Data Accessibility Statement
The RNAseq raw data are available with accession number GSE171268
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171268).
References
Alexa, A., Rahnenfuhrer, J., & Lengauer, T. (2006). Improved scoring of
functional groups from gene expression data by decorrelating GO graph
structure. Bioinformatics , 22 (13), 1600–1607. doi:10.1093/bioinformatics/btl140
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J.
(1990). Basic local alignment search tool. Journal of Molecular
Biology , 215 (3), 403–410. doi:10.1016/S0022-2836(05)80360-2
Altschul, Stephen F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang,
Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A
new generation of protein database search programs. Nucleic Acids
Research , 25 (17), 3389–3402. doi:10.1093/nar/25.17.3389
Antoine Puisay, Elleaume, N., Fouqueau, L., Lacube, Y., Goiran, C.,
Sidobre, C., … Hédouin, L. (2020). Parental bleaching
susceptibility leads to differences in larval fluorescence and dispersal
potential in Pocillopora acuta corals. Marine Environmental
Research , 105200. doi:10.1016/j.marenvres.2020.105200
Aubert, G., Hills, M., & Lansdorp, P. M. (2012). Telomere length
measurement—Caveats and a critical assessment of the available
technologies and tools. Mutation Research/Fundamental and
Molecular Mechanisms of Mutagenesis , 730 (1), 59–67. doi:10.1016/j.mrfmmm.2011.04.003
Barnes, R. P., Fouquerel, E., & Opresko, P. L. (2019). The impact of
oxidative DNA damage and stress on telomere homeostasis. Mech.
Ageing Dev. , 177 , 37–45. doi:10.1016/j.mad.2018.03.013
Bateson, M. (2016). Cumulative stress in research animals: Telomere
attrition as a biomarker in a welfare context? BioEssays ,38 (2), 201–212. doi:https://doi.org/10.1002/bies.201500127
Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009).
trimAl: A tool for automated alignment trimming in large-scale
phylogenetic analyses. Bioinformatics , 25 (15), 1972–1973.
doi:10.1093/bioinformatics/btp348
Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: An ultra-fast
all-in-one FASTQ preprocessor. Bioinformatics , 34 (17),
i884–i890. doi:10.1093/bioinformatics/bty560
Claar, D. C., Starko, S., Tietjen, K. L., Epstein, H. E., Cunning, R.,
Cobb, K. M., … Baum, J. K. (2020). Dynamic symbioses reveal
pathways to coral survival through prolonged heatwaves. Nature
Communications , 11 (1), 6097. doi:10.1038/s41467-020-19169-y
Danovaro, R., Bongiorni, L., Corinaldesi, C., Giovannelli, D., Damiani,
E., Astolfi, P., … Pusceddu, A. (2008). Sunscreens cause coral
bleaching by promoting viral infections. Environ. Health
Perspect. , 116 (4), 441–447. doi:10.1289/ehp.10966
Darriba, D., Posada, D., Kozlov, A. M., Stamatakis, A., Morel, B., &
Flouri, T. (2020). ModelTest-NG: A New and Scalable Tool for the
Selection of DNA and Protein Evolutionary Models. Molecular
Biology and Evolution , 37 (1), 291–294. doi:10.1093/molbev/msz189
Dias, M., Ferreira, A., Gouveia, R., Madeira, C., Jogee, N., Cabral, H.,
… Vinagre, C. (2019). Long-term exposure to increasing
temperatures on scleractinian coral fragments reveals oxidative stress.Marine Environmental Research , 150 , 104758. doi:10.1016/j.marenvres.2019.104758
Douglas, A. E. (2003). Coral bleaching—-how and why? Marine
