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Abstract

In the current paper, we present the most generalized variant of the Hilfer deriva-
tive so-called (k,Ψ)-Hilfer fractional derivative operator. The (k,Ψ)-Riemann-Liouville
and (k,Ψ)-Caputo fractional derivatives are obtained as special case of (k,Ψ)-Hilfer
fractional derivative. We demonstrate a few properties of (k,Ψ)-Riemann-Liouville
fractional integral and derivative that expected to build up the calculus of (k,Ψ)-Hilfer
fractional derivative operator. We present some significant outcomes about (k,Ψ)-Hilfer
fractional derivative operator that require to derive the equivalent fractional integral
equation to nonlinear (k,Ψ)-Hilfer fractional differential equation. We prove the exis-
tence and uniqueness for the solution of nonlinear (k,Ψ)-Hilfer fractional differential
equation. In the conclusion section, we list the various k-fractional derivatives that are
specific cases of (k,Ψ)-Hilfer fractional derivative.
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1 Introduction

Fractional calculus (FC) is the intensive developing area of mathematical analysis and has
extensive applications to real-world problems. Therefore, the field of FC offers enormous
features for research. With the aim to preserve different properties of the classical integer-
order derivative, different definitions of fractional derivative can be found in the literature
[1, 2, 3, 4] which do not coincides in general. In this way, it is expected to define the
generalized fractional derivative that consolidates the well-known fractional derivatives as its
particular cases. In this sense, we can develop the calculus of all these fractional derivatives
under one roof. This work is very well handled by Sousa and Oliveira [4]. They have
presented a new definition of the fractional derivative with respect to another function called
Ψ-Hilfer fractional derivative. The analysis of nonlinear fractional differential equations
(FDEs) involving Ψ-Hilfer fractional derivative concerning various qualitative properties of
solutions can be found in the work [5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

In 2007, Dı́az and Pariguan [15] introduced k-gamma function Γk(z) =
∫∞

0 sz−1 e
−sk
k ds, z ∈

C, Re(z) > 0, k > 0 (k ∈ R), which is the generalization of the Euler gamma function Γ(·),
and for k → 1, we obtain Γk(z) → Γ(z). Several definitions of fractional derivatives and
integrals depend on the Euler gamma function. Since the k-gamma function Γk(·) is the
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natural generalization of the Euler gamma function Γ(·), it is natural to expect the concept
of fractional derivatives and integrals with the additional parameter k.

Using the definition of k-gamma function, Mubeen and Habibullah [16] introduced the
extended version of the Riemann-Liouville (RL) fractional integral operator called k-RL
fractional integral operator. Roused by this new idea, Romero et al. [17] presented a gener-
alized version of RL fractional derivative called k-RL fractional derivative and its properties.
In 2015, Dorrego [18] demonstrated that the definition of k-RL fractional derivative defined
in [17] is not a left inverse of the corresponding k-RL fractional integral operator. To conquer
this trouble, Dorrego [18] presented an alternative definition of k-RL fractional derivative
and explored some of its significant properties. Note that the k-Hilfer fractional derivative
defined in [19] does not include the k-RL fractional derivative defined in [18]. Therefore,
there is a need to give an alternative definition to it. A few researchers have considered
the investigation of different types of k-fractional derivatives and analyzed nonlinear FDEs
involving it, a few of them are [20, 21, 22, 23, 24, 25, 26, 27].

The work referenced above inspired us to propose a most generalized version of the
Hilfer derivative so-called (k,Ψ)-Hilfer fractional derivative. We acquire the (k,Ψ)-RL and
(k,Ψ)-Caputo fractional derivatives as a special case of (k,Ψ)-Hilfer fractional derivative.
Some properties of (k,Ψ)-RL fractional integral and derivative are demonstrated and used
to develop the calculus of (k,Ψ)-Hilfer fractional derivative operator. In the conclusion
section, we listed the various fractional derivatives that are specific cases of (k,Ψ)-Hilfer
fractional derivative.

Further, we consider the nonlinear FDEs involving (k,Ψ)-Hilfer derivative of the form

k,HD
η, ν ; Ψ
a+ y(t) = f(t, y(t)), t ∈ (a, b], 0 < η < k, 0 ≤ ν ≤ 1, (1.1)

kI
k−ζk ; Ψ
a+ y(a) = ya ∈ R, ζk = η + ν (k − η) , (1.2)

where k,HD
η, ν ; Ψ
a+ (·) is the (k,Ψ)-Hilfer derivative of order η and type ν, kI

k−ζk; Ψ
a+ (·) is the

(k,Ψ)-RL fractional integral of order k−ζk and f : (a, b]×R→ R is an appropriate function
specified latter.

We determine the equivalent fractional integral equation to the nonlinear (k,Ψ)-Hilfer
FDEs (1.1)-(1.2) and prove the existence and uniqueness for the solution through it. Finally,
in the conclusion section, we list the different k-fractional derivatives that are specific cases
of (k,Ψ)-Hilfer fractional derivative.

The structure of the paper is as follows: In Section 2, we present some preliminaries
about k-RL fractional integral and derivative operators, and Ψ-Hilfer fractional derivative.
In Section 3, we define (k,Ψ)-Hilfer fractional derivative operators. Section 4 deals with
the properties of (k,Ψ)-RL fractional integral. Properties of (k,Ψ)-RL fractional derivative
operators are studied in Section 5. Section 6 deals with calculus of (k,Ψ)-Hilfer fractional
derivative. In Section 7, we investigate existence and uniqueness of solution through equiva-
lent fractional integral equation to the nonlinear (k,Ψ)-Hilfer FDEs (1.1)-(1.2). Concluding
remarks provided in Section 8.
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2 Preliminaries

2.1 k-Riemann-Liouville fractional derivative

Definition 2.1 ([15]) For z ∈ C with Re(z) > 0 and k > 0(k ∈ R), the k-gamma function
Γk(·) is defined by

Γk(z) =

∫ ∞
0

sz−1 e
−sk
k ds.

Theorem 2.1 ([15]) The k-gamma function Γk(·) satisfies the following properties:

(i) Γk(z + k) = z Γk(z)
(ii) Γk(k) = 1

(iii) Γk(z) = k
z
k
−1Γ( zk ).

Definition 2.2 ([15]) Let z, w ∈ C with Re(z) > 0 and Re(w) > 0. Then, the k-beta
function Bk(z, w) is defined by

Bk(z, w) =
1

k

∫ 1

0
s
z
k
−1 (1− s)

w
k
−1ds.

Note that beta function and k-beta function have the following relation

Bk(z, w) =
1

k
B
(z
k
,
w

k

)
.

Further, k-beta function and k-gamma function have the following relation

Bk(z, w) =
Γk(z) Γk(w)

Γk(z + w)
.

Definition 2.3 ([16]) Let h be an integrable function defined on [a, b] and k > 0. Then,
the k-Riemann-Liouville fractional integral of order η > 0 (η ∈ R) of the function h is given
by

kI
η
a+h (t) =

1

k Γk (η)

∫ t

a
(t− s)

η
k
−1 h (s) ds.

Definition 2.4 ([20]) Let k, η ∈ R+ = (0,∞) and m ∈ N such that m = dηke and h be an
integrable function defined on [a, b]. Then, the k-Riemann-Liouville fractional derivative of
order η of the function h is given by

k,RLD
η
a+h (t) =

(
k
d

dt

)m
kI
mk−η
a+ h (t) .

2.2 Ψ-Hilfer fractional derivative

We review a few definitions, notations and results of Ψ-Hilfer fractional derivative from [4].
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Let ∆ = [a, b] (0 < a < b < ∞) be a finite interval and Ψ : ∆ → R is an increasing
function with Ψ′(t) 6= 0, for all t ∈ ∆. Consider the space Cσ; Ψ(∆, R) of weighted functions
h defined on ∆ given by

Cσ; Ψ(∆, R) =
{
h : (a, b]→ R

∣∣ (Ψ (·)−Ψ (a))σ h (·) ∈ C(∆, R)
}
, 0 ≤ σ < 1

endowed with the norm

‖h‖Cσ; Ψ(∆,R) = max
t∈∆
|(Ψ (t)−Ψ (a))σ h (t)| .

Definition 2.5 ([1]) Let h be an integrable function defined on [a, b]. Then, the Ψ-Riemann-
Liouville fractional integral of order η > 0 (η ∈ R) of the function h is given by

I
η ;Ψ
a+ h (t) =

1

Γ (η)

∫ t

a
Ψ′ (s) (Ψ (t)−Ψ (s))η−1 h (s) ds.

