 o1o1o1 o1
12 12

1 1
O O z i y x x a

i i
=  −  = − + − −V r i j k      (19) 

In virtue of the Eqs. (17) and (19), the meshing function of working engagement for Litvin worm 

pair can be obtained as  

( ) ( ) ( ) ( ) ( )*

1 12 1 1o1 o1
12

1
, , sin cosA B C

i
        = = = − + − +  n V        (20) 

where 
z o1 y o1A n y n z= − , x o1 z o1B n z n x= − , ( )12 zC a i p n= − . 

With the aid of Eqs. (16) and (20), the equation of the tooth surface of the worm gear can be 

acquired as below 

( ) ( ) ( ) 
( )

*1
2 2 o2 1 2 1 2 2 2 2 2 22 o1 o2

12

1

, , 90

, , 0

R R O O x y z
i



   

  
 = − −  + = + +    

  
 =

r k i r i j k
      (21) 

where ( )* 1 1
2 o1 o1

12 12

cos sinx x a z
i i

 
= − + , ( )* 1 1

2 o1 o1

12 12

sin cosy x a z
i i

 
= − − +  and *

2 o1z y= − . Herein, 
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1 1

12 12

1 1 1
2

12 12 12

cos sin 0

, sin cos 0

0 0 1

i i

R
i i i

 

  

 
 
 

   
− = −   

   
 
 
 

k  and o2

1 0 0

, 90 0 0 1

0 1 0

R

 
  −  =   
 − 

i . 

4.2 Function of interference limit line and its characteristics parameters  

From Eq. (20), the meshing limit function of working engagement for Litvin worm pair can be 

obtained as 

( ) ( )
1 1 1

1 12

1
cos sinA B

i



    




= = − − −  

                  (22) 

In accordance with Eq. (3), the two base vectors 
( )1

1g  and 
( )1

2g  in coordinate system o1  can 

be represented as  
( ) ( )1

1 o1 1 o1 1 1 o1 1 o1 1 o1d
, , +x y zR R g g g    = −  = +   g k i g i j k  

( ) ( )1

2 o1 1 o1 2 2 o1 2 o1 2 o1d
, , +x y zR R g g g    = −  = +   g k i g i j k               (23) 

where ( ) ( )1 0 1 0 1sin cos cos cos sinxg      = − − −  − , 

( ) ( )1 0 1 0 1sin sin cos cos cosyg      = − − +  − , 1 0sin coszg =  , 

( ) ( ) ( )2 0 1 0 1cos cos cos cos sin cos sin sin sinxg         = − −  +  − , 

( ) ( ) ( )2 0 1 0 1cos cos sin cos sin cos sin sin cosyg         = − +  +  − , 

2 0sin sin cos cos sinzg   =  −  . Here, 
( )1

1g  and 
( )1

2g  are the two principal directions of the worm 

helicoid. 

The normal vector N   of the instantaneous contact line of the working engagement can be 

expressed by the base vectors 
( )1

1g  and 
( )1

2g  in o1 , the outcome is  

( ) ( ) ( )1 1

1 1 2 2
o1

N N= +N g g                         (24) 

Based on Eqs. (15), (18), (19) and (23), the coefficients 
1N  and 

2N  of unit normal vector of 

the instantaneous contact line can be acquired as  
( ) ( ) ( ) ( ) ( )1 1 1

1 1 12 1 12 2o1o1
N k= +V g g , ( ) ( ) ( ) ( ) ( )1 1 1

2 2 12 2 12 1o1o1
N k= −V g g        (25) 

where ( ) ( ) ( ) ( )1 * * *1 0
12 1 o1 12 o1 1 o1 o1

o1
12 12

sin cosx
y

g
z i y g x a x

i i


= − + + −V g , ( ) ( )1 2

12 2 2o1
12

y

z

g
g

i
= +g , 

( ) ( ) ( ) ( )1 * * *2 2
12 2 o1 12 o1 2 o1 o1

o1
12 12

x z
y

g g
z i y g x a x

i i
= − + + −V g , and ( ) ( )1 1

12 1 0o1
12

sin cos
yg

i
= + g . 