Pollution Bulletin , 46 (4), 385–392. doi:10.1016/S0025-326X(03)00037-7
Downs, C. A., McDougall, K. E., Woodley, C. M., Fauth, J. E., Richmond,
R. H., Kushmaro, A., … Kramarsky-Winter, E. (2013). Heat-Stress
and Light-Stress Induce Different Cellular Pathologies in the Symbiotic
Dinoflagellate during Coral Bleaching. PLoS ONE , 8 (12),
e77173. doi:10.1371/journal.pone.0077173
Downs, Craig A., Kramarsky-Winter, E., Martinez, J., Kushmaro, A.,
Woodley, C. M., Loya, Y., & Ostrander, G. K. (2009). Symbiophagy as a
cellular mechanism for coral bleaching. Autophagy , 5 (2),
211–216. doi:10.4161/auto.5.2.7405
Edler, D., Klein, J., Antonelli, A., & Silvestro, D. (2020). RaxmlGUI
2.0: A graphical interface and toolkit for phylogenetic analyses using
RAxML. Methods in Ecology and Evolution . Retrieved fromhttps://doc.rero.ch/record/329733
Furla, P., Allemand, D., Shick, J. M., Ferrier-Pagès, C., Richier, S.,
Plantivaux, A., … Tambutté, S. (2005). The Symbiotic Anthozoan: A
Physiological Chimera between Alga and Animal. Integrative and
Comparative Biology , 45 (4), 595–604. doi:10.1093/icb/45.4.595
Gardner, S. G., Raina, J.-B., Nitschke, M. R., Nielsen, D. A., Stat, M.,
Motti, C. A., … Petrou, K. (2017). A multi-trait systems approach
reveals a response cascade to bleaching in corals. BMC Biology ,15 . doi:10.1186/s12915-017-0459-2
Gille, C., Fähling, M., Weyand, B., Wieland, T., & Gille, A. (2014).
Alignment-Annotator web server: Rendering and annotating sequence
alignments. Nucleic Acids Research , 42 (Web Server issue),
W3–W6. doi:10.1093/nar/gku400
Gilson, E., & Géli, V. (2007). How telomeres are replicated.Nature Reviews Molecular Cell Biology , 8 (10), 825–838.
doi: 10.1038/nrm2259
Giraud-Panis, M.-J., Pisano, S., Benarroch-Popivker, D., Pei, B., Le Du,
M.-H., & Gilson, E. (2013). One Identity or More for Telomeres?Frontiers in Oncology , 3 . doi:10.3389/fonc.2013.00048
Hughes, T. P., Anderson, K. D., Connolly, S. R., Heron, S. F., Kerry, J.
T., Lough, J. M., … Wilson, S. K. (2018). Spatial and temporal
patterns of mass bleaching of corals in the Anthropocene.Science , 359 (6371), 80–83. doi:10.1126/science.aan8048
Hughes, T. P., Kerry, J. T., Baird, A. H., Connolly, S. R., Dietzel, A.,
Eakin, C. M., … Torda, G. (2018). Global warming transforms coral
reef assemblages. Nature , 556 (7702), 492–496. doi:10.1038/s41586-018-0041-2
Jacome Burbano, M. S., & Gilson, E. (2020). Long-lived post-mitotic
cell aging: Is a telomere clock at play? Mechanisms of Ageing and
Development , 189 , 111256. doi:10.1016/j.mad.2020.111256
Kanehisa, M. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes.Nucleic Acids Research , 28 (1), 27–30. doi:10.1093/nar/28.1.27
Katoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment
Software Version 7: Improvements in Performance and Usability.Molecular Biology and Evolution , 30 (4), 772–780. doi:10.1093/molbev/mst010
Krämer, A., Green, J., Pollard, J., & Tugendreich, S. (2014). Causal
analysis approaches in Ingenuity Pathway Analysis.Bioinformatics , 30 (4), 523–530. doi:10.1093/bioinformatics/btt703
Kushmaro, A., Loya, Y., Fine, M., & Rosenberg, E. (1996). Bacterial
infection and coral bleaching. Nature , 380 (6573),
396–396. doi:10.1038/380396a0
Lange, T. de. (2005). Shelterin: The protein complex that shapes and