Definition 2.6 ([1]) Let m−1 < η ≤ m, Ψ ∈ Cm[a, b],Ψ′(t) 6= 0, t ∈ [a, b] and h ∈ C[a, b].
Then, the Ψ-Riemann-Liouville fractional derivative of a function h of order η is defined by

RLDη; Ψ
a+ h(t) =

(
1

Ψ′(t)

d

dt

)m
I
m−η; Ψ
a+ h(t).

Definition 2.7 ([28]) Let m − 1 < η ≤ m,Ψ ∈ Cm[a, b],Ψ′(t) 6= 0, t ∈ [a, b] and h ∈
Cm[a, b]. Then, the Ψ-Caputo fractional derivative of a function h of order η is defined by

CDη; Ψ
a+ h(t) = I

m−η; Ψ
a+

(
1

Ψ′(t)

d

dt

)m
h(t).

Definition 2.8 ([4]) Let m − 1 < η ≤ m, ν ∈ [0, 1], Ψ ∈ Cm[a, b],Ψ′(t) 6= 0, t ∈ [a, b]and
h ∈ Cm[a, b]. The Ψ-Hilfer fractional derivative of a function h of order η and type ν is
defined by

HDη, ν; Ψ
a+ h(t) = I

ν(m−η); Ψ
a+

(
1

Ψ′(t)

d

dt

)m
I
(1−ν)(m−η); Ψ
a+ h(t). (2.1)

3 (k,Ψ)-Hilfer fractional derivative

Motivated by the definitions of k-RL derivative [16] and Ψ-Hilfer derivative [4], in this section
we define the most generalized version of Hilfer derivative namely (k,Ψ)-Hilfer derivative.

To define the (k,Ψ)-Hilfer fractional derivative operator, we first introduce the (k,Ψ)-
RL fractional integral defined in [29].

Definition 3.1 ([29]) Let h ∈ L1[a, b] and k > 0 (k ∈ R). Then, the (k,Ψ)-Riemann-
Liouville fractional integral of order η > 0 (η ∈ R) of the function h is given by

kI
η ;Ψ
a+ h (t) =

1

k Γk (η)

∫ t

a
Ψ′ (s) (Ψ (t)−Ψ (s))

η
k
−1 h (s) ds. (3.1)
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Definition 3.2 Let η, k ∈ R+ = (0,∞)), ν ∈ [0, 1], Ψ ∈ Cm[a, b],Ψ′(t) 6= 0, t ∈ [a, b]and
h ∈ Cm[a, b]. Then, the (k,Ψ)-Hilfer fractional derivative of a function h of order η and
type ν is defined by

k,HD
η, ν ; Ψ
a+ h(t) = kI

ν(mk−η); Ψ
a+

(
k

Ψ′(t)

d

dt

)m
kI

(1−ν)(mk−η); Ψ
a+ h(t), m =

⌈η
k

⌉
. (3.2)

• For Ψ(t) = t and ν = 0, (k,Ψ)-Hilfer fractional derivative reduces to (k,Ψ)-RL
fractional derivative operator

k,RLD
η ;Ψ
a+ h (t) =

(
k

Ψ′ (t)

d

dt

)m
kI
mk−η ;Ψ
a+ h (t) . (3.3)

If we take Ψ(t) = t in equation (3.3), we obatin the definition of k-RL fractional
derivative [20].

• For Ψ(t) = t and ν = 1, (k,Ψ)-Hilfer fractional derivative reduces to (k,Ψ)-Caputo
fractional derivative operator

k,CD
η ;Ψ
a+ h (t) = kI

mk−η ;Ψ
a+

(
k

Ψ′ (t)

d

dt

)m
h (t) . (3.4)

If we take Ψ(t) = t in equation (3.4), we obatin the definition of k-Caputo fractional
derivative

k,CD
η
a+h(t) = kI

(mk−η)
a+

(
k
d

dt

)m
h(t). (3.5)

• For ζk = η+ ν (mk − η), we have ν(mk − η) = ζk− η and (1− ν)(mk− η) = mk− ζk,
and hence (k,Ψ)-Hilfer fractional derivative can be defined in the form of (k,Ψ)-RL
fractional derivative as follows

k,HD
η, ν ; Ψ
a+ h(t) = kI

ζk−η; Ψ
a+

(
k

Ψ′(t)

d

dt

)m
kI
mk−ζk; Ψ
a+ h(t) (3.6)

= kI
ζk−η; Ψ
a+

k,RLD
ζk; Ψ
a+ h(t). (3.7)

Note that for ν ∈ [0, 1] and m− 1 < η
k < m, we have m− 1 < ζk

k ≤ m.

Remark 3.1

1. For k = 1, (k,Ψ)-Hilfer fractional derivative reduces to Ψ-Hilfer fractional derivative
[4]. For Ψ(t) = t and k = 1, (k,Ψ)-Hilfer fractional derivative reduces to Hilfer
fractional derivative [30].

2. For Ψ(t) = t, (k,Ψ)-Hilfer fractional derivative reduces to k-Hilfer fractional deriva-
tive

k,HD
η, ν
a+ h(t) = kI

ν(mk−η)
a+

(
k
d

dt

)m
kI

(1−ν)(mk−η)
a+ h(t). (3.8)

3. It is observed that the k-Hilfer fractional derivative defined in [19] does not includes the
k-RL fractional derivative. But the formula which we have defined in (3.8) includes
the k-RL fractional derivative as a particular case of it for ν = 0.
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4 Properties of (k,Ψ)-Riemann-Liouville fractional integral

In this section, we prove few properties of (k,Ψ)-RL fractional integral that are needed to
investigate the properties of (k,Ψ)-Hilfer fractional derivative.

Theorem 4.1 Let µi, k ∈ R+ = (0,∞)(i = 1, 2). Then,

kI
µ1; Ψ
a+

kI
µ2; Ψ
a+ = kI

µ1+µ2; Ψ
a+ .

Proof: The proof of the theorem one can obtain easily using the definition of (k,Ψ)-RL
fractional integral, Dirichlet’s formula, the substitution Ψ(s) = Ψ(a) + z (Ψ(t)−Ψ(a)) and
the properties of k-gamma function given in the Theorem 2.1. Thus, we omit the details.
2

Theorem 4.2 Let σ, k ∈ R with 0 ≤ σ < k, d ∈ (a, b), g ∈ Cσ
k

; Ψ[a, d] and g ∈ C[d, b].
Then, g ∈ Cσ

k
; Ψ[a, b].

Proof: Since g ∈ Cσ
k

; Ψ[a, d], we have (Ψ (t)−Ψ (a))
σ
k g(t) is continuous on [a, d]. Further,

g ∈ C[d, b], Ψ ∈ C[a, b] and σ
k > 0, the function (Ψ (t)−Ψ (a))

σ
k g(t) is continuous on [d, b].

From above discussion, it follows that (Ψ (t)−Ψ (a))
σ
k g(t) is continuous on [a, b]. This

implies g ∈ Cσ
k

; Ψ[a, b]. 2

Theorem 4.3 Let µ, k ∈ R+ = (0,∞) and let ξ ∈ R such that ξ
k > −1. Then,

kI
µ; Ψ
a+ (Ψ(t)−Ψ(a))

ξ
k =

Γk(ξ + k)

Γk(ξ + k + µ)
(Ψ(t)−Ψ(a))

ξ+µ
k .

Proof: One can obtain the proof easily, using the substitution Ψ(s) = Ψ(a)+z (Ψ(t)−Ψ(a))
and the definition of k-beta function given in the Definition 2.2. 2

Remark 4.4 Taking k = 1 and Ψ(t) = t in the Theorem 4.3, we obtain the following result

I
µ
a+ (t− a)ξ =

Γ(ξ)

Γ(ξ + µ)
(t− a)ξ+µ .

which is proved in [31].

