REFERENCES
Alvarez, A., Saez, J. M., Costa, J. S. D., Colin, V. L., Fuentes, M. S., Cuozzo, S. A., …Amoroso, M. J. (2017). Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere, 166 , 41–62. https://doi.org/10.1016/j.chemosphere.2016.09.070
Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26 , 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
Bao, S. D. (2000). Agriculture and chemistry analysis of soil. China Agriculture Press, Beijing
Bhattacharyya, R., Pandey, A. K., Gopinath, K. A., Mina, B. L., Bisht, J. K., & Bhatt, J. C. (2014). Fertilization and Crop Residue Addition Impacts on Yield Sustainability Under a Rainfed Maize–Wheat System in the Himalayas. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 86 , 21-32. https://doi.org/10.1007/s40011-014-0394-8
Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., . . . Brussaard, L. (2018). Soil quality – A critical review. Soil Biology and Biochemistry, 120 , 105-125. https://doi.org/10.1016/j.soilbio.2018.01.030
Cai, W., Li, Y., Wang, P. F., Niu, L. H., Zhang, W. L., & Wang, C. (2016). Revealing the relationship between microbial community structure in natural biofilms and the pollution level in urban rivers: A case study in the Qinhuai River basin, Yangtze River Delta. Water Science and Technology, 74 ,1163-1176. https://doi.org/10.2166/wst.2016.224
Callahan, B. J., Mcmurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., & Holmes, S. P. (2016). DADA2: high-resolution sample inference from illumina amplicon data. Nature Methods, 13 , 581–583. https://doi.org/10.1038/NMETH.3869
Carter, M. R., & Gregorich, E. G. (2007). Soil sampling and methods of analysis. Boca Raton, FL: CRC Press. https://doi.org/10.1201/9781420005271
Chen, Y. L., Xu, T. L., Veresoglou, S. D., Hu, H. W., Hao, Z. P., Hu, Y. J.,  … Chen, B. D. (2017). Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. Soil Biology and Biochemistry, 110 , 12-21. https://doi.org/10.1016/j.soilbio.2017.02.015
Cheng, Z., Zhang, F., Gale, W. J., Wang, W., Sang, W., & Yang, H. (2017). Effects of reclamation years on composition and diversity of soil bacterial communities in Northwest China. Canadian Journal of Microbiology, 64 , 28–40. https://doi.org/10.1139/cjm-2017-0362
Cheng, Z., Chen, Y., & Zhang, F. (2018). Effect of reclamation of abandoned salinized farmland on soil bacterial communities in arid Northwest China. Science of the Total Environment, 630 , 799–808. https://doi.org/10.1016/j.scitotenv.2018.02.259
Cheng, Z., Chen, Y., & Zhang, F. (2019). Effect of cropping systems after abandoned salinized farmland reclamation on soil bacterial communities in arid Northwest China. Soil and Tillage Research, 187 , 204–213. https://doi.org/10.1016/j.still.2018.12.015
Crecchio, C., Curci, M., Pellegrino, A., Ricciuti, P., Tursi, N., & Ruggiero, P. (2007). Soil microbial dynamics and genetic diversity in soil under monoculture wheat grown in different long-term management systems. Soil Biology and Biochemistry, 39 , 1391-1400. https://doi.org/10.1016/j.soilbio.2006.12.016
Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Jeffries, T. C., Gaitan, J. J., Encinar, D.,  … Singh, B. K. (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7 , 10541. https://doi.org/10.1038/ncomms10541
Djukic, I., Zehetner, F., Tatzber, M., & Gerzabek, M. H. (2010). Soil organicmatter stocks and characteristics along an alpine elevation gradient. Journal of Plant Nutrition and Soil Science, 173 , 30–38. https://doi.org/10.1002/jpln.200900027
Domínguez, M. T., Panettieri, M., Madejón, E., & Madejón, P. (2020). Thistle crops in marginal lands after compost addition: Plant biomass and effect on soil physical, chemical and biological properties. Land Degradation & Development, 31 , 1167–1175. https://doi.org/10.1002/ldr.3510
Ellouze, W., Esmaeili Taheri A, Bainard, L. D., Yang, C., Bazghaleh, N., Navarro-Borrell, A.,  … Hamel, C. (2014). Soil fungal resources in annual cropping systems and their potential for management. Biomed Research International, 2014 , 1–15. https://doi.org/10.1155/2014/531824
