Data Accessibility Statement
The RNAseq raw data are available with accession number GSE171268 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171268).

References

Alexa, A., Rahnenfuhrer, J., & Lengauer, T. (2006). Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics , 22 (13), 1600–1607. doi:10.1093/bioinformatics/btl140
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology , 215 (3), 403–410. doi:10.1016/S0022-2836(05)80360-2
Altschul, Stephen F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research , 25 (17), 3389–3402. doi:10.1093/nar/25.17.3389
Antoine Puisay, Elleaume, N., Fouqueau, L., Lacube, Y., Goiran, C., Sidobre, C., … Hédouin, L. (2020). Parental bleaching susceptibility leads to differences in larval fluorescence and dispersal potential in Pocillopora acuta corals. Marine Environmental Research , 105200. doi:10.1016/j.marenvres.2020.105200
Aubert, G., Hills, M., & Lansdorp, P. M. (2012). Telomere length measurement—Caveats and a critical assessment of the available technologies and tools. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis , 730 (1), 59–67. doi:10.1016/j.mrfmmm.2011.04.003
Barnes, R. P., Fouquerel, E., & Opresko, P. L. (2019). The impact of oxidative DNA damage and stress on telomere homeostasis. Mech. Ageing Dev. , 177 , 37–45. doi:10.1016/j.mad.2018.03.013
Bateson, M. (2016). Cumulative stress in research animals: Telomere attrition as a biomarker in a welfare context? BioEssays ,38 (2), 201–212. doi:https://doi.org/10.1002/bies.201500127
Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009). trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics , 25 (15), 1972–1973. doi:10.1093/bioinformatics/btp348
Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics , 34 (17), i884–i890. doi:10.1093/bioinformatics/bty560
Claar, D. C., Starko, S., Tietjen, K. L., Epstein, H. E., Cunning, R., Cobb, K. M., … Baum, J. K. (2020). Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nature Communications , 11 (1), 6097. doi:10.1038/s41467-020-19169-y
Danovaro, R., Bongiorni, L., Corinaldesi, C., Giovannelli, D., Damiani, E., Astolfi, P., … Pusceddu, A. (2008). Sunscreens cause coral bleaching by promoting viral infections. Environ. Health Perspect. , 116 (4), 441–447. doi:10.1289/ehp.10966
Darriba, D., Posada, D., Kozlov, A. M., Stamatakis, A., Morel, B., & Flouri, T. (2020). ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models. Molecular Biology and Evolution , 37 (1), 291–294. doi:10.1093/molbev/msz189
Dias, M., Ferreira, A., Gouveia, R., Madeira, C., Jogee, N., Cabral, H., … Vinagre, C. (2019). Long-term exposure to increasing temperatures on scleractinian coral fragments reveals oxidative stress.Marine Environmental Research , 150 , 104758. doi:10.1016/j.marenvres.2019.104758
Douglas, A. E. (2003). Coral bleaching—-how and why? Marine Pollution Bulletin , 46 (4), 385–392. doi:10.1016/S0025-326X(03)00037-7
Downs, C. A., McDougall, K. E., Woodley, C. M., Fauth, J. E., Richmond, R. H., Kushmaro, A., … Kramarsky-Winter, E. (2013). Heat-Stress and Light-Stress Induce Different Cellular Pathologies in the Symbiotic Dinoflagellate during Coral Bleaching. PLoS ONE , 8 (12), e77173. doi:10.1371/journal.pone.0077173
Downs, Craig A., Kramarsky-Winter, E., Martinez, J., Kushmaro, A., Woodley, C. M., Loya, Y., & Ostrander, G. K. (2009). Symbiophagy as a cellular mechanism for coral bleaching. Autophagy , 5 (2), 211–216. doi:10.4161/auto.5.2.7405
Edler, D., Klein, J., Antonelli, A., & Silvestro, D. (2020). RaxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods in Ecology and Evolution . Retrieved fromhttps://doc.rero.ch/record/329733
Furla, P., Allemand, D., Shick, J. M., Ferrier-Pagès, C., Richier, S., Plantivaux, A., … Tambutté, S. (2005). The Symbiotic Anthozoan: A Physiological Chimera between Alga and Animal. Integrative and Comparative Biology , 45 (4), 595–604. doi:10.1093/icb/45.4.595
Gardner, S. G., Raina, J.-B., Nitschke, M. R., Nielsen, D. A., Stat, M., Motti, C. A., … Petrou, K. (2017). A multi-trait systems approach reveals a response cascade to bleaching in corals. BMC Biology ,15 . doi:10.1186/s12915-017-0459-2
Gille, C., Fähling, M., Weyand, B., Wieland, T., & Gille, A. (2014). Alignment-Annotator web server: Rendering and annotating sequence alignments. Nucleic Acids Research , 42 (Web Server issue), W3–W6. doi:10.1093/nar/gku400