Theorem 4.5 Let µ, σ, k ∈ R+ = (0,∞) with σ ≤ µ < k. Then, the (k,Ψ)-Riemann-
Liouville fractional integral operator kI

µ; Ψ
a+ is bounded from Cσ

k
; Ψ[a, b] to C[a, b] and for any

h ∈ Cσ
k

; Ψ[a, b],

∥∥∥kIµ; Ψ
a+ h

∥∥∥
C[a,b]

≤ ‖h‖Cσ
k

; Ψ[a,b]

Γk(k − σ)

Γk(k − σ + µ)
(Ψ (b)−Ψ (a))

µ−σ
k .
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Proof: Let any h ∈ Cσ
k

; Ψ[a, b] and t1, t2 ∈ [a, b] with t2 > t1. Then, using the definition of
(k,Ψ)-RL fractional integral and the Theorem 4.3, we obtain∣∣∣kIµ; Ψ

a+ h(t2)− kI
µ; Ψ
a+ h(t1)

∣∣∣
=

∣∣∣∣ 1

k Γk (µ)

∫ t2

a
Ψ′ (s) (Ψ (t2)−Ψ (s))

µ
k
−1 h (s) ds

− 1

k Γk (µ)

∫ t1

a
Ψ′ (s) (Ψ (t1)−Ψ (s))

µ
k
−1 h (s) ds

∣∣∣∣
≤
∣∣∣∣ 1

k Γk (µ)

∫ t2

a
Ψ′ (s) (Ψ (t2)−Ψ (s))

µ
k
−1 (Ψ (s)−Ψ (a))

−σ
k

∣∣∣(Ψ (s)−Ψ (a))
σ
k h (s)

∣∣∣ ds
− 1

k Γk (µ)

∫ t1

a
Ψ′ (s) (Ψ (t1)−Ψ (s))

µ
k
−1 (Ψ (s)−Ψ (a))

−σ
k

∣∣∣(Ψ (s)−Ψ (a))
σ
k h (s)

∣∣∣ ds∣∣∣∣
≤ ‖h‖Cσ

k
; Ψ[a,b]

∣∣∣kIµ; Ψ
a+ (Ψ (t2)−Ψ (a))

−σ
k − kI

µ; Ψ
a+ (Ψ (t1)−Ψ (a))

−σ
k

∣∣∣
≤ ‖h‖Cσ

k
; Ψ[a,b]

Γk(k − σ)

Γk(k − σ + µ)

∣∣∣(Ψ (t2)−Ψ (a))
µ−σ
k − (Ψ (t1)−Ψ (a))

µ−σ
k

∣∣∣ .
Since σ ≤ µ < k, using the continuity of Ψ, we have∣∣∣kIµ; Ψ

a+ h(t2)− kI
µ; Ψ
a+ h(t1)

∣∣∣→ 0 as |t2 − t1| → 0.

This implies kI
µ; Ψ
a+ h ∈ C[a, b]. Following similar type of steps as above, one can verify that∥∥∥kIµ; Ψ
a+ h

∥∥∥
C[a,b]

≤ ‖h‖Cσ
k

; Ψ[a,b]

Γk(k − σ)

Γk(k − σ + µ)
(Ψ (b)−Ψ (a))

µ−σ
k .

2

Theorem 4.6 Let µ, σ, k ∈ R+ = (0,∞) with σ < k. Then, the (k,Ψ)-Riemann-Liouville
fractional integral operator kI

µ; Ψ
a+ is bounded from Cσ

k
; Ψ[a, b] to Cσ

k
; Ψ[a, b] and for any h ∈

Cσ
k

; Ψ[a, b],

∥∥∥kIµ; Ψ
a+ h

∥∥∥
Cσ
k

; Ψ[a,b]
≤ ‖h‖Cσ

k
; Ψ[a,b]

Γk(k − σ)

Γk(k − σ + µ)
(Ψ (b)−Ψ (a))

µ
k .

Proof: Let any h ∈ Cσ
k

; Ψ[a, b] and t1, t2 ∈ [a, b] with t2 > t1. Then, using the definition of
(k,Ψ)-RL fractional integral operator and the Theorem 4.3, we have∣∣∣(Ψ (t2)−Ψ (a))

σ
k kI

µ; Ψ
a+ h(t2)− (Ψ (t1)−Ψ (a))

σ
k kI

µ; Ψ
a+ h(t1)

∣∣∣
=

∣∣∣∣∣(Ψ (t2)−Ψ (a))
σ
k

k Γk (µ)

∫ t2

a
Ψ′ (s) (Ψ (t2)−Ψ (s))

µ
k
−1 h (s) ds

− (Ψ (t1)−Ψ (a))
σ
k

k Γk (µ)

∫ t1

a
Ψ′ (s) (Ψ (t1)−Ψ (s))

µ
k
−1 h (s) ds

∣∣∣∣∣
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≤
∣∣∣(Ψ (t2)−Ψ (a))

σ
k kI

µ; Ψ
a+ (Ψ (t2)−Ψ (a))

−σ
k − (Ψ (t1)−Ψ (a))

σ
k kI

µ; Ψ
a+ (Ψ (t1)−Ψ (a))

−σ
k

∣∣∣×
‖h‖Cσ

k
; Ψ[a,b]

≤ ‖h‖Cσ
k

; Ψ[a,b]

Γk(k − σ)

Γk(k − σ + µ)

∣∣∣(Ψ (t2)−Ψ (a))
µ
k − (Ψ (t1)−Ψ (a))

µ
k

∣∣∣ .
Using the continuity of Ψ, we have∣∣∣(Ψ (t2)−Ψ (a))

σ
k kI

µ; Ψ
a+ h(t2)− (Ψ (t1)−Ψ (a))

σ
k kI

µ; Ψ
a+ h(t1)

∣∣∣→ 0 as |t2 − t1| → 0.

This proves, for any µ > 0 and h ∈ Cσ
k

; Ψ[a, b], we have kI
µ; Ψ
a+ h ∈ Cσ

k
; Ψ[a, b]. Further,

following the similar types of steps as above, one can easily check that∥∥∥kIµ; Ψ
a+ h

∥∥∥
Cσ
k

; Ψ[a,b]
≤ ‖h‖Cσ

k
; Ψ[a,b]

Γk(k − σ)

Γk(k − σ + µ)
(Ψ (b)−Ψ (a))

µ
k .

2

Theorem 4.7 Let µ ≥ 0 (µ ∈ R), kIµ; Ψ
a+ maps C[a, b] into C[a, b].

Proof: Proof can be completed following similar types of steps as in the proof of Theorem
4.5 and Theorem 4.6. 2

Theorem 4.8 Let µ, σ, k ∈ R+ = (0,∞) with σ < µ < k and h ∈ Cσ
k

; Ψ[a, b]. Then,

kI
µ; Ψ
a+ h(a) = lim

t→a+

kI
µ; Ψ
a+ h(t) = 0. (4.1)

Proof: Let any h ∈ Cσ
k

; Ψ[a, b]. Then, by Theorem 4.5, kIµ; Ψ
a+ h ∈ C[a, b]. Further,∣∣∣kIµ; Ψ

a+ h(t)
∣∣∣ =

∣∣∣∣ 1

k Γk (µ)

∫ t

a
Ψ′ (s) (Ψ (t)−Ψ (s))

µ
k
−1 h (s) ds

∣∣∣∣
≤ 1

k Γk (µ)

∫ t

a
Ψ′ (s) (Ψ (t2)−Ψ (s))

µ
k
−1 (Ψ (s)−Ψ (a))

−σ
k

∣∣∣(Ψ (s)−Ψ (a))
σ
k h (s)

∣∣∣ ds
≤ ‖h‖Cσ

k
; Ψ[a,b]

kI
µ; Ψ
a+ (Ψ (t)−Ψ (a))

−σ
k

≤ ‖h‖Cσ
k

; Ψ[a,b]

Γk(k − σ)

Γk(k − σ + µ)
(Ψ (t)−Ψ (a))

µ−σ
k . (4.2)

Since σ < µ, by continuity of Ψ, from inequality (4.2), we obtain

lim
t→a+

∣∣∣kIµ; Ψ
a+ h(t)

∣∣∣ = 0.

This gives the desired equation (4.1). 2

Theorem 4.9 Let µ,k ∈ R+ = (0,∞). Then, kIµ; Ψ
a+ h(t) = k

−µ
k I

µ
k

; Ψ
a+ h(t), h ∈ C[a, b].
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Proof: Using the Theorem 2.1 (iii), we obtain

kI
µ ;Ψ
a+ h (t) =

1

k Γk (µ)

∫ t

a
Ψ′ (s) (Ψ (t)−Ψ (s))

µ
k
−1 h (s) ds

=
1

k k
µ
k
−1Γ

(µ
k

) ∫ t

a
Ψ′ (s) (Ψ (t)−Ψ (s))

µ
k
−1 h (s) ds

=
1

k
µ
k Γ
(µ
k

) ∫ t

a
Ψ′ (s) (Ψ (t)−Ψ (s))

µ
k
−1 h (s) ds

= k
−µ
k I

µ
k

; Ψ
a+ h(t).