From Eqs. (22) and (25), the curvature interference limit function of the working engagement for 

Litvin worm pair can be determined as below 

( ) ( ) ( ) ( )1 1

1 12 1 2 12 2 φ1
o1 o1

N N = + +V g V g                  (26) 

By projecting the vector ( )12
o1

V  into the principal frame 
( ) ( ) ( ) 1 1 *

1 2 o1
, ,g g n  of worm helicoid, 

the vector ( )12
o1

V  can be expressed as ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1

12 12 1 1 12 2 2
o1 o1 o1

   = +
   

V V g g V g g . Therefore, the 
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relationship among ( ) ( )12 12
o1 o1

V V , ( ) ( )
2

1

12 1
o1

 
 

V g  and ( ) ( )
2

1

12 2
o1

 
 

V g  can be expressed as below  

( ) ( ) ( ) ( ) ( ) ( )
2 2

1 1

12 12 12 1 12 2
o1 o1 o1 o1

   = +
   

V V V g V g               (27) 

By means of Eqs. (25), (27) and the expression ( )
1

*

o1 z o1 oy

12

1
y n z n

i
 = −  of the meshing limit 

function, the curvature interference limit function,  , can be written as 

( ) ( )( ) ( ) ( ) ( ) ( )
2 2

1 1 1 1

1 2 12 1 2 12 z oy o12o1 o1
12 12

1 1
k k k n n z

i i


 
 = − + + −  

 
V g V  

( )
*

o1
oy ox x o1 y o12 2 2

12 12 12

1
1

y a
n n n x n y

i i i

 
− − + + + 

 
                    (28) 

5 Relationship between worm addendum thickness and technological crossing angle 

In order to reveal the general rule of worm addendum sharpening, it is necessary to calculate the 

tooth profile in the axial section of the worm accurately and obtain its addendum thickness. 

5.1 Design of main parameters 

In the design of parameters, considering the problem of the worm addendum sharpening, the 

worm addendum height is selected as 0.8m. Here, m is module. Besides, the technological crossing 

angle is selected as the maximum value 9.79  based on Eq. (8). The main design parameters of the 

worm pair and the technological parameters of the worm during the cutting engagement are provided 

in Tables 1 and 2. 

Table 1. Main design parameters of worm pair 

Nomenclature Symbol and formula Value 

Center distance a  200mm 

Transmission ratio 12i  20 

Numbers of worm thread 1Z  2 

Pitch circle diameter of worm 1d  64mm 

Teeth number of worm gear 2 12 1Z i Z=  40 

Module ( ) 21.4 1.7 /m a Z  8mm 

Modification coefficient of worm gear ( )1 2/ 2a m d m Z = − +  1 

Height of addendum of worm a1 0.8h m=  6.4mm 

Tip circle radius of worm  a1 1 / 2 0.8r d m= +  38.4mm 

Root circle radius of worm  f1 1 / 2 1.16r d m= −  21.12mm 

Tooth thickness of the worm on its indexing circle 1 0.4s m=  10.0531mm 

Guide angle of worm indexing cylinder 1 1arctan /mZ d =  14.0362° 

Tooth width of worm w 23 1L m Z +  153.675mm 

Throat circle radius of worm gear  ( )a2 2 / 2 1r Z m= + +  176mm 

Root circus radius of worm gear ( )f2 2 / 2 1.16r Z m= + −  158.72mm 

Outer circle radius of worm gear ( )e2 2 / 2 1.4r Z m= + +  179.2mm 
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Table 2. Processing parameters of worm  

Nomenclature Symbol and formula Value 

Nominal radius of grinding wheel gR  120mm 

Operating center distance d g 1 2a R d= +  152mm 

Shape angle of grinding wheel n  21° 

Radius of arc profile 5m =  40mm 

Technological crossing angle   9.79° 

Parameter of grinding wheel 
d

0

0

cot
arccos

a p

R
 

− 
= −  178.6654° 

Installing position parameter ( )0 dtan cota p = −  +  20.6807mm 

 

5.2 Tooth profile geometry of worm and calculation of worm addendum thickness 

During grinding the worm blank, the rotating coordinate system  1 1 1 1 1; , ,O i j k  connected to the 

worm blank, and unit vectors 1i   and 1j   on the axial section of the worm are not located in the 

horizontal and vertical positions. For observing the worm tooth profile conveniently, it is essential to 

rotate the coordinate system 1  around the axis 1k  with an angle   to get a new coordinate system 

 1; , ,t t t tO i j k . As shown in Fig. 4, in coordinate system t , the axes ti  and tj  are situated in the 

horizontal and vertical positions, respectively. In this case, by virtue of Eq. (11) and coordinate 

transformation, the equation of the tooth profile of the worm can be represented in t  as 

( )

( ) ( )1 1 1 o1

, , 0

,

t

t t t tt

y

R x z

  

 

 =


 = − = +  
r k r i k

                    (29) 

where ( ) ( )o1 o1cos sintx x y   = − − − , ( ) ( )o1 o1sin costy x y   = − + − , o1tz z= . 