safeguards human telomeres. Genes & Development , 19 (18),
2100–2110. doi:10.1101/gad.1346005
Lesser, M. P. (1997). Oxidative stress causes coral bleaching during
exposure to elevated temperatures. Coral Reefs , 16 (3),
187–192. doi:10.1007/s003380050073
Letunic, I., & Bork, P. (2019). Interactive Tree Of Life (iTOL) v4:
Recent updates and new developments. Nucleic Acids Research ,47 (W1), W256–W259. doi:10.1093/nar/gkz239
Lewis, K. N., Andziak, B., Yang, T., & Buffenstein, R. (2012). The
Naked Mole-Rat Response to Oxidative Stress: Just Deal with It.Antioxidants & Redox Signaling , 19 (12), 1388–1399. doi:10.1089/ars.2012.4911
Li, J., Long, L., Zou, Y., & Zhang, S. (2021). Microbial community and
transcriptional responses to increased temperatures in coral Pocillopora
damicornis holobiont. Environmental Microbiology , 23 (2),
826–843. doi:https://doi.org/10.1111/1462-2920.15168
López-Otín, C., & Kroemer, G. (2021). Hallmarks of Health. Cell ,184 (1), 33–63. doi:10.1016/j.cell.2020.11.034
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2. Genome
Biology , 15 (12), 550. doi:10.1186/s13059-014-0550-8
Lyndby, N. H., Holm, J. B., Wangpraseurt, D., Grover, R., Rottier, C.,
Kühl, M., & Ferrier-Pagès, C. (2020). Effect of temperature and feeding
on carbon budgets and O2 dynamics in Pocillopora damicornis.Marine Ecology Progress Series , 652 , 49–62. doi:10.3354/meps13474
Ma, S., Upneja, A., Galecki, A., Tsai, Y.-M., Burant, C. F., Raskind,
S., … Gladyshev, V. N. (2016). Cell culture-based profiling
across mammals reveals DNA repair and metabolism as determinants of
species longevity. ELife , 5 , e19130. doi:10.7554/eLife.19130
Maor-Landaw, K., & Levy, O. (2016). Gene expression profiles during
short-term heat stress; branching vs. Massive Scleractinian corals of
the Red Sea. PeerJ , 4 , e1814. doi:10.7717/peerj.1814
Monaghan, P. (2014). Organismal stress, telomeres and life histories.Journal of Experimental Biology , 217 (1), 57–66. doi:10.1242/jeb.090043
Nandakumar, J., Bell, C. F., Weidenfeld, I., Zaug, A. J., Leinwand, L.
A., & Cech, T. R. (2012). The TEL patch of telomere protein TPP1
mediates telomerase recruitment and processivity. Nature ,492 (7428), 285–289. doi:10.1038/nature11648
Ottaviani, A., Eid, R., Zoccola, D., Pousse, M., Dubal, J.-M., Barajas,
E., … Allemand, D. (2020). Longevity strategies in response to
light in the reef coral Stylophora pistillata. Sci. Rep. ,10 (1), 19937. doi:10.1038/s41598-020-76925-2
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C.
(2017). Salmon provides fast and bias-aware quantification of transcript
expression. Nature Methods , 14 (4), 417–419. doi:10.1038/nmeth.4197
Pinzón, J. H., Kamel, B., Burge, C. A., Harvell, C. D., Medina, M.,
Weil, E., & Mydlarz, L. D. (2015). Whole transcriptome analysis reveals
changes in expression of immune-related genes during and after bleaching
in a reef-building coral. Royal Society Open Science ,2 (4). doi:10.1098/rsos.140214
Poulet, A., Pisano, S., Faivre-Moskalenko, C., Pei, B., Tauran, Y.,
Haftek-Terreau, Z., … Giraud-Panis, M.-J. (2012). The N-terminal
domains of TRF1 and TRF2 regulate their ability to condense telomeric
DNA. Nucleic Acids Research , 40 (6), 2566–2576. doi:10.1093/nar/gkr1116
Raices, M., Verdun, R. E., Compton, S. A., Haggblom, C. I., Griffith, J.