2

Lemma 4.10 Let m ∈ N, k > 0 (k ∈ R) and h ∈ C[a, b]. Then,

(a)
(

1
Ψ′(t)

d
dt

)m
I
m; Ψ
a+ h(t) = h(t)

(b)
(

k
Ψ′(t)

d
dt

)m
kI
mk; Ψ
a+ h(t) = h(t).

Proof: (a) Using the Lemma 2.4 [1], for m− 1 < µ ≤ m ∈ N and h ∈ C[a, b], we have

h(t) = RLD
µ; Ψ
a+ I

µ; Ψ
a+ h(t).

In particular for µ = m, we have

h(t) = RLD
m; Ψ
a+ I

m; Ψ
a+ h(t)

=

(
1

Ψ′ (t)

d

dt

)m
I
m−m; Ψ
a+ I

m; Ψ
a+ h(t)

=

(
1

Ψ′ (t)

d

dt

)m
I
m; Ψ
a+ h(t).

(b) Using the definition for (k,Ψ)-RL fractional integral operator, Theorem 2.1(iii) and (a),
we obtain(

k

Ψ′ (t)

d

dt

)m
kI
mk; Ψ
a+ h(t) = km

(
1

Ψ′ (t)

d

dt

)m 1

k Γk (mk)

∫ t

a
Ψ′ (s) (Ψ (t)−Ψ (s))

mk
k
−1 h (s) ds

= km
(

1

Ψ′ (t)

d

dt

)m 1

k km−1Γ (m)

∫ t

a
Ψ′ (s) (Ψ (t)−Ψ (s))m−1 h (s) ds

=

(
1

Ψ′ (t)

d

dt

)m
I
m; Ψ
a+ h(t)

= h(t).

2
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5 Properties of (k,Ψ)-Riemann-Liouville fractional derivative

In this section, we prove few properties of (k,Ψ)-RL fractional derivative that are needed
to investigate the properties of (k,Ψ)-Hilfer fractional derivative.

Theorem 5.1 Let µ, k ∈ R+ = (0,∞). Then, k,RLD
µ; Ψ
a+ h(t) = k

µ
k RLD

µ
k

; Ψ
a+ h(t), h ∈

C[a, b].

Proof: Using the Theorem 4.9, we obtain

k,RLD
µ ;Ψ
a+ h (t) =

(
k

Ψ′ (t)

d

dt

)m
kI
mk−µ ;Ψ
a+ h (t)

= km
(

1

Ψ′ (t)

d

dt

)m
k−(mk−µk ) I

mk−µ
k

; Ψ
a+ h(t)

= k
µ
k

(
1

Ψ′ (t)

d

dt

)m
I
m−µ

k
; Ψ

a+ h(t)

= k
µ
k
RLD

µ
k

;Ψ
a+ h(t).

2

Theorem 5.2 Let µ, k ∈ R+ = (0,∞) and let ξ ∈ R such that ξ
k > −1. Then,

k,RLD
µ; Ψ
a+ (Ψ(t)−Ψ(a))

ξ
k =

Γk(ξ + k)

Γk(ξ + k − µ)
(Ψ(t)−Ψ(a))

ξ−µ
k .

Proof: Proof follows by using the definition of (k,Ψ)-RL fractional derivative and the The-
orem 4.3. 2

Theorem 5.3 Let η, k ∈ R+ = (0,∞) with η < k, ν ∈ [0, 1] and ζk = η + ν (k − η). Then,

for h ∈ Cζk
1− ζk

k
;Ψ

[a, b],

k,RLD
ζk; Ψ
a+

kI
η; Ψ
a+ h(t) = k,RLD

ν(k−η); Ψ
a+ h(t).

Proof: Since η < k, we have m =
⌈η
k

⌉
= 1, hence

⌈
ζk
k

⌉
= 1 . Thus, using the definition of

(k,Ψ)-RL fractional derivative and the semigroup property of (k,Ψ)-RL fractional integral,
we have

k,RLD
ζk; Ψ
a+

kI
η; Ψ
a+ h(t) =

(
k

Ψ′ (t)

d

dt

)
kI
k−ζk ;Ψ
a+

kI
η ;Ψ
a+ h(t)

=

(
k

Ψ′ (t)

d

dt

)
kI
k−ζk+η ;Ψ
a+ h(t)

=

(
k

Ψ′ (t)

d

dt

)
kI
k−ν(k−η) ;Ψ
a+ h(t)

= k,RLD
ν(k−η); Ψ
a+ h(t).

2
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Theorem 5.4 Let µ, k ∈ R+ = (0,∞), m = dµk e. Then, for h ∈ C
m− ζk

k
;Ψ

[a, b], we have

k,RLD
µ; Ψ
a+

kI
µ; Ψ
a+ h(t) = h(t).

Proof: Using the Theorem 4.1 and Theorem 4.10 (b), we have

k,RLD
µ; Ψ
a+

kI
µ; Ψ
a+ h(t) =

(
k

Ψ′ (t)

d

dt

)m
kI
mk−µ; Ψ
a+

kI
µ; Ψ
a+ h(t)

=

(
k

Ψ′ (t)

d

dt

)m
kI
mk; Ψ
a+ h(t)

= h(t).

2

Theorem 5.5 Let µ, k, σ ∈ R+ = (0,∞) with σ < k and m = dµk e . Assume that h ∈
Cσ
k

;Ψ[a, b] and kI
mk−µ; Ψ
a+ h ∈ Cmσ

k
;Ψ[a, b]. Then,

kI
µ; Ψ
a+

(
k,RLD

µ; Ψ
a+ h(t)

)
= h(t)−

m∑
j=1

(Ψ(t)−Ψ(a))
µ
k
−j

Γk (µ− jk + k)

[(
k

Ψ′ (t)

d

dt

)m−j
kI
mk−µ; Ψ
a+ h(t)

]
t=a

.

Proof: Using the Theorem 4.10 (b) for m = 1, we obtain(
k

Ψ′ (t)

d

dt

)
kI
k; Ψ
a+ h(t) = h(t). (5.1)

Using the equation (5.1) with h(t) replaced by kI
µ; Ψ
a+

k,RLD
µ; Ψ
a+ h(t), we obtain

kI
µ; Ψ
a+

(
k,RLD

µ; Ψ
a+ h(t)

)
=

(
k

Ψ′ (t)

d

dt

)
kI
k; Ψ
a+

[
kI
µ; Ψ
a+

(
k,RLD

µ; Ψ
a+ h(t)

)]
. (5.2)

Using the relation (5.2), the semigroup property of (k,Ψ)-RL fractional integrals and the
Theorem 2.1 (iii), we obtain

kI
µ; Ψ
a+

(
k,RLD

µ; Ψ
a+ h(t)

)
=

(
k

Ψ′ (t)

d

dt

) [
kI
k+µ; Ψ
a+

(
k,RLD

µ; Ψ
a+ h(t)

)]
=

k

Ψ′ (t)

d

dt

[
1

k Γk (k + µ)

∫ t

a
Ψ′ (s) (Ψ (t)−Ψ (s))

k+µ
k
−1 k,RLD

µ; Ψ
a+ h (s) ds

]
=

1

Ψ′ (t)

d

dt

[
1

k
µ
k Γ
(µ
k + 1

) ∫ t

a
Ψ′ (s) (Ψ (t)−Ψ (s))

µ
k k,RLD

µ; Ψ
a+ h (s) ds

]
.