Gilson, E., & Géli, V. (2007). How telomeres are replicated.Nature Reviews Molecular Cell Biology , 8 (10), 825–838. doi: 10.1038/nrm2259
Giraud-Panis, M.-J., Pisano, S., Benarroch-Popivker, D., Pei, B., Le Du, M.-H., & Gilson, E. (2013). One Identity or More for Telomeres?Frontiers in Oncology , 3 . doi:10.3389/fonc.2013.00048
Hughes, T. P., Anderson, K. D., Connolly, S. R., Heron, S. F., Kerry, J. T., Lough, J. M., … Wilson, S. K. (2018). Spatial and temporal patterns of mass bleaching of corals in the Anthropocene.Science , 359 (6371), 80–83. doi:10.1126/science.aan8048
Hughes, T. P., Kerry, J. T., Baird, A. H., Connolly, S. R., Dietzel, A., Eakin, C. M., … Torda, G. (2018). Global warming transforms coral reef assemblages. Nature , 556 (7702), 492–496. doi:10.1038/s41586-018-0041-2
Jacome Burbano, M. S., & Gilson, E. (2020). Long-lived post-mitotic cell aging: Is a telomere clock at play? Mechanisms of Ageing and Development , 189 , 111256. doi:10.1016/j.mad.2020.111256
Kanehisa, M. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes.Nucleic Acids Research , 28 (1), 27–30. doi:10.1093/nar/28.1.27
Katoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability.Molecular Biology and Evolution , 30 (4), 772–780. doi:10.1093/molbev/mst010
Krämer, A., Green, J., Pollard, J., & Tugendreich, S. (2014). Causal analysis approaches in Ingenuity Pathway Analysis.Bioinformatics , 30 (4), 523–530. doi:10.1093/bioinformatics/btt703
Kushmaro, A., Loya, Y., Fine, M., & Rosenberg, E. (1996). Bacterial infection and coral bleaching. Nature , 380 (6573), 396–396. doi:10.1038/380396a0
Lange, T. de. (2005). Shelterin: The protein complex that shapes and safeguards human telomeres. Genes & Development , 19 (18), 2100–2110. doi:10.1101/gad.1346005
Lesser, M. P. (1997). Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs , 16 (3), 187–192. doi:10.1007/s003380050073
Letunic, I., & Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Research ,47 (W1), W256–W259. doi:10.1093/nar/gkz239
Lewis, K. N., Andziak, B., Yang, T., & Buffenstein, R. (2012). The Naked Mole-Rat Response to Oxidative Stress: Just Deal with It.Antioxidants & Redox Signaling , 19 (12), 1388–1399. doi:10.1089/ars.2012.4911
Li, J., Long, L., Zou, Y., & Zhang, S. (2021). Microbial community and transcriptional responses to increased temperatures in coral Pocillopora damicornis holobiont. Environmental Microbiology , 23 (2), 826–843. doi:https://doi.org/10.1111/1462-2920.15168
López-Otín, C., & Kroemer, G. (2021). Hallmarks of Health. Cell ,184 (1), 33–63. doi:10.1016/j.cell.2020.11.034
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology , 15 (12), 550. doi:10.1186/s13059-014-0550-8
Lyndby, N. H., Holm, J. B., Wangpraseurt, D., Grover, R., Rottier, C., Kühl, M., & Ferrier-Pagès, C. (2020). Effect of temperature and feeding on carbon budgets and O2 dynamics in Pocillopora damicornis.Marine Ecology Progress Series , 652 , 49–62. doi:10.3354/meps13474
Ma, S., Upneja, A., Galecki, A., Tsai, Y.-M., Burant, C. F., Raskind, S., … Gladyshev, V. N. (2016). Cell culture-based profiling across mammals reveals DNA repair and metabolism as determinants of species longevity. ELife , 5 , e19130. doi:10.7554/eLife.19130
Maor-Landaw, K., & Levy, O. (2016). Gene expression profiles during short-term heat stress; branching vs. Massive Scleractinian corals of the Red Sea. PeerJ , 4 , e1814. doi:10.7717/peerj.1814
Monaghan, P. (2014). Organismal stress, telomeres and life histories.Journal of Experimental Biology , 217 (1), 57–66. doi:10.1242/jeb.090043
Nandakumar, J., Bell, C. F., Weidenfeld, I., Zaug, A. J., Leinwand, L. A., & Cech, T. R. (2012). The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature ,492 (7428), 285–289. doi:10.1038/nature11648
Ottaviani, A., Eid, R., Zoccola, D., Pousse, M., Dubal, J.-M., Barajas, E., … Allemand, D. (2020). Longevity strategies in response to light in the reef coral Stylophora pistillata. Sci. Rep. ,10 (1), 19937. doi:10.1038/s41598-020-76925-2
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods , 14 (4), 417–419. doi:10.1038/nmeth.4197