   
Fig. 4 Rotational coordinate system of tooth profile        Fig. 5 Worm tooth profile on the axial section 

The tooth profile of the worm on the axial section  1; ,t tO i k  is shown in Fig. 5, the coordinate 

axes tx  and tz  are the components of unit vectors ti  and tk  respectively. In addition, the tooth 

profile is symmetrical about tx   axis. In the light of Fig. 5, the tooth profile of the worm can be 

determined by taking the following steps: firstly, the coordinates of three key points from 1T  to 5T  
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on the tooth profile in t  are obtained. And then three points are fitted into a curve by interpolation 

method. Finally, according to the symmetry of the tooth profile, its complete shape on the axial section 

of the worm can be acquired. It can be seen from above that the most important step is the first. Now, 

the solving method of the key points will be introduced. 

The first point to be solved is 3T . Because the point 3T  located on the indexing circle of the 

worm, the distance from 3T   to 3T    is the tooth thickness 1s   of the worm on its indexing circle. 

Therefore, its abscissa and ordinate are 1 / 2tz s= −   and 1 / 2tx d=  , respectively. Based on the 

coordinate relationship, the following equations can be obtained at the point 3T  as  

( ) 1, , / 2tx d   = , ( ), , 0ty    = , ( ) 1, / 2tz s  = −                  (30) 

There are three unknowns  ,  and   in Eq. (30). 

From the first two expressions of Eq. (30) and expressions of coordinate component of Eq. (1), a 

nonlinear equation with one variable   can be acquired as  

( ) ( ) ( ) ( )
3

2
2 2

1
0 0 d 0 0sin cos sin sin cos cos sin 0

4
T

d
f R a R        = + + + +  − +   − =        (31) 

With the aid of the third expression of Eq. (30), it is possible to have 

( )
( ) ( )0 0 1sin sin sin cos cos / 2R s

p

    
 

+  + +   +
=            (32) 

which indicates that parameter   is a single parameter function regarding  . 

Based on the first two expressions of Eq. (30), the expressions about  −  can be obtained as 

( )
( )

o1 1

2 2

o1 o1

sin
2

y d

x y
 − = −

+
, ( )

( )
o1 1

2 2

o1 o1

cos
2

x d

x y
 − =

+
                 (33) 

From Eqs. (31)-(33), the value of    is obtained, the parameter values of    and    can be 

solved accordingly. Thus, the point 3T  can be determined by means of given parameters in Tables 1 

and 2, and its parameter values are listed in Table 3. 

The point 1T  is located on the worm addendum, as shown in Fig.5. Thus, its ordinate tx  is a1r , 

where a1r  is the radius of the worm on its addendum circle. Besides, the value of   has been worked 

out in the process of solving the point 3T . Based on this, the expressions of the coordinate component 

of the point 1T  can be written as  

( ) a1,tx r  = , ( ), 0ty   =                        (34) 

There are two unknowns   and   in Eq. (34). 

From Eq. (34) and expressions of coordinate component of Eq. (1), a nonlinear equation with one 

variable   can be acquired as 

( ) ( ) ( ) ( )
3

2 2 2

0 0 d 0 0 a1sin cos sin sin cos cos sin 0Tf R a R r        = + + + +  − +   − =        (35) 

Eq. (34) leads up to  

( ) o1 a1

2 2

o1 o1

sin
y r

x y
 − = −

+
, ( ) o1 a1

2 2

o1 o1

cos
x r

x y
 − =

+
               (36) 

It is similar to solving the point 3T , and its parameter values are provided in Table 3.  

In the process of solving the point 5T , we only need to replace 
a1r  with 

f 1r  in Eqs. (34)- (36) 

and other procedures are the same as solving the point 1T . Thus, the unnecessary details will not be 

given again. In addition, in order to increase the accuracy of the worm profile, the points 2T  and 4T  
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are added, and their ordinates are a1 1 1( 2) / 2 2r d d− +  and 1 f1 f1( 2 ) / 2d r r− + , respectively. Their 

parameter values are also supplied in Table 3. Eventually, the image of the tooth profile in the axial 

section of the worm is described by interpolation method, as shown in Fig. 6. In this image, the worm 

addendum thickness is 
( )
o12 6.51mm
a

as z= − =  , 
( )
o1

a
z  is the abscissa of the point 1T . 