Ferreira, A. C. C., Leite, L. F. C., de Araújo, A. S. F., & Eisenhauer, N. (2016). Land-Use Type Effects on Soil Organic Carbon and Microbial Properties in a Semi-arid Region of Northeast Brazil. Land Degradation & Development, 27 , 171-178. https://doi.org/10.1002/ldr.2282
Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences, 103 , 626–631. https://doi.org/10.1073/pnas.0507535103
Franco-Otero, V. G., Soler-Rovira, P., Hernández, D., López-de-Sá, E. G., & Plaza, C. (2012). Short-term effects of organic municipal wastes on wheat yield, microbial biomass, microbial activity, and chemical properties of soil. Biology and Fertility Soils, 48 , 205–216. https://doi.org/10.1007/s00374-011-0620-y
Gao, L., Wang, R., Gao, J. M., Li, F. M., Huang, G. H., Huo, G., … Shen, G. M. (2020). Analysis of the structure of bacterial and fungal communities in disease suppressive and disease conducive tobacco-planting soils in China. Soil Research, 58 , 35-40. https://doi.org/10.1071/sr19204
Gong, L., He, G., & Liu, W. (2016). Long-term cropping effects on agricultural sustainability in Alar oasis of Xinjiang, China.Sustainability, 8 , 1–11. https://doi.org/10.3390/su8010061
Hendrix, M. S. (2000). Evolution of mesozoic sandstone compositions, southern Junggar, northern Tarim, and western Turpan basins, northwest China: A detrital record of the ancestral Tian Shan. Journal of Sedimentary Research, 70 , 520–532. https://doi.org/10.1306/2DC40924-0E47-11D7-8643000102C1865D
Huhe., Chen, X. J., Hou, F. J., Wu, Y. P., & Cheng, Y. X. (2017). Bacterial and fungal community structures in Loess Plateau grasslands with different grazing intensities. Frontiers in Microbiology, 8 , 606. https://doi.org/10.3389/fmicb.2017.00606
Kemp, P. F., & Aller, J. Y. (2004). Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiology Ecology, 47 , 161–177. https://doi.org/10.1016/S0168-6496(03)00257-5
Kerfahi, D., Tripathi, B. M., Dong, K., Go, R., & Adams, J. M. (2016). Rainforest conversion to rubber plantation may not result in lower soil diversity of bacteria, fungi, and nematodes. Microbial Ecology, 72 , 359-371. https://doi.org/10.1007/s00248-016-0790-0
Kowalchuk, G. A., Buma, D. S., de Boer, W., Klinkhamer, P. G. L., & van Veen, J. A. (2002). Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms.Antonie van Leeuwenhoek, 81 , 509–520. https://doi.org/10.1023/A:1020565523615
Köberl, M., Müller, H., Ramadan, E. M., & Berg, G. (2011). Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS ONE, 6 , e24452. https://doi.org/10.1371/journal.pone.0024452
Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., … Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6 , 1–8. https://doi.org/10.1038/ncomms7707
Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencingbased assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75 , 5111–5120. https://doi.org/10.1128/AEM.00335-09
Li, H., Chi, Z. F., Li, J. L., Wu, H. T., & Yan, B. X. (2019). Bacterial community structure and function in soils from tidal freshwater wetlands in a Chinese delta: Potential impacts of salinity and nutrient. Science of the Total Environment, 696 , 134029. https://doi.org/10.1016/j.scitotenv.2019.134029
Li, J. B., Liu, G. M., Kwak, J-H., Chang, S. X., Gao, H. C., Wu, Q. C.,  … Chen J. L. (2020). Reclamation of desert land to continuous cotton cropping affects soil properties and microbial communities in the desert-oasis ecotone of Xinjiang, China. Journal of Soils and Sediments, 20 , 862–873. https://doi.org/10.1007/s11368-019-02469-2
Li, J. B., Pokharel, P., Liu, G. M., & Chen, J. L. (2020). Reclamation of desert land to different land-use types changes soil bacterial community composition in a desert-oasis ecotone. Land Degradation & Development, 32 , 1389–1399. https://doi.org/10.1002/ldr.3803
Li, X. G., Ding, C. F., Zhang, T. L., & Wang, X. X. (2014). Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biology & Biochemistry, 72 , 11–18. 10.1016/j.soilbio.2014.01.019