(5.3)

Now, consider using the definition of (k,Ψ)-RL fractional derivative and integration by
parts, we obtain

1

k
µ
k Γ
(µ
k + 1

) ∫ t

a
Ψ′ (s) (Ψ (t)−Ψ (s))

µ
k k,RLD

µ; Ψ
a+ h (s) ds
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=
1

k
µ
k Γ
(µ
k + 1

) ∫ t

a
Ψ′ (s) (Ψ (t)−Ψ (s))

µ
k

(
k

Ψ′ (s)

d

ds

)m
kI
mk−µ; Ψ
a+ h (s) ds

=
k

k
µ
k Γ
(µ
k + 1

) ∫ t

a
(Ψ (t)−Ψ (s))

µ
k
d

ds

[(
k

Ψ′ (s)

d

ds

)m−1
kI
mk−µ; Ψ
a+ h (s)

]
ds

=
−k1−µ

k

Γ
(µ
k + 1

) (Ψ (t)−Ψ (a))
µ
k

[(
k

Ψ′ (s)

d

ds

)m−1
kI
mk−µ; Ψ
a+ h (s)

]
s=a

+
k2−µ

k

Γ
(µ
k

) ∫ t

a
(Ψ (t)−Ψ (s))

µ
k
−1 d

ds

[(
k

Ψ′ (s)

d

ds

)m−2
kI
mk−µ; Ψ
a+ h (s)

]
ds.

Repeating the process of integration by parts at nth step, we obtain

1

k
µ
k Γ
(µ
k + 1

) ∫ t

a
Ψ′ (s) (Ψ (t)−Ψ (s))

µ
k k,RLD

µ; Ψ
a+ h (s) ds

=
m∑
j=1

−kj−
µ
k

Γ
(µ
k − j + 2

) (Ψ (t)−Ψ (a))
µ
k
−j+1

[(
k

Ψ′ (s)

d

ds

)m−j
kI
mk−µ; Ψ
a+ h (s)

]
s=a

+
km−

µ
k

Γ
(µ
k − (m− 1)

) ∫ t

a
Ψ′ (s) (Ψ (t)−Ψ (s))

µ
k
−m
(

k

Ψ′ (s)

d

ds

)m−m
kI
mk−µ; Ψ
a+ h (s) ds.

Using the definition of (k,Ψ)-RL fractional integral, its semigroup property and the Theo-
rem 2.1, we obtain

1

k
µ
k Γ
(µ
k + 1

) ∫ t

a
Ψ′ (s) (Ψ (t)−Ψ (s))

µ
k k,RLD

µ; Ψ
a+ h (s) ds

=

m∑
j=1

−kj−
µ
k

Γ
(µ
k − j + 2

) (Ψ (t)−Ψ (a))
µ
k
−j+1

[(
k

Ψ′ (s)

d

ds

)m−j
kI
mk−µ; Ψ
a+ h (s)

]
s=a

+
k

k Γk (µ+ k −mk)

∫ t

a
Ψ′ (s) (Ψ (t)−Ψ (s))

µ+k−mk
k

−1 kI
mk−µ; Ψ
a+ h (s) ds

=
m∑
j=1

−kj−
µ
k

Γ
(µ
k − j + 2

) (Ψ (t)−Ψ (a))
µ
k
−j+1

[(
k

Ψ′ (s)

d

ds

)m−j
kI
mk−µ; Ψ
a+ h (s)

]
s=a

+ k kI
µ+k−mk; Ψ
a+

kI
mk−µ; Ψ
a+ h (t)

=
m∑
j=1

−kj−
µ
k

Γ
(µ
k − j + 2

) (Ψ (t)−Ψ (a))
µ
k
−j+1

[(
k

Ψ′ (s)

d

ds

)m−j
kI
mk−µ; Ψ
a+ h (s)

]
s=a

+ k kI
k; Ψ
a+ h (t)

=

m∑
j=1

−kj−
µ
k

Γ
(µ
k − j + 2

) (Ψ (t)−Ψ (a))
µ
k
−j+1

[(
k

Ψ′ (s)

d

ds

)m−j
kI
mk−µ; Ψ
a+ h (s)

]
s=a

+

∫ t

a
Ψ′(s)h(s)ds. (5.4)

Using the equation (5.4) in the equation (5.3) and the Theorem 2.1 (iii), we obtain

kI
µ; Ψ
a+

k,RLD
µ; Ψ
a+ h(t)
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=
1

Ψ′ (t)

d

dt

{∫ t

a
Ψ′(s)h(s)ds

−
m∑
j=1

kj−
µ
k

Γ
(µ
k − j + 2

) (Ψ (t)−Ψ (a))
µ
k
−j+1

[(
k

Ψ′ (s)

d

ds

)m−j
kI
mk−µ; Ψ
a+ h (s)

]
s=a


= h(t)−

m∑
j=1

kj−
µ
k

Γ
(µ
k − j + 1

) (Ψ (t)−Ψ (a))
µ
k
−j

[(
k

Ψ′ (s)

d

ds

)m−j
kI
mk−µ; Ψ
a+ h (s)

]
s=a

= h(t)−
m∑
j=1

kj−
µ
k

k1−(µk−j+1) Γk (µ− jk + k)
(Ψ (t)−Ψ (a))

µ
k
−j

[(
k

Ψ′ (s)

d

ds

)m−j
kI
mk−µ; Ψ
a+ h (s)

]
s=a

= h(t)−
m∑
j=1

(Ψ (t)−Ψ (a))
µ
k
−j

Γk (µ− jk + k)

[(
k

Ψ′ (t)

d

dt

)m−j
kI
mk−µ; Ψ
a+ h (t)

]
t=a

.

2

Remark 5.6

1. For Ψ(t) = t, the above result reduces to

kI
µ
a+

k,RLD
µ
a+h(t) = h(t)−

m∑
j=1

(t− a)
µ
k
−j

Γk (µ− jk + k)

[(
k
d

dt

)m−j
kI
mk−µ
a+ h (t)

]
t=a

,

which improves the result of [18].

2. For Ψ(t) = t and k = 1, the result obtained in the above theorem reduces to the result
obtained in [1, 31],

I
µ
a+

RLD
µ
a+h(t) = h(t)−

m∑
j=1

(t− a)µ−j

Γ (µ− j + 1)

[(
d

dt

)m−j
I
m−µ
a+ h (t)

]
t=a

.

6 Calculus of (k,Ψ)-Hilfer fractional derivative

Theorem 6.1 Let η, k ∈ R+ = (0,∞) and ν ∈ [0, 1]. Then, k,HDη,ν; Ψ
a+ h(t) = k

η
k HD

η
k
, ν; Ψ

a+ h(t),
h ∈ Cm[a, b].

Proof: Using the Theorem 4.9, we have

k,HD
η, ν ; Ψ
a+ h(t) = kI

ν(mk−η); Ψ
a+

(
k

Ψ′(t)

d

dt

)m
kI

(1−ν)(mk−η); Ψ
a+ h(t)

= k
−
(
ν(mk−η)

k

)
I
ν(mk−η)

k
; Ψ

a+ km
(

1

Ψ′ (t)

d

dt

)m
k
−
(

(1−ν)(mk−η)
k

)
I

(1−ν)(mk−η)
k

; Ψ
a+ h(t)

= k
η
k I

ν(m− ηk ); Ψ

a+

(
1

Ψ′ (t)

d

dt

)m
I
(1−ν)(m− ηk ); Ψ

a+ h(t)
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= k
η
k
HD

η
k
, ν; Ψ

a+ h(t).

2

Theorem 6.2 Let η, k ∈ R+ = (0,∞) and let ξ ∈ R such that ξ
k > −1. Then,

k,HD
η, ν; Ψ
a+ (Ψ(t)−Ψ(a))

ξ
k =

Γk(ξ + k)

Γk(ξ + k − η)
(Ψ(t)−Ψ(a))

ξ−η
k .

Proof: Proof follows by using the definition of (k,Ψ)-Hilfer fractional derivative and an
application of Theorem 4.3 and Theorem 5.2. 2

Theorem 6.3 Let η, k ∈ R+ = (0,∞) with η < k, ν ∈ [0, 1] and ζk = η + ν (k − η). Then,

kI
ζk; Ψ
a+

k,RLD
ζk; Ψ
a+ h(t) = kI

η; Ψ
a+

k,HD
η,ν; Ψ
a+ h(t), h ∈ Cζk

1− ζk
k

;Ψ
[a, b].

Proof: Using the semigroup property of (k,Ψ)-RL fractional integral and the definition of
(k,Ψ)-Hilfer fractional derivative, we have

kI
ζk; Ψ
a+

k,RLD
ζk; Ψ
a+ h(t) = kI

η+ν(k−η); Ψ
a+

k,RLD
ζk; Ψ
a+ h(t)

= kI
η; Ψ
a+

kI
ν(k−η); Ψ
a+

k,RLD
ζk; Ψ
a+ h(t)

= kI
η; Ψ
a+

kI
ζk−η; Ψ
a+

k,RLD
ζk; Ψ
a+ h(t)

= kI
η; Ψ
a+

k,HD
η,ν; Ψ
a+ h(t).