 
Fig. 6 Tooth profile on axial section of worm 

 

Table 3 Parameter values of key points on tooth profile curve 

459.3632 =   

Tooth shape point /   /   / mmtx  / mmtz  

1T  12.5796 448.0473 38.4 -3.2562 

2T  17.3593 447.3712 35.2 -3.9981 

3T  22.2591 446.6492 32 -5.0265 

4T  31.0049 445.3028 26.56 -7.5114 

5T  40.5865 443.8074 21.12 -11.1323 

 

According to the above analysis, the calculation formula of the worm addendum thickness can be 

summarized as follows  

( ) ( ) ( ) ( )o1 0 0, 2 2 sin sin sin cos cos
a

as z p R       = − = − + − +           (37) 

There are two unknowns   and   in this formula, both of which are the parameters of the worm 

addendum. Before calculating these two unknowns, the rotating angle   of the worm around its axis 

needs to be determined first by means of Eqs. (31)-(33), and then the values   and   are obtained 

from Eqs. (35) and (36). Based on this, the worm addendum thickness is gotten. 

5.3 Determination of minimum value of technological crossing angle 

In section 3.1, according to the fact that the instantaneous contact line is a planar curve on the 

grinding wheel during the cutting engagement, the value range of the technological crossing angle   

is determined. Nevertheless, in the process of actual production and manufacture, if the value of   

is selected too small, it will cause the worm addendum sharpening, which causes the bearing capacity 

of the worm reduced and even can’t work normally. In this section, the minimum value of   

satisfying the worm addendum thickness will be obtained. 

According to Eq. (8) and the parameters listed in Tables 1 and 2, the value range of   can be 

calculated as  1.78 ,9.79  . In order to directly observe the change of the addendum thickness, it is 

advisable to select some values of   in its given range to draw the profile images on the axial section 

of the worm, as shown in Fig. 7. 

/ mmtx

/ mmtz
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(a). 9.79 =  , 6.51mmas =        (b). 9.19 =  , 4.67mmas =         (c). 8.39 =  , 0.71mmas =  

Fig. 7 Relationship between as  and   

It can be clearly seen from Fig.7 (a)– (c) that with the decrease of the technological crossing angle 

 , the worm addendum thickness as  also decreases gradually until the worm addendum becomes 

sharp. Generally, as  should not less than 0.35m  [7]. In Fig. 7 (c), 0.35as m＜  is not meet thickness 

requirement. Therefore, the minimum value of  , min , must be greater than 8.39 . To obtain min , 

a series of as  can be obtained by taking different values of   based on the above calculation method, 

the data is shown in Table 4. 

Table 4 Data of technological crossing angle and worm addendum thickness 

Technological crossing angle /   9.79 9.59 9.39 9.19 8.99 8.79 8.59 8.39 

Worm addendum thickness / mmas  6.51 5.96 5.35 4.67 3.9 3.0 1.97 0.71 

 

Based on the data in Table 4, the method of polynomial interpolation fitting can be used to get the 

fitting curve of   and /as m , as shown in Fig. 8. The blue line is the fitting curve of   and /as m , 

and the red line parallel to the abscissa axis is the dividing line of the addendum thickness coefficient. 

The upper side of the red line is the value of   which satisfies the condition of the tooth thickness. It 

can be seen that the actual value range of   is smaller compared with the range calculated by Eq. (8). 

 

Fig. 8 Fitting curve of /as m −  ( 12 1200mm, 20, 2a i Z=  =  = ) 

Besides, the fitting model of the blue curve can be represented as 
3 2/ 0.07457 2.209 22.1557 74.3408as m =  −  + −  . The main evaluation parameters [20] of the 

fitting model are as follows: SSE: 67.71444*10− , R-square: 1. Herein, the closer the value of SSE is 

to zero, the better the model selection and fitting, and the more successful the data prediction. And the 

closer the value of R-square is to 1, the stronger the explanatory ability of the   to /as m  is. The 

results of these parameters show that the model is excellent for data fitting. According to this model, 

it can be calculated that when the addendum thickness coefficient of the worm is 0.35, the value of the 

/as m

/ 

/ 0.35as m =

/ mmtx

/ mmtz

/ mmtx

/ mmtz

/ mmtx

/ mmtz
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technological crossing angle is 8.75 , which is the minimum value of   satisfying the addendum 

thickness condition. Thus, the feasible value range of   is  8.75 ,9.79   in this example. 