Liu, X. B., Liu, J. D., Xing, B. S., Herbert, S. J., Meng, K., Han, X. Z., & Zhang, X. Y. (2005). Effects of long-term continuous cropping, tillage, and fertilization on soil organic carbon and nitrogen of black soils in China. Communications in Soil Science and Plant Analysis, 36, 1229–1239. https://doi.org/10.1081/CSS-200056917
Lu, R. (1999). Analytical methods of soil and agricultural chemistry. China Agricultural Science and Technology Press, Beijing
Ma, J. Y., Sun, W., Sun, H. L., & Wang, S. M. (2012). Stable carbon isotope characteristics of desert plants in the Junggar Basin, China.Ecological Research, 27 , 115–124. https://doi.org/10.1007/s11284-011-0878-4
Maestre, F. T., Delgado-Baquerizo, M., Jeffries, T. C., Eldridge, D. J., Ochoa, V., Gozalo, B.,  … Singh, B. K. (2015). Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences, 112 , 15684-15689. https://doi.org/10.1073/pnas.1516684112
Maron, P. A., Sarr, A., Kaisermann, A., Leveque, J., Mathieu, O., Guigue, J.,  … Ranjard, L. (2018). High microbial diversity promotes soil ecosystem functioning.  Applied and Environmental Microbiology, 84 , e02738-17. https://doi.org/10.1128/AEM.02738-17
Meng, M., Lin, J., Guo, X., Liu, X., Wu, J., Zhao, Y., & Zhang, J. (2019). Impacts of forest conversion on soil bacterial community composition and diversity in subtropical forests. Catena, 175 , 167–173. https://doi.org/10.1016/j.catena.2018.12.017
McArdle, B. H., & Anderson, M. J. (2001). Fitting multivariate models to community data: a comment on distance-based redundancy analysis.Ecology, 82 , 290-297. https://doi.org/10.1890/0012-9658(2001)082[0290:fmmtcd]2.0.co;2
Morvan, X., Saby, N. P., Arrouays, D., Le Bas, C., Jones, R. J., Verheijen, F. G., . . . Kibblewhite, M. G. (2008). Soil monitoring in Europe: a review of existing systems and requirements for harmonisation.Sci Total Environ, 391 (1), 1-12. https://doi.org/10.1016/j.scitotenv.2007.10.046
Mouazen, A. M., Steffens, M., & Borisover, M. (2016). Reflectance and fluorescence spectroscopy in soil science—Current and future research and developments. Soil and Tillage Research, 155 , 448-449. https://doi.org/10.1016/j.still.2015.09.002
Nanganoa, L. T., Okolle, J. N., Missi, V., Tueche, J. R., Levai, L. D., & Njukeng, J. N. (2019). Impact of different land-use systems on soil physicochemical properties and macrofauna abundance in the humid tropics of Cameroon. Applied and Environmental Soil Science, 2019 , 1–9. https://doi.org/10.1155/2019/5701278
Neilson, J. W., Califf, K., Cardona, C., Copeland, A., van Treuren, W., Josephson, K. L., … Maier, R. M. (2017). Significant impacts of increasing aridity on the arid soil microbiome. Systems, 2 , e00195-16. https://doi.org/10.1128/mSystems.00195-16
Oliver, D. P., Bramley, R. G. V., Riches, D., Porter, I., & Edwards, J. (2013). Review: soil physical and chemical properties as indicators of soil quality in Australian viticulture. Australian Journal of Grape and Wine Research, 19 (2), 129-139. https://doi.org/10.1111/ajgw.12016
Porras-Alfaro, A., Herrera, J., Natvig, D. O., Lipinski, K., & Sinsabaugh, R. L. (2011). Diversity and distribution of soil fungal communities in a semiarid grassland. Mycologia, 103 , 10-21. https://doi.org/10.3852/09-297
Prober, S. M., Leff, J. W., Bates, S. T., Borer, E. T., Firn, J., Harpole, W. S., … Fierer, N. (2015). Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters, 18 , 85-95. https://doi.org/10.1111/ele.12381
Qiao, H. X., Zhang, L. H., Shi, H. T., Song, Y. Z., & Bian, C. Z. (2018). Astragalus affects fecal microbial composition of young hens as determined by 16S Rrna sequencing.AMB Express, 8 , 70. https://doi.org/10.1186/s13568-018-0600-9
Ramirez, K. S., Leff, J. W., Barberán, A., Bates, S. T., Betley, J., Crowther, T. W., … Fierer, N. (2014). Biogeographic patterns in belowground diversity in New York City’s Central Park are similar to those observed globally. Proceedings. Biological Sciences, 281 , 20141988. https://doi.org/10.1098/rspb.2014.1988