D., Dillin, A., & Karlseder, J. (2008). C. elegans Telomeres Contain
G-Strand and C-Strand Overhangs that Are Bound by Distinct Proteins.Cell , 132 (5), 745–757. doi:10.1016/j.cell.2007.12.039
Reef, R., Dunn, S., Levy, O., Dove, S., Shemesh, E., Brickner, I.,
… Hoegh-Guldberg, O. (2009). Photoreactivation is the main repair
pathway for UV-induced DNA damage in coral planulae. Journal of
Experimental Biology , 212 (17), 2760–2766. doi:10.1242/jeb.031286
Rosenberg, E., Kushmaro, A., Kramarsky-Winter, E., Banin, E., & Yossi,
L. (2009). The role of microorganisms in coral bleaching. The ISME
Journal , 3 (2), 139–146. doi:10.1038/ismej.2008.104
Seneca, F. O., & Palumbi, S. R. (2015). The role of transcriptome
resilience in resistance of corals to bleaching. Molecular
Ecology , 24 (7), 1467–1484. doi:10.1111/mec.13125
Sinclair, C. S., Richmond, R. H., & Ostrander, G. K. (2007).
Characterization of the telomere regions of scleractinian coral,
Acropora surculosa. Genetica , 129 (3), 227–233. doi:10.1007/s10709-006-0001-x
Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G., & van Woesik,
R. (2019). A global analysis of coral bleaching over the past two
decades. Nature Communications , 10 (1), 1264. doi:10.1038/s41467-019-09238-2
Tian, X., Firsanov, D., Zhang, Z., Cheng, Y., Luo, L., Tombline, G.,
… Gorbunova, V. (2019). SIRT6 Is Responsible for More Efficient
DNA Double-Strand Break Repair in Long-Lived Species. Cell ,177 (3), 622-638.e22. doi:10.1016/j.cell.2019.03.043
Traut, W., Szczepanowski, M., Vítková, M., Opitz, C., Marec, F., &
Zrzavý, J. (2007). The telomere repeat motif of basal Metazoa.Chromosome Research . doi:10.1007/s10577-007-1132-3
Traylor-Knowles, N., Rose, N. H., Sheets, E. A., & Palumbi, S. R.
(2017). Early Transcriptional Responses during Heat Stress in the Coral
Acropora hyacinthus. The Biological Bulletin , 232 (2),
91–100. doi:10.1086/692717
Tsuta, H., & Hidaka, M. (2013). Telomere length of the colonial coral
Galaxea fascicularis at different developmental stages. Coral
Reefs , 32 (2), 495–502. doi:10.1007/s00338-012-0997-6
Tsuta, Hiroki, Shinzato, C., Satoh, N., & Hidaka, M. (2014). Telomere
Shortening in the Colonial Coral Acropora digitifera During
Development. Zoological Science , 31 (3), 129–134. doi:10.2108/zsj.31.129
Voolstra, C. R., Li, Y., Liew, Y. J., Baumgarten, S., Zoccola, D., Flot,
J.-F., … Aranda, M. (2017). Comparative analysis of the genomes
of Stylophora pistillata and Acropora digitifera provides evidence for
extensive differences between species of corals. Scientific
Reports , 7 (1). doi:10.1038/s41598-017-17484-x
Ye, J., Renault, V. M., Jamet, K., & Gilson, E. (2014). Transcriptional
outcome of telomere signalling. Nature Reviews Genetics ,15 (7), 491–503. doi:10.1038/nrg3743
Young, A. J. (2018). The role of telomeres in the mechanisms and
evolution of life-history trade-offs and ageing. Philosophical
Transactions of the Royal Society B: Biological Sciences ,373 (1741), 20160452. doi:10.1098/rstb.2016.0452
Young, R. C., Orben, R. A., Will, A. P., & Kitaysky, A. S. (2017).
Relationship between telomere dynamics and movement and behavior during
winter in the thick‑billed murre. Marine Ecology Progress Series ,578 , 253–261. doi:10.3354/meps12022
Zhang, T., Zhang, Z., Shengzhao, G., Li, X., Liu, H., & Zhao, Y.
(2019). Strand break-induced replication fork collapse leads to
C-circles, C-overhangs and telomeric recombination. PLoS
Genetics , 15 (2), e1007925. doi:10.1371/journal.pgen.1007925
Zhou, Z., Wu, Y., Zhang, C., Li, C., Chen, G., Yu, X., … Huang,
B. (2017). Suppression of NF-κB signal pathway by NLRC3-like protein in
stony coral Acropora aculeus under heat stress. Fish & Shellfish
Immunology , 67 , 322–330. doi:10.1016/j.fsi.2017.06.027
Zielke, S., & Bodnar, A. (2010). Telomeres and telomerase activity in
scleractinian corals and Symbiodinium spp. The Biological
Bulletin , 218 (2), 113–121.