6 Computation on typical points of curvature interference limit line 

To determining the key points of the curvature interference limit line, it can be assumed that the 

ordinate of the typical point is L  along the axis of the worm gear tooth surface, that is 
2z L= . 

According to Eqs. (20), (21) and (28), a set of non-linear equations for solving the curvature 

interference limit line can be acquired as  

( ) *

2 1 o1, ,z y L   = − = , ( )1, , 0    = , ( )1, , 0    =                (38) 

On the surface, the system of nonlinear Eqs (38) contains three independent unknowns  ,   

and 1  . However, by further analyzing the characteristics of the equations, it can be found that 

parameter 1  only exists in the trigonometric function of the D-value between 1  and  , and a 

single parameter   only exists in the expression of o1z . Therefore, for the convenience of calculation, 

 , 1 −  and o1z  can be regarded as the new unknowns of the system of equations (38). From the 

first two expressions of System (38), two equations can be expressed as  

( ) ( )1 1sin cosA B C   − + − = −  , ( ) ( )o1 1 o1 1sin cosx y L    − − − − =  . By means of Cramer's 

law and substituting the expressions of A , B  and C  into the first expression, it is possible to have 

the expressions of trigonometric function of 1 −  as follows 

( )
( ) ( )

z o1 o1 x o1
1 2 2

x o1 y o1 o1 z o1 o1

sin
L n x Cy L n z

n x n y z n x y
   + −

− =
+ − +

, ( )
( ) ( )

z o1 o1 y o1

1 2 2

x o1 y o1 o1 z o1 o1

cos
L n y Cx L n z

n x n y z n x y
 

 − −
− =

+ − +
 (39) 

Equation (39) indicates that the trigonometric function value of 1 −  can be represented by 

parameters o1z   and   . According to ( ) ( )2 2

1 1sin cos 1   − + − =  , a quadratic equation with 

respect to o1z  from Eq. (39) can be obtained as 

2

o1 z o12 0z z za z n b z c+ + =                          (40) 

where ( ) ( )
2

2 2 2

x y x o1 y o1za L n n n x n y= + − +  , ( )x o1 y o1z zb n x n y pL C=  + −  , ( )( )2 2 2 2

o1 o1 zz zc x y C n= + −   

and 2 2 2

o1 o1z x y L = + − . 

Eq. (40) leads up to 

( )
z

o1

i

z z

z

A n b
z

a

−
= , 1,2i =                         (41) 

where ( ) ( ) ( ) 2

x o1 y o1 z1
ii

z zA C n x n y pL n= − + −   , 1,2i =  . It indicates that parameter o1z   is a single 

parameter function with regard to  . 

Substituting Eq. (41) into Eq. (39), the relationship between parameter    and trigonometric 

function about 1 −  can be obtained as below 

( )1sin N

T

S

D
 − = , ( )1cos N

T

C

D
 − =                       (42) 

where ( ) ( )( ) ( )2 2

x o1 y o1 z z o1 o1= + − − +
i

T z z zD n x n y A n b n a x y  , ( )( )z o1 o1 x z = + − −
i

N z z z zS L n a x Ca y L n A n b  , 

( )( )z o1 o1 y z = − − −
i

N z z z zC L n a y Ca x L n A n b  . Here, the values of symbols 
TD  , 

NS   and 
NC   are 

determined by the unique parameter  . 
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In the light of Eqs. (41) and (42), the conclusion can be gained that parameter o1z   and 

trigonometric function of 1 −  can be expressed by the one parameter  . Next, the parameters o1z  

and trigonometric function about 1 −  will be replaced by parameter   in the third equation of 

System (38) and the denominator containing parameter   will be eliminated to avoid the influence 

of asymptote. It can be seen from Eqs. (17) and (25) that the symbols ( ) ( )1

12 1
o1

V g , ( )
2

12
o1

V , oxn  and 

oyn  all contain the trigonometric function about 1 − . Among them, the expressions of oxn  and 

oyn  are relatively simple, and they can be expressed directly by taking Eq (42) into them. The results 

are  

x y

ox

N N

T

n C n S
n

D

−
= , 

x y

oy

N N

T

n S n C
n

D

+
=                     (43) 