Salama, F. M., Abd El-Ghani, M. M., El-Tayeh, N. A., Amro, A., & Abdrabbu, H. S. (2017). Correlations between soil variables and weed communities in major crops of the desert reclaimed lands in southern Egypt. Rendiconti Lincei, 28 (2), 363-378. https://doi.org/10.1007/s12210-017-0604-4
Schmidt, S. K., Nemergut, D. R., Darcy, J. L., & Lynch, R. (2014). Do bacterial and fungal communities assemble differently during primary succession? Molecular Ecology, 23 , 254-258. https://doi.org/10.1111/mec.12589
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, l1 , R60. https://doi.org/10.1186/gb-2011-12-6-r60
Sharma, N. K., Singh, R. J., Mandal, D., Kumar, A., Alam, N. M., & Keesstra, S. (2017). Increasing farmer’s income and reducing soil erosion using intercropping in rainfed maize-wheat rotation of Himalaya, India. Agriculture, Ecosystems & Environment, 247 , 43-53. https://doi.org/10.1016/j.agee.2017.06.026
Smith, B. F. L., & Bain, D. C. (1982). A sodium hydroxide fusion method for the determination of total phosphate in soils. Communications in Soil Science and Plant Analysis, 13 , 185–190. https://doi.org/10.1080/00103628209367257
Szoboszlay, M., Dohrmann, A. B., Poeplau, C., Don, A., & Tebbe, C. C. (2017). Impact of land-use change and soil organic carbon quality on microbial diversity in soils across Europe. FEMS Microbiology Ecology, 93 , 1–12. https://doi.org/10.1093/femsec/fix146
Thomson, B. C., Tisserant, E., Plassart, P., Uroz, S., Griffiths, R. I., Hannula, S. E., … Lemanceau, P. (2015). Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. Soil Biology and Biochemistry, 88 , 403–413. https://doi.org/10.1016/j.soilbio.2015.06.012
Tian, Q., Taniguchi, T., Shi, W. Y., Li, G., Yamanaka, N., & Du, S. (2017). Land-use types and soil chemical properties influence soil microbial communities in the semiarid Loess Plateau region in China.Scientific Reports, 7 , 45289. https://doi.org/10.1038/srep45289
Tosi, M., Correa, O. S., Soria, M. A., Vogrig, J. A., Sydorenko, O., & Montecchia, M. S. (2016). Land-use change affects the functionality of soil microbial communities: A chronosequence approach in the Argentinian Yungas. Applied Soil Ecology, 108 , 118-127. https://doi.org/10.1016/j.apsoil.2016.08.012
Wang, B., Zhang, C., Liu, J., Zeng, X., Li, F. R., Wu, Y. C., … Jia, Z. J. (2012). Microbial community changes along a land-use gradient of desert soil origin.Pedosphere, 22 , 593–603. https://doi.org/10.1016/S1002-0160(12)60044-7
Wasmund, K., Mußmann, M., & Loy, A. (2017). The life sulfuric: Microbial ecology of sulfur cycling in marine sediments.Environmental Microbiology Reports, 9 , 323–344. https://doi.org/10.1111/1758-2229.12538
Wu, W. C., Dong, C. X., Wu, J. H., Liu, X. W., Wu, Y. X., Chen, X. B., & Yu, S. X. (2017). Ecological effects of soil properties and metal concentrations on the composition and diversity of microbial communities associated with land use patterns in an electronic waste recycling region. Science of Total Environment, 601 , 57–65. https://doi.org/10.1016/j.scitotenv.2017.05.165
Xu, C. Y., Wang, T., Jia, C. B., & Guo, Y. (2020). Effects of different desert plants on the soil chemical properties and enzyme activities in helanshan Eatern region. Ecology and Environment, 29 , 2346–2354. https://doi.org/10.16258/j.cnki.1674-5906.2020.12.005
Yang, H. C., Zhang, F. H., Chen, Y., Xu, T. B., Cheng, Z. B., & Liang, J. (2016). Assessment of reclamation treatments of abandoned farmland in an arid region of China. Sustainability, 8 , 1183. https://doi.org/10.3390/su8111183
Yang, R., Du, Z., Kong, J., Su, Y., Xiao, X., Liu, T., . . . Fan, G. (2019). Patterns of soil nitrogen mineralization under a land use change from desert to farmland. European Journal of Soil Science . https://doi.org/10.1111/ejss.12823
Zumsteg, A., Luster, J., Göransson, H., Smittenberg, R. H., Brunner, I., Bernasconi, S. M., … Frey, B. (2012). Bacterial, archaeal and fungal succession in the forefield of a receding glacier. Microbial Ecology, 63 , 552-564. https://doi.org/10.1007/s00248-011-9991-8