Figure
legends
Figure 1 : Stylophora pistillata shelterin proteins and
telomerase phylogenetic trees. Phylogenetic trees based on protein
sequences looking for human orthologs of S. pistillata shelterin
subunits.(A) RAP1 phylogenetic tree supports the presence of a conserved
protein between cnidarians (B) TRF phylogenetic tree supports the
presence of only one TRF shelterin in cnidarians and two in vertebrates
(TRF1 and TRF2) (C) TERT phylogenetic tree supports the presence of the
telomerase holoenzyme subunit in cnidarians conserved protein between
cnidarians (D) POT1 phylogenetic tree supports the presence of 2 POT1
shelterin in corals (S. pistillata , A. digitifera ,P. damicornis ) such as in C. elegans (POT1 and POT2) (E)
TPP1phylogenetic tree supports the presence of a conserved protein
between cnidarians (F) Scheme of Homo sapiens shelterin complex
and telomerase subunits and of Stylophora psitillata shelterin
and telomerase subunit found in this work. (G) Localization of conserved
domains (OB fold and Pot1-Cterminal domain) in human Pot1 and S.
pistillata Pot1 and Pot2.
Figure 2 : Stylophora pistillata dark induced bleaching
telomere length measured by Telomeric Restriction Fragment assay. (A)
Telomeric Restriction Fragment assay from D1 experiment, left panel is
showing the membrane labelled with the (TTAGGG)n coral DNA telomeric
sequence complementary probe and right panel is the membrane labelled
with the radioactive (TTTAGGG)n symbionts DNA telomeric sequence
complementary probe. 5 control branches and 6 bleached branches are
displayed. Bleached branches after 6 months of darkness exposure
exhibits a shorter telomeric smear signal with the (TTAGGG)n coral
telomere probe labelling and no signal with the (TTTAGGG)n symbiont
telomere probe (B) Boxplot of (TTAGGG)n coral telomere smear
measurements in kilobases (kb), IQ (interquartile distance between first
quartile Q1 and third quartile Q3), Mean telomere length and median
telomere length between bleached and control samples from experiment D1
(circles) and D2 (triangles), TL IQ, Mean, Median and Q3 was
significantly shorter in bleached conditions (respectively pvalue=0.0338,0.0338,0.498 and 0.0338) except for the Q1 that was not
significantly different between the two conditions (pvalue=0.114).
Figure 3 : Stylophora pistillata bleaching RNA sequencing
results. (A) Volcano plot of significantly differentially expressed
genes in bleached condition (pvalue<0.05) of the RNA
sequencing of 3 branches (n=nubbins) of control S. pistillatacolony S1 and dark induced bleached colony (S1B). (B) Common
differentially expressed gene in bleached transcriptome (left) and in
night and day transcriptome (right) from (Ottaviani et al., 2020),
log2(fold change) is displayed with colors (pink for negatively DEG and
green for positively DEG). (C) Significant differential expression
expressed in Log2(FoldChange) of telomere related genes (Gene names) in
bleached condition (p < 0.05). (D) Fold change log of
differentially expressed genes (Apod, CENPF, Profilin2, MAPK6, Pot2,
Plk1, Ddx21, Trpc5, Gnmt, PXDN) performed by quantitative PCR using two
different control genes (Pot1 and Trpc2) and by RNA sequencing.
Statistics were performed using student tests on log results of Pfaffl
equation (Supplementary table 3).
Figure 4 : Gene Ontology enrichment in bleached coral samples.(A) Biological process Go-term significant enrichment in dark induced
bleached samples. (B) Venn diagramm of Go-terms compared with previous
transcriptomic studies performed on heat induced bleaching samples.
Three biological process Go-terms of our study were found in one of the
four others as well as 1 cellular component and 1 molecular function
one. (C) Common Go-terms between our study and the investigated
transcriptomic studies. We included the study from (Zhou et al., 2017)
but due to a total absence of common Go-terms this crossing was not
displayed.