In the process of calculating the point product of ( )12
o1

V  and 
( )1

1g , if their expressions adopt the 

final outcomes of Eqs. (19) and (23), the calculation process will be very complex and the obtained 

results cannot be simplified. Therefore, the expressions of vectors ( )12
o1

V  and 
( )1

1g  are selected as 

( ) ( ) ( ) ( )*

12 1 2 2 1o1 o1o1 o1
O O − r    and ( )o1 1 o1 1 d

, ,R R    −    k i g   respectively. Based on the 

knowledge of vector rotation [19], the expression of ( ) ( )1

12 1
o1

V g  can be represented as  

( ) ( ) ( ) ( )1 * * *1 0
12 1 o1 12 o1 1 o1 o1

o1
12 12

sin cosx
y

g
z i y g x a x

i i


= − + + −V g            (44) 

According to Eq. (19), it is possible to have 

( ) ( ) ( )
2 2 2

* * 2 *

12 o1 12 o1 o1 o12 2o1
12 12

1 1
z i y x x a

i i
= − + + −V                  (45) 

Obviously, Eqs. (44) and (45) contain parameter o1z  and trigonometric function of 1 − . Thus, 

substituting Eqs. (41), (42) and the expression *

o1y L− =  into Eqs. (44) and (45), the expressions of 

( ) ( )1

12 1
o1

V g  and ( )
2

12
o1

V  can be obtained as 

( ) ( )1

12 1 1
o1

12

1

z T

V
i a D

=V g , ( )
2

12 2 2o1
12

1

z T

V
i a D

=V                    (46) 

where ( ) ( )( )( )1 0 o1 o1 z 0 0sin cos cos cos sin
i

z N N z z N NV a y S x C A n b S C  =  − − −  +  

( )12 o1 0 o1 0 0cos cos sin sin cos  +  + +   z Ta D i x y a  

( )( )( ) ( ) ( )2 2 2 2 2 2

z 12 z o1 o1 12 122 2 1 
 = − − − − +  + + + −
 

i

T z z z z z N N z T z z z TV D A n b i L a n b aa x C y S a D i i L a a c D  

Eventually, substituting Eqs. (41), (43) and (46) into Eq. (28), a nonlinear equation with one 

variable   can be obtained as 

( ) ( ) ( )( ) ( )2

2 0 1 z z 12 x ysin cos 2
i

z k k T k z T z z T N Nf g D V D D V D a D A n b n D i n S n C   
 =  − + + − − +
 

 

( ) ( ) ( )( ) 2 2

z x y x y 12 x o1 y o11 0k T N N N N TD a D L n S n C a n C n S D i n x n y 
 + + − − + + + =
  , 1,2i =   (47) 

In theory, given the value of L , the corresponding value of   can be obtained from Eq. (47). 

In fact, Eq. (47) is intricate, and it’s hard to solve the unknown   directly. Here, the method of the 

geometric drawing can be used to judge the existence of the solution of the equation. At the same time, 

according to the function image, an excellent initial value can be provided for iteration calculation 
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later. After obtaining the value of  , other unknowns o1z  and 1 −  can also be solved according 

to Eqs. (41) and (42). Then, the position of the typical point can be determined. By changing the value 

of L  , a series of typical points can be attained and the curvature interference limit line can be 

acquired by the interpolation method. 

7 Analysis and discussion of numerical examples 

7.1 Arrangement examples 

It can be known from section 5.3 that the feasible value range of the technological crossing angle 

is  8.75 ,9.79  . In this section, the data in Tables 1 and 2 are taken as example 1A  to demonstrate 

the computing method of the curvature interference limit line. In example 2A  , 9 =   , 

280.4172mm =  , 0 163.8373 =   , and other parameters are the same as those in Tables 1 and 2. 

Compared with examples 1A  and 2A , the influence of   on interference limit line can be analyzed. 

In addition, in order to fully understand the curvature interference characteristics of Litvin worm 

and avoid the chance of a single example. A new example is added. The main parameters are as follows: 

120mma =  , 12 15.5i =  , 1 2Z =  , 1 45mmd =  , 6m =  . Other parameters can be calculated from 

Tables 1 and 2. And its feasible value range of    is  8.94 ,10.08   . Herein, 10 =   , 

59.5213mm =  , 0 175.8178 =    is marked as example 1B  . 9.5 =   , 171.6893mm =  , 

0 168.6788 =   is labeled as example 2B . 