Pinzón, J. H., Kamel, B., Burge, C. A., Harvell, C. D., Medina, M., Weil, E., & Mydlarz, L. D. (2015). Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. Royal Society Open Science ,2 (4). doi:10.1098/rsos.140214
Poulet, A., Pisano, S., Faivre-Moskalenko, C., Pei, B., Tauran, Y., Haftek-Terreau, Z., … Giraud-Panis, M.-J. (2012). The N-terminal domains of TRF1 and TRF2 regulate their ability to condense telomeric DNA. Nucleic Acids Research , 40 (6), 2566–2576. doi:10.1093/nar/gkr1116
Raices, M., Verdun, R. E., Compton, S. A., Haggblom, C. I., Griffith, J. D., Dillin, A., & Karlseder, J. (2008). C. elegans Telomeres Contain G-Strand and C-Strand Overhangs that Are Bound by Distinct Proteins.Cell , 132 (5), 745–757. doi:10.1016/j.cell.2007.12.039
Reef, R., Dunn, S., Levy, O., Dove, S., Shemesh, E., Brickner, I., … Hoegh-Guldberg, O. (2009). Photoreactivation is the main repair pathway for UV-induced DNA damage in coral planulae. Journal of Experimental Biology , 212 (17), 2760–2766. doi:10.1242/jeb.031286
Rosenberg, E., Kushmaro, A., Kramarsky-Winter, E., Banin, E., & Yossi, L. (2009). The role of microorganisms in coral bleaching. The ISME Journal , 3 (2), 139–146. doi:10.1038/ismej.2008.104
Seneca, F. O., & Palumbi, S. R. (2015). The role of transcriptome resilience in resistance of corals to bleaching. Molecular Ecology , 24 (7), 1467–1484. doi:10.1111/mec.13125
Sinclair, C. S., Richmond, R. H., & Ostrander, G. K. (2007). Characterization of the telomere regions of scleractinian coral, Acropora surculosa. Genetica , 129 (3), 227–233. doi:10.1007/s10709-006-0001-x
Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G., & van Woesik, R. (2019). A global analysis of coral bleaching over the past two decades. Nature Communications , 10 (1), 1264. doi:10.1038/s41467-019-09238-2
Tian, X., Firsanov, D., Zhang, Z., Cheng, Y., Luo, L., Tombline, G., … Gorbunova, V. (2019). SIRT6 Is Responsible for More Efficient DNA Double-Strand Break Repair in Long-Lived Species. Cell ,177 (3), 622-638.e22. doi:10.1016/j.cell.2019.03.043
Traut, W., Szczepanowski, M., Vítková, M., Opitz, C., Marec, F., & Zrzavý, J. (2007). The telomere repeat motif of basal Metazoa.Chromosome Research . doi:10.1007/s10577-007-1132-3
Traylor-Knowles, N., Rose, N. H., Sheets, E. A., & Palumbi, S. R. (2017). Early Transcriptional Responses during Heat Stress in the Coral Acropora hyacinthus. The Biological Bulletin , 232 (2), 91–100. doi:10.1086/692717
Tsuta, H., & Hidaka, M. (2013). Telomere length of the colonial coral Galaxea fascicularis at different developmental stages. Coral Reefs , 32 (2), 495–502. doi:10.1007/s00338-012-0997-6
Tsuta, Hiroki, Shinzato, C., Satoh, N., & Hidaka, M. (2014). Telomere Shortening in the Colonial Coral Acropora digitifera During Development. Zoological Science , 31 (3), 129–134. doi:10.2108/zsj.31.129
Voolstra, C. R., Li, Y., Liew, Y. J., Baumgarten, S., Zoccola, D., Flot, J.-F., … Aranda, M. (2017). Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals. Scientific Reports , 7 (1). doi:10.1038/s41598-017-17484-x
Ye, J., Renault, V. M., Jamet, K., & Gilson, E. (2014). Transcriptional outcome of telomere signalling. Nature Reviews Genetics ,15 (7), 491–503. doi:10.1038/nrg3743
Young, A. J. (2018). The role of telomeres in the mechanisms and evolution of life-history trade-offs and ageing. Philosophical Transactions of the Royal Society B: Biological Sciences ,373 (1741), 20160452. doi:10.1098/rstb.2016.0452
Young, R. C., Orben, R. A., Will, A. P., & Kitaysky, A. S. (2017). Relationship between telomere dynamics and movement and behavior during winter in the thick‑billed murre. Marine Ecology Progress Series ,578 , 253–261. doi:10.3354/meps12022
Zhang, T., Zhang, Z., Shengzhao, G., Li, X., Liu, H., & Zhao, Y. (2019). Strand break-induced replication fork collapse leads to C-circles, C-overhangs and telomeric recombination. PLoS Genetics , 15 (2), e1007925. doi:10.1371/journal.pgen.1007925
Zhou, Z., Wu, Y., Zhang, C., Li, C., Chen, G., Yu, X., … Huang, B. (2017). Suppression of NF-κB signal pathway by NLRC3-like protein in stony coral Acropora aculeus under heat stress. Fish & Shellfish Immunology , 67 , 322–330. doi:10.1016/j.fsi.2017.06.027
Zielke, S., & Bodnar, A. (2010). Telomeres and telomerase activity in scleractinian corals and Symbiodinium spp. The Biological Bulletin , 218 (2), 113–121.