2

Theorem 6.4 Let h ∈ L1[a, b]. Assume that k,RLD
ν(k−η); Ψ
a+ h exists and it lies in L1[a, b].

Then,

k,HD
η,ν; Ψ
a+

kI
η; Ψ
a+ h(t) = kI

ν(k−η); Ψ
a+

k,RLD
ν(k−η); Ψ
a+ h(t).

Proof: Using the definition of (k,Ψ)-Hilfer fractional derivative and an application of The-
orem 5.3, we obtain

k,HD
η,ν; Ψ
a+

kI
η; Ψ
a+ h(t) = kI

ν(k−η); Ψ
a+

k,RLD
ζk; Ψ
a+

kI
η; Ψ
a+ h(t)

= kI
ν(k−η); Ψ
a+

k,RLD
ν(k−η); Ψ
a+ h(t).

2
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7 (k,Ψ)-Hilfer FDEs

In this section, we investigate the existence and uniqueness of solution for the (k,Ψ)-Hilfer
FDEs (1.1)-(1.2).

First we define the weighted space as follows. Let [a, b] (0 < a < b < ∞) be a finite
interval and Ψ ∈ C1([a, b],R) be an increasing function such that Ψ′(t) 6= 0, for all t ∈ [a, b].
Let 0 < η < k (η, k ∈ R), ν ∈ [0, 1] and ζk = η + ν (k − η). On the line of [4], we define the
following weighted space.

C
1− ζk

k ; Ψ
[a, b] =

{
h
∣∣h : (a, b]→ R, h(a+) exists and (Ψ (·)−Ψ (a))

1− ζk
k h (·) ∈ C [a, b]

}
, (7.1)

0 < ζk
k ≤ 1 endowed with the norm

‖h‖C
1− ζk

k
;Ψ

[a,b] = max
t∈[a,b]

∣∣∣∣(Ψ (t)−Ψ (a))1− ζk
k h (t)

∣∣∣∣ .
Further, we consider the weighted space

Cζk
1− ζk

k
; Ψ

[a, b] =
{
h ∈ C

1− ζk
k

; Ψ
[a, b] : k,RLD

ζk; Ψ
a+ h ∈ C

1− ζk
k

; Ψ
[a, b]

}
(7.2)

and for m ∈ N, we consider the weighted space

Cm
1− ζk

k
; Ψ

[a, b] =

{
h :

(
k

Ψ′ (t)

d

dt

)m−1

h(t) ∈ C [a, b] and

(
k

Ψ′ (t)

d

dt

)m
h(t) ∈ C

1− ζk
k

; Ψ
[a, b]

}
.

(7.3)

7.1 Equivalent fractional integral equation

Theorem 7.1 Let η, k ∈ R with η < k, ν ∈ [0, 1] and ζk = η + ν (k − η). Assume that
f : (a, b]×R→ R be a function such that f(·, y(·)) ∈ C

1− ζk
k

;Ψ
[a, b] for each y ∈ C

1− ζk
k

;Ψ
[a, b].

Then, y ∈ Cζk
1− ζk

k
;Ψ

[a, b] satisfies (k,Ψ)-Hilfer FDEs (1.1)-(1.2) if and only if y satisfies the

following fractional integral equation

y(t) =
(Ψ (t)−Ψ (a))

ζk
k
−1

Γk(ζk)
ya +

1

k Γk (η)

∫ t

a
Ψ′ (s) (Ψ (t)−Ψ (s))

η
k
−1 f (s, y(s)) ds, t ∈ (a, b].

(7.4)

Proof: Assume that y ∈ Cζk
1− ζk

k
;Ψ

[a, b] is a solution of (k,Ψ)-Hilfer FDEs (1.1)-(1.2). We

prove that y satisfy the fractional integral equation (7.4). Since y ∈ Cζk
1− ζk

k
;Ψ

[a, b], we have

y ∈ C
1− ζk

k
;Ψ

[a, b] and(
k

Ψ′(t)

d

dt

)
kI
k−ζk; Ψ
a+ y = k,RLD

ζk ; Ψ
a+ y ∈ C

1− ζk
k

;Ψ
[a, b]. (7.5)

Further, by applying Theorem 4.5 with σ = µ = k − ζk, we obtain

kI
k−ζk; Ψ
a+ y ∈ C[a, b]. (7.6)
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Using the equations (7.5) and (7.6), and the definition of weighted space given in equa-

tion (7.3), we have kI
k−ζk; Ψ
a+ y ∈ C1

1− ζk
k

;Ψ
[a, b]. Since y ∈ C

1− ζk
k

;Ψ
[a, b] and kI

k−ζk; Ψ
a+ y ∈

C1

1− ζk
k

;Ψ
[a, b] by applying the Theorem 5.5 with σ = k − ζk, µ = ζk and m = d ζkk e = 1, we

obtain

kI
ζk; Ψ
a+

k,RLD
ζk; Ψ
a+ y(t) = y(t)− (Ψ (t)−Ψ (a))

ζk
k
−1

Γk(ζk)

[
kI
k−ζk; Ψ
a+ y(t)

]
t=a

= y(t)− (Ψ (t)−Ψ (a))
ζk
k
−1

Γk(ζk)
ya. (7.7)

Since y ∈ Cζk
1− ζk

k
;Ψ

[a, b], by Theorem 6.3 and the equation (1.1), we obtain

kI
ζk; Ψ
a+

k,RLD
ζk; Ψ
a+ y(t) = kI

η; Ψ
a+

k,HD
η,ν; Ψ
a+ y(t)

= kI
η; Ψ
a+ f(t, y(t)). (7.8)

From equations (7.7) and (7.8), we have

y(t) =
(Ψ (t)−Ψ (a))

ζk
k
−1

Γk(ζk)
ya + kI

η; Ψ
a+ f(t, y(t))

=
(Ψ (t)−Ψ (a))

ζk
k
−1

Γk(ζk)
ya +

1

k Γk (η)

∫ t

a
Ψ′ (s) (Ψ (t)−Ψ (s))

η
k
−1 f (s, y(s)) ds, t ∈ (a, b],

which is desired fractional integral equation (7.4).

Conversely, suppose that y ∈ Cζk
1− ζk

k
;Ψ

[a, b] satisfy equation (7.4). Then,

y(t) =
(Ψ (t)−Ψ (a))

ζk
k
−1

Γk(ζk)
ya + kI

η; Ψ
a+ f(t, y(t)), t ∈ (a, b].

Operating k,RLD
ζk; Ψ
a+ on both sides of above equation, we obtain

k,RLD
ζk; Ψ
a+ y(t) =

ya
Γk(ζk)

k,RLD
ζk; Ψ
a+ (Ψ (t)−Ψ (a))

ζk
k
−1 + k,RLD

ζk; Ψ
a+

kI
η; Ψ
a+ f(t, y(t)).

Using the Theorem 5.1 and Theorem 5.3, the above equation reduces to

k,RLD
ζk; Ψ
a+ y(t) =

ya
Γk(ζk)

k
ζk
k

RLD
ζk
k

; Ψ
a+ (Ψ (t)−Ψ (a))

ζk
k
−1 + k,RLD

ν(k−η); Ψ
a+ f(t, y(t))

= k,RLD
ν(k−η); Ψ
a+ f(t, y(t)). (7.9)

Since y ∈ Cζk
1− ζk

k
;Ψ

[a, b], we get k,RLD
ζk; Ψ
a+ y ∈ C

1− ζk
k

;Ψ
[a, b]. Therefore, from (7.9) it follows

that
k,RLD

ν(k−η); Ψ
a+ f(·, y(·)) ∈ C

1− ζk
k

;Ψ
[a, b]. (7.10)

Since η < k, ν ∈ [0, 1] and 0 < 1− η
k < 1, we have ν(k−η)

k = ν
(
1− η

k

)
< 1. Therefore,⌈

ν
(

1− η

k

)⌉
= 1. (7.11)
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In this case the definition of (k,Ψ)-RL derivative reduces to

k,RLD
ν(k−η); Ψ
a+ f(t, y(t)) =

(
k

Ψ′(t)

d

dt

)
kI
k−ν(k−η); Ψ
a+ f(t, y(t)). (7.12)

Using equations (7.10) and (7.12), we have(
k

Ψ′(t)

d

dt

)
kI
k−ν(k−η); Ψ
a+ f(·, y(·)) ∈ C

1− ζk
k

;Ψ
[a, b]. (7.13)

Since ζk = η + ν (k − η) > ν (k − η), we have k − ζk < k − ν (k − η). Since f(·, y(·)) ∈
C

1− ζk
k

;Ψ
[a, b], applying Theorem 4.5 with σ = k − ζk, µ = k − ν (k − η), we obtain

kI
k−ν(k−η); Ψ
a+ f(·, y(·)) ∈ C[a, b]. (7.14)

Using the definition of weighted space given in the equation (7.3), from equations (7.13)
and (7.14), it follows that

kI
k−ν(k−η); Ψ
a+ f(·, y(·)) ∈ C1

1− ζk
k

;Ψ
[a, b].