7.2 Computation results of numerical example  

In order to elaborate the solution method of interference limit points, the values of L   are 

determined in example 1A  shown in Table 5 . Based on the above computation method of curvature 

interference limit line, 20L =  can be selected as an instance to illustrate how to determine a typical 

point. 

Table 5 Calculation results of typical points on curvature interference limit line of example 1A  

Typical point ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 

/ mmL  33.3 31.4 28 20 10 0 -10 -15 -15.7 -16.8 

/   -1.3650 -4.5556 -2.7654 2.1635 6.1232 8.1008 7.8089 6.2378 7.1955 11.6133 

( )1
/ −   -34.4605 -29.6294 -25.5711 -16.1181 -3.066 10.7046 24.5581 31.0123 32.4967 36.6582 

o1 / mmz  70.0602 54.3312 -4.5031 -10.766 -13.7821 -13.1316 -7.6837 -1.1659 57.3645 70.7652 

2 2

o1 o1 / mmx y+  47.9735 50.1729 48.9398 45.5365 42.8069 41.4496 41.6496 42.7281 42.0703 39.0544 

o2 / mmz  33.3 31.4 28 20 10 0 -10 -15 -15.7 -16.8 

2 2

o2 o2 / mmx y+  179.6874 169.7945 159.9249 159.4545 158.976 159.0933 159.7536 159.9956 170.8851 179.2992 

Firstly, substituting 20L =  into Eq. (47), drawing its function image in given solution domain. 

Here, to avoid some meaningless points on the curve, the solution domain is reasonable given by 

 0.085,0.21 rad− . And then, draw its function image on account of MATLAB software, as shown in 

Fig. 9. The curve has an intersection point with the horizontal axis when 1i =  , and there is no 

intersection point when 2i = . Therefore, the curve image of 1i =  can be selected to compute the 

value of  . 

It can be seen from the local enlarged drawing that the intersection point between the abscissa 

and curve is in the neighborhood of the point 0.038 = . On this occasion, substituting 0.038 =  as 

the initial value into 0f =  , an exact value of the parameter    can be obtained by the iterative 
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method. Accordingly, the values of o1z  and 1 −  can be solved based on Eqs. (41) and (42), and 

the parameter values on typical point of 20L =  are determined. Finally, by modifying the value of 

L , other typical points can be determined. According to this, the curvature interference limit line can 

be acquired in accordance with the interpolation method. 

  
(a) 1i =                                     (b) 2i =  

Fig.9 Curve image of function at the point 20L =  

The curvature interference limit line is a space curve, so it is extremely difficult to direct observe 

its position relative to the worm gear tooth surface. For the purpose of demonstrating the position 

relationship between them, drawing its projection curves on the axial sections of the worm gear and 

worm, as shown in Fig. 10 (a) and (b), respectively. Besides, the computation results about the typical 

points of the curvature interference limit line on the surfaces of the worm gear and the gear are provided 

in Table 5. 

 

 
(a) Curvature interference limit line in axial section of tooth surface of worm gear 
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(b) Curvature interference limit line in axial section of worm 

Fig.10. Curvature interference limit line of example 1A  

In Fig. 10 (a), sL  is the projection line of the worm addendum on the tooth surface of the worm 

gear, namely, the boundary line of the conjugated area of the worm pair during the working meshing. 

2L  is the conjugated line of the meshing limit line on the tooth surface of the worm gear, which divides 

the conjugate area of the worm gear tooth surface into two sub conjugate areas L1  and L2 . 1L  is 

the curvature interference limit line and the points ①~⑩ are the typical points on it. In Fig. 10 (b), 

sL  is the projection line of the worm gear addendum on the tooth surface of the worm. 2L  is the 

meshing limit line. Because of its existence, the working length of the worm is always less than half 

of the total thread length. 
1L  is the conjugated line of the curvature interference limit line on the 

worm helicoid. The area enclosed by lines 2L , sL  and worm addendum line constitutes the working 

area of the worm. 