Figure legends

Figure 1 : Stylophora pistillata shelterin proteins and telomerase phylogenetic trees. Phylogenetic trees based on protein sequences looking for human orthologs of S. pistillata shelterin subunits.(A) RAP1 phylogenetic tree supports the presence of a conserved protein between cnidarians (B) TRF phylogenetic tree supports the presence of only one TRF shelterin in cnidarians and two in vertebrates (TRF1 and TRF2) (C) TERT phylogenetic tree supports the presence of the telomerase holoenzyme subunit in cnidarians conserved protein between cnidarians (D) POT1 phylogenetic tree supports the presence of 2 POT1 shelterin in corals (S. pistillata , A. digitifera ,P. damicornis ) such as in C. elegans (POT1 and POT2) (E) TPP1phylogenetic tree supports the presence of a conserved protein between cnidarians (F) Scheme of Homo sapiens shelterin complex and telomerase subunits and of Stylophora psitillata shelterin and telomerase subunit found in this work. (G) Localization of conserved domains (OB fold and Pot1-Cterminal domain) in human Pot1 and S. pistillata Pot1 and Pot2.
Figure 2 : Stylophora pistillata dark induced bleaching telomere length measured by Telomeric Restriction Fragment assay. (A) Telomeric Restriction Fragment assay from D1 experiment, left panel is showing the membrane labelled with the (TTAGGG)n coral DNA telomeric sequence complementary probe and right panel is the membrane labelled with the radioactive (TTTAGGG)n symbionts DNA telomeric sequence complementary probe. 5 control branches and 6 bleached branches are displayed. Bleached branches after 6 months of darkness exposure exhibits a shorter telomeric smear signal with the (TTAGGG)n coral telomere probe labelling and no signal with the (TTTAGGG)n symbiont telomere probe (B) Boxplot of (TTAGGG)n coral telomere smear measurements in kilobases (kb), IQ (interquartile distance between first quartile Q1 and third quartile Q3), Mean telomere length and median telomere length between bleached and control samples from experiment D1 (circles) and D2 (triangles), TL IQ, Mean, Median and Q3 was significantly shorter in bleached conditions (respectively pvalue=0.0338,0.0338,0.498 and 0.0338) except for the Q1 that was not significantly different between the two conditions (pvalue=0.114).
Figure 3 : Stylophora pistillata bleaching RNA sequencing results. (A) Volcano plot of significantly differentially expressed genes in bleached condition (pvalue<0.05) of the RNA sequencing of 3 branches (n=nubbins) of control S. pistillatacolony S1 and dark induced bleached colony (S1B). (B) Common differentially expressed gene in bleached transcriptome (left) and in night and day transcriptome (right) from (Ottaviani et al., 2020), log2(fold change) is displayed with colors (pink for negatively DEG and green for positively DEG). (C) Significant differential expression expressed in Log2(FoldChange) of telomere related genes (Gene names) in bleached condition (p < 0.05). (D) Fold change log of differentially expressed genes (Apod, CENPF, Profilin2, MAPK6, Pot2, Plk1, Ddx21, Trpc5, Gnmt, PXDN) performed by quantitative PCR using two different control genes (Pot1 and Trpc2) and by RNA sequencing. Statistics were performed using student tests on log results of Pfaffl equation (Supplementary table 3).
Figure 4 : Gene Ontology enrichment in bleached coral samples.(A) Biological process Go-term significant enrichment in dark induced bleached samples. (B) Venn diagramm of Go-terms compared with previous transcriptomic studies performed on heat induced bleaching samples. Three biological process Go-terms of our study were found in one of the four others as well as 1 cellular component and 1 molecular function one. (C) Common Go-terms between our study and the investigated transcriptomic studies. We included the study from (Zhou et al., 2017) but due to a total absence of common Go-terms this crossing was not displayed.