By applying kI
ν(k−η); Ψ
a+ on both sided of equation (7.9) and using Theorem 5.5 with σ =

k − ζk, µ = ν(k − η) and m = 1, we obtain

kI
ν(k−η); Ψ
a+

k,RLD
ζk; Ψ
a+ y(t) = kI

ν(k−η); Ψ
a+

k,RLD
ν(k−η); Ψ
a+ f(t, y(t))

= f(t, y(t))− (Ψ (t)−Ψ (a))
ν(k−η)

k
−1

Γk(ν(k − η))

[
kI
k−ν(k−η); Ψ
a+ f(t, y(t))

]
t=a

.

(7.15)

Using the Theorem 4.8 with σ = k − ζk and µ = k − ν(k − η), we obtain[
kI
k−ν(k−η); Ψ
a+ f(t, y(t))

]
t=a

= 0. (7.16)

Using the definition of (k,Ψ)-Hilfer fractional derivative and equation (7.16), from equation
(7.15), we have

k,HD
η, ν; Ψ
a+ y(t) = f(t, y(t)), t ∈ (a, b].

Hence, equation (1.1) is verified. Now, it remains to verify initial condition (1.2). Taking
kI
k−ζk; Ψ
a+ on both sides of equation (7.4), using semigroup property for (k,Ψ)-RL fractional

integral and Theorem 4.3, we have

kI
k−ζk; Ψ
a+ y(t) =

ya
Γk(ζk)

kI
k−ζk; Ψ
a+ (Ψ (t)−Ψ (a))

ζk
k
−1 + kI

k−ζk+η; Ψ
a+ f(t, y(t))

=
ya

Γk(k)
+ kI

k−ν(k−η); Ψ
a+ f(t, y(t)).

Using the fact Γk(k) = 1, from above equation, we obtain[
kI
k−ζk; Ψ
a+ y(t)

]
t=a

= ya +
[
kI
k−ν(k−η); Ψ
a+ f(t, y(t))

]
t=a

.
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Using the equation (7.16) in above equation, we obtain[
kI
k−ζk; Ψ
a+ y(t)

]
t=a

= ya.

This proves the initial condition (1.2) is verified. 2

Remark 7.2

1. For k = 1, the above theorem include the result of [32].

2. For Ψ(t) = t and k = 1, the Theorem 7.1 includes the result of [3].

7.2 Existence and uniqueness of solution

Theorem 7.3 Let f : (a, b]× R → R be a function such that f(·, y(·)) ∈ Cν(k−η)

1− ζk
k

;Ψ
[a, b], for

any y ∈ C
1− ζk

k
;Ψ

[a, b]. Further, f satisfies Lipschitz condition in second argument as

|f(t, x)− f(t, y)| ≤ L |x− y| , for all t ∈ (a, b], (7.17)

where L > 0 and x, y ∈ R. Then, there exists a unique solution y ∈ Cζk
1− ζk

k
;Ψ

[a, b] for the

(k,Ψ)-Hilfer FDEs (1.1)-(1.2).

Proof: We prove the existence and uniqueness of solution for the (k,Ψ)-Hilfer FDEs (1.1)-
(1.2) through its equivalent fractional integral equation (7.4). Consider the operator A

defined by
Ay(t) = y0(t) + kI

η; Ψ
a+ f(t, y(t)), t ∈ (a, b],

where

y0(t) =
ya

Γk(ζk)
(Ψ (t)−Ψ (a))

ζk
k
−1 .

Then, the fractional integral equation (7.4) can be written as an operator equation

y(t) = Ay(t), t ∈ (a, b].

Firstly, it is proved that the (k,Ψ)-Hilfer FDEs (1.1)-(1.2) has unique solution in the
weighted space C

1− ζk
k

;Ψ
[a, b]. We prove that the operator A is contraction on the spaces

which depends on the subinterval that obtained from partitioning the interval [a, b].

Let any c1, c2 ∈ [a, b] with c1 < c2. Then, C
1− ζk

k
;Ψ

[c1, c2] is complete normed linear

space with norm

‖y‖C
1− ζk

k
;Ψ

[c1,c2] = max
t∈[c1,c2]

∣∣∣∣(Ψ (t)−Ψ (c1))1− ζk
k y (t)

∣∣∣∣ .
Since Ψ is continuous on [a, b] and η

k > 0 it is possible to select t1 ∈ (a, b] such that

w1 =
LΓk(ζk)

Γk(ζk + η)
(Ψ (t1)−Ψ (a))

η
k < 1, (7.18)
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where, L > 0 is the Lipschitz constant of the function f : (a, b] × R → R. Since for any
t ∈ [a, t1],

(Ψ (t)−Ψ (a))1− ζk
k y0(t) =

ya
Γk(ζk)

∈ C[a, t1],

we have
y0 ∈ C1− ζk

k
;Ψ

[a, t1]. (7.19)

Since f(·, y(·)) ∈ Cν(k−η)

1− ζk
k

;Ψ
[a, b], for any y ∈ C

1− ζk
k

;Ψ
[a, b], we have f(·, y(·)) ∈ Cν(k−η)

1− ζk
k

;Ψ
[a, t1],

for any y ∈ C
1− ζk

k
;Ψ

[a, t1]. Therefore, by Theorem 4.6, we have

kI
η; Ψ
a+ f(·, y(·)) ∈ C

1− ζk
k

;Ψ
[a, t1]. (7.20)

From equations (7.19) and (7.20), it follows that Ay ∈ C
1− ζk

k
;Ψ

[a, t1], and hence A is

mapping from C
1− ζk

k
;Ψ

[a, t1] into itself.

Let any y1, y2 ∈ C1− ζk
k

;Ψ
[a, t1]. By using definition of an operator A, Theorem 4.3 and

Lipschitz condition on f , we obtain

‖Ay1 −Ay2‖C
1− ζk

k
;Ψ

[a,t1]

= max
t∈[a,t1]

∣∣∣∣∣∣(Ψ (t)−Ψ (a))1− ζk
k

k Γk (η)

∫ t

a
Ψ′ (s) (Ψ (t)−Ψ (s))

η
k
−1 [f(s, y1(s))− f(s, y2(s))] ds

∣∣∣∣∣∣
≤ max

t∈[a,t1]

L (Ψ (t)−Ψ (a))1− ζk
k

k Γk (η)

∫ t

a
Ψ′ (s) (Ψ (t)−Ψ (s))

η
k
−1 (Ψ (s)−Ψ (a))

ζk
k
−1×∣∣∣∣(Ψ (s)−Ψ (a))1− ζk

k (y1(s)− y2(s))

∣∣∣∣ ds
≤ ‖y1 − y2‖C

1− ζk
k

;Ψ
[a,t1] L (Ψ (t)−Ψ (a))1− ζk

k kI
η; Ψ
a+ (Ψ (t)−Ψ (a))

ζk
k
−1

≤ ‖y1 − y2‖C
1− ζk

k
;Ψ

[a,t1] L (Ψ (t)−Ψ (a))1− ζk
k

Γk (ζk)

Γk (η + ζk)
(Ψ (t)−Ψ (a))

ζk+η

k
−1

≤ LΓk (ζk)

Γk (η + ζk)
(Ψ (t1)−Ψ (a))

η
k ‖y1 − y2‖C

1− ζk
k

;Ψ
[a,t1] .

Using the inequality (7.18), we have

‖Ay1 −Ay2‖C
1− ζk

k
;Ψ

[a,t1] ≤ w1 ‖y1 − y2‖C
1− ζk

k
;Ψ

[a,t1] .