As can be seen from Fig. 10 (a) that curvature interference limit line 1L  enters both sides of the 

worm gear tooth surface, especially the left side, but it does not enter the meshing area of the worm 

pair. Meanwhile, in Fig. 10 (b), the conjugated line 
1L  of the interference limit line is located on the 

outside of the worm helicoid. On the other hand, the induced principal curvature of the curvature 

interference limit line is zero at any point. After calculation, the induced principal curvature at the 

point M  is 0.0162− . Since the direction of the unit normal vector of d  is from the space points 

to the internal entity of the grinding wheel, which indicates that the point M  is located on the side of 

no curvature interference. Thus, interference will not occur on the tooth surface of the worm gear in 

example 1A . Despite all this, Fig. 10 (a) and (b) show that there is a great risk of top cutting on the 

left side of the worm gear tooth surface, which needs to be given enough attention. 

7.3 Influence of technological crossing angle on curvature interference limit line 

Technological crossing angle  , as the most characteristic processing parameter compared with 

Niemann worm, is worth investigating. From the perspective of actual production and manufacturing, 

the main design parameters of the worm pair are given according to the design requirements and cannot 

be changed at will. On this occasion, it is easy to obtain better meshing performance by changing the 

value of   in its feasible range. 

In this section, the influence of the technological crossing angle on the curvature interference 

limit line is studied. In examples 2A , 1B  and 2B , the positions of interference limit line in the axial 

sections of worm gear and worm are shown in Figs. 11, 12 and 13 respectively. 
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(a) Interference limit line on worm gear tooth surface 

 
(b) Interference limit line in axial section of worm 

Fig.11. Curvature interference limit line of example 2A  

 

 
(a) Interference limit line on worm gear tooth surface 
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(b) Interference limit line in axial section of worm 

Fig.12. Curvature interference limit line of example 1B  

 

 
(a) Interference limit line on worm gear tooth surface 

 
(b) Interference limit line in axial section of worm 

Fig.13. Curvature interference limit line of example 2B  

In Fig. 11 (a), although the interference limit line 1L  slightly enters the tooth surface of the worm 

gear, it doesn’t cross the boundary line sL  of the meshing area, so the interference will not take place. 

Compared with Figs. 10 (a) and 11 (a), with the decrease of  , the meshing area of the worm pair 

increases significantly and the curvature interference limit line is far away from the boundary line sL  

of the meshing area, which indicates that the risks of curvature interference decreased. Besides, from 

Figs. 10 (b) and 11 (b), it is obvious that the conjugated line 1L  is far away from the worm helicoid, 
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2 2
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2 2
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but the working length of the worm decreases slightly. 

Compared with Figs. 12 and 13, the influence law of   on the curvature interference limit line 

is basically the same as the first group of examples. The difference is that undercutting occurs on the 

worm gear tooth surface in example 1B , as shown in Fig. 12(a). It can be clearly seen from the local 

enlarged drawing that the curvature interference limit line enters the meshing area of the worm gear 

tooth surface and is located on the upper side of the boundary line of the conjugated area sL . 

It can be concluded from the above examples that both top cutting and undercutting are possible 

for the proposed worm, especially undercutting. However, both problems can be solved by changing 

the value of the technological crossing angle. 

8 Conclusions 

The meshing theory of enveloping cylindrical worm drive with arc-toothed worm, especially the 

theory of curvature interference, is complete established. By building the mathematical models of 

grinding worm blank with grinding wheel and worm pair meshing, the equations of tooth surface, 

meshing function, meshing limit function and the curvature interference limit function are obtained. 

The specific computation method of the tooth profile on the axial section of the worm is given. 

The relationship between the technological crossing angle and the worm addendum thickness is 

determined, and the result shows that there is a positive correlation between them. Besides, the worm 

addendum has become sharp before it is reduced to the lower limit value of the technological crossing 

angle. Based on curve fitting model of the technological crossing angle and addendum thickness 

coefficient , the feasible value range of the angle is obtained. 

By observing the characteristics of equations of curvature interference limit line, the new 

unknowns which are easier to simplify the curvature interference equations are determined. And then 

the nonlinear equation with one parameter about the curvature interference limit line is obtained by 

elimination method. In the process of solving the zero point of the nonlinear equation, the existence of 

the solution of the equation is determined by using the geometric drawing method and a good initial 

value of iteration is also obtained. And finally, the projection curves of interference limit line on the 

tooth surfaces of worm and worm gear are obtained. 

The results of numerical examples show that with the decrease of the technological crossing angle, 

the conjugated area of the worm gear tooth surface becomes larger, the working length of the worm 

decreases slightly, and the risk of interference decreases. So together, choosing a relatively small value 

of the technological crossing angle in its feasible value range can not only completely avoid the 

occurrence of interference, but also improve the meshing performance of the worm pair.  
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