Since 0 < w1 < 1, the operator A is contraction on (a, t1]. By Banach fixed point theorem,
there exists a unique solution y∗0 ∈ C1− ζk

k
;Ψ

[a, t1] to the fractional integral equation (7.4).

If t1 6= b, then we consider the interval [t1, b]. Let y ∈ C[t1, b] is the solution of the
fractional integral equation

y(t) = Ay(t) := y01(t)+
1

k Γk (η)

∫ t

t1

Ψ′ (s) (Ψ (t)−Ψ (s))
η
k
−1 f(s, y(s))ds, t ∈ [t1, b], (7.21)
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where

y01(t) =
ya

Γk(ζk)
(Ψ (t)−Ψ (a))

ζk
k
−1 +

1

k Γk (η)

∫ t1

a
Ψ′ (s) (Ψ (t)−Ψ (s))

η
k
−1 f(s, y(s))ds.

(7.22)
Note that y01 is known function as it is uniquely defined on (a, t1]. Again, by continuity of
Ψ, it is possible to select t2 ∈ (t1, b] such that

w2 =
L (Ψ (t2)−Ψ (t1))

η
k

η Γk(η)
< 1. (7.23)

Since f (·, y(·)) ∈ C[t1, t2], for any y ∈ C[t1, t2]. Therefore, by Theorem 4.7, we have

kI
η; Ψ
t1+f (·, y(·)) ∈ C[t1, t2]. (7.24)

Using the equation (7.22) and condition (7.24), it follows that A maps C[t1, t2] into itself.
Let any y1, y2 ∈ C[t1, t2]. Then, using the Lipschitz condition on the function f , we have

|Ay1(t)−Ay2(t)| =
∣∣∣ kIη; Ψ

t1+ [f (t, y1(t))− f (t, y2(t))]
∣∣∣

≤ L kI
η; Ψ
t1+ |y1(t)− y2(t)|

≤ L ‖y1 − y2‖C[t1,t2]
kI
η; Ψ
a+ (1)

=
L

η Γk(η)
(Ψ (t2)−Ψ (t1))

η
k ‖y1 − y2‖C[t1,t2] . (7.25)

Using (7.23) in the inequality (7.25), we have

‖Ay1 −Ay2‖C[t1,t2] ≤ w2 ‖y1 − y2‖C[t1,t2] .

Since 0 < w2 < 1, the operator A is contraction on [t1, t2].

Therefore, by Banach fixed point theorem, there exists a unique solution y∗1 ∈ C[t1, t2] to
the fractional integral equation (7.4). Note that at point t1, we have two different solutions
y∗0 and y∗1. But due to unique solution, we must have y∗0(t1) = y∗1(t1). Define y∗ : (a, t2]→ R
by

y∗(t) =

{
y∗0(t), t ∈ (a, t1]

y∗1(t), t ∈ (t1, t2].
(7.26)

Then, by Theorem 4.2, we have y∗ ∈ C
1− ζk

k
;Ψ

[a, t2]. Hence, y∗ is the unique solution of

integral equation (7.4) in C
1− ζk

k
;Ψ

[a, t2]. If t2 6= b then we repeat the above procedure as

necessary times, say N−2 times to obtain unique solution y∗k ∈ C[tk, tk+1], k = 2, 3, · · · , N−
1, where a = t0 < t1 < t2 < · · · tN = b such that

wk+1 =
L

η Γk(η)
(Ψ (tk+1)−Ψ (tk))

η
k < 1.

Proceeding in the similar way as discussed above, we obtain a unique solution y∗ ∈ C
1− ζk

k
;Ψ

[a, b]

to the fractional integral equation (7.4), given by

y∗(t) = y∗k(t), t ∈ (tk, tk+1], k = 0, 1, 2, · · · , N − 1.
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Now,we prove that the unique solution y∗ ∈ C
1− ζk

k
;Ψ

[a, b] lies in Cζk
1− ζk

k
;Ψ

[a, b]. From equa-

tion (7.4), we have

y∗(t) =
(Ψ (t)−Ψ (a))

ζk
k
−1

Γk(ζk)
ya + kI

η; Ψ
a+ f(t, y∗(t)), t ∈ (a, b]. (7.27)

Applying k,RLD
ζk; Ψ
a+ on both sides of equation (7.27) and using the Theorem 5.3, we obtain

k,RLD
ζk; Ψ
a+ y∗(t) =

ya
Γk(ζk)

k,RLD
ζk; Ψ
a+ (Ψ (t)−Ψ (a))

ζk
k
−1 + k,RLD

ζk; Ψ
a+

kI
η; Ψ
a+ f(t, y∗(t))

= k,RLD
ν(k−η); Ψ
a+ f(t, y∗(t)). (7.28)

By assumption f(·, y∗(·)) ∈ Cν(k−η)

1− ζk
k

;Ψ
[a, b] and hence, we get

k,RLD
ν(k−η); Ψ
a+ f(·, y∗(·)) ∈ C

1− ζk
k

;Ψ
[a, b]. (7.29)

From equation (7.28) and condition (7.29), it follows that

k,RLD
ζk; Ψ
a+ y∗(t) ∈ C

1− ζk
k

;Ψ
[a, b].

This implies y∗ ∈ Cζk
1− ζk

k
;Ψ

[a, b]. By Theorem 7.1, y∗ is the unique solution of the (k,Ψ)-

Hilfer FDEs (1.1)-(1.2). 2

8 Conclusion

• We introduced the most generalized variant of the Hilfer derivative namely (k,Ψ)-
Hilfer fractional derivative and proved few its properties. Many other properties of
(k,Ψ)-Hilfer fractional derivative are open for investigation.

• For k = 1, (k,Ψ)-Hilfer fractional derivative reduces to Ψ-Hilfer fractional derivative
[4]. For Ψ(t) = t and k = 1, (k,Ψ)-Hilfer fractional derivative reduces to Hilfer
fractional derivative [30].

• It is observed that the k-Hilfer fractional derivative defined in [19] does not includes
the k-RL fractional derivative. But the formula which we have defined in (3.8) includes
the k-RL fractional derivative as a particular case of it for ν = 0.

• For Ψ(t) = t and ν = 0, (k,Ψ)-Hilfer fractional derivative reduces to (k,Ψ)-RL
fractional derivative operator. Few properties of (k,Ψ)-RL fractional integral and
derivative are obtained.

• For Ψ(t) = t and ν = 1, (k,Ψ)-Hilfer fractional derivative reduces to (k,Ψ)-Caputo
fractional derivative operator. The properties of (k,Ψ)-Caputo fractional derivative
are open for investigation.

• For different function Ψ and the different values of the parameter ν, the (k,Ψ)-Hilfer
fractional derivative k,HD

η, ν ; Ψ
a+ produces distinct types of fractional derivative opera-

tors recorded in the Table 1.
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k,H
a D

η, ν ; Ψ
t Special Cases

Ψ(t) ν k > 0 k = 1

Ψ(t) 0 (k,Ψ)-RL Derivative k,RL
a D

η; Ψ
t Ψ-RL Derivative

Ψ(t) 1 (k,Ψ)-Caputo Derivative k,C
a D

η; Ψ
t Ψ-Caputo Derivative

t 0 k-RL Derivative k,RL
a D

η
t RL Derivative

t 1 k-Caputo Derivative k,C
a D

η
t Caputo Derivative

t ν k-Hilfer Derivative k,H
a D

η, ν
t Hilfer Derivative

tρ 0 k-Katugampola Derivative k
aD

η,ρ
t Katugampola Derivative

tρ 1 k-Caputo-Katugampola Derivative k,C
a D

η, ρ
t Caputo-Katugampola Derivative

tρ ν k-Hilfer-Katugampola Derivative k,HK
a D

η, ν
t Hilfer-Katugampola Derivative

log t 0 k-Hadmard Derivative k,H
a D

η
t Hadmard Derivative

log t 1 k-Caputo-Hadmard Derivative k,CH
a D

η
t Caputo-Hadmard Derivative

log t ν k-Hilfer-Hadmard Derivative k,HH
a D

η, ν
t Hilfer-Hadmard Derivative

Table 1: List of particular cases of (k,Ψ)-Hilfer fractional derivatives

• We have treated the existence and uniqueness of solution for nonlinear (k,Ψ)-Hilfer
FDEs. Many other qualitative properties of solution for nonlinear (k,Ψ)-Hilfer FDEs
are open for investigation
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