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Abstract

A comprehensive undertanding  of land-use/cover(LUC) change processes, their trends and future

trajectories  is  essential  for  the development  of sustainable  land-use management  plans.  While

contemporay tools can today be employed to monitor historical land-cover changes, prediction of

future change trajectories in most rural agro-ecological landscapes remains a challenge. This study

evaluated potential LUC changes in the transboundary Sio-Malaba-Malakisi River Basin of Kenya

and Uganda for  the period  2017-2047.  The land use change drivers  were obtained through a

rigorous fieldwork procedure and the Logistic Regression Model (LGM) to establish key factors

for the simulation. The CLUE-S model was subsequently adapted to explore future LUC change

trajectories under different scenarios. The model was validated using historical land cover maps

for  the  period  of 2008  and  2017,  producing  overall  accuracy  result  of  85.7% and  a  Kappa

coefficient of 0.78. The spatial distribution of vegetation cover types could be explained partially

by proximate factors like soil cation exchange capacity, soil organic carbon and soil pH. On the

other hand, built-up areas were mainly influenced by population density. Under the afforestation

scenario, areas under forest cover expanded further occupying 54.7% of the basin. Conversely,

under  the intense agriculture  scenario,  cropland and pasture cover  types occupied 78% of the

basin. However, in a scenario where natural forest and wetlands were protected,  cropland and

pasture only expanded by 74%.  The study successfully  outlined  proximate  land cover  change



drivers,  including  potential  future  changes  and could  be  used  to  support  the  development  of

sustainable long-term transboundary land-use plans and policy.
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1 Introduction 

Land use changes are universal earth processes of global importance and environmental change

research (Cegielska et al., 2018; Chen et al., 2019; Duveiller et al., 2020; Thenkabail, 2016). They

manifest locally but cumulatively affect the sustainability and proper functioning of Earth’s land

surface processes(Midekisa et al., 2017; Song et al., 2018) and system functioning(Lambin et al.,

2001). The net effects of Land Use Land Cover  Changes (LULCC) on socio-economic activities

and the well-being of environments are manifested differently in different geographical settings.

However,  the  outcome  is  generally  similar  exhibiting  both  short-term  and  long-term

impacts(Foley  et  al.,  2005;  Marcos-Martinez  et  al.,  2017).  Generally,  the  effects  of  land-use

change may lead to loss of critical biodiversity(Newbold et al., 2015), land degradation(Olang et

al., 2014), global climate change(Duveiller et al., 2020) and habitat destruction(Ban et al., 2015;

Du & Huang, 2017). At local scales, these may lead to loss of soil productivity, alterations of local

hydrological regimes(Olang et al., 2014), increasing risk of hazards like landslides(Lambin et al.,

2001), soil erosion and water pollution(Duveiller et al., 2020; Newbold et al., 2015; Schürz et al.,

2020).  Socio-economic  impacts  of  land  use  change  may  also  arise  from loss  of  livelihoods,

increased vulnerability to food insecurity and land related conflicts(Lone & Mayer, 2019).  

In sub-Saharan Africa where rain-fed agriculture is the dominant socio-economic activity

(Maitima et  al.,  2009),  the negative feedback from land-use changes and impacts on people’s

livelihoods are usually more pronounced and immediately felt by small-holder farmers and local

communities(Hartemink & van Keulen, 2005; Karamage et al., 2017; Lambin & Ehrlich, 1997).

The overall  increase in human population exerts more pressure on the limited productive land

resource leading to intensification of farming activities on small parcels of land and accelerating

the rate of degradation(Fetzel et al., 2016; Vanwalleghem et al., 2017). In some cases, farming

activities have shifted or expanded to ecologically fragile areas and other protected habitats thus

threatening  ecosystem  functions  and  stability  thus  completing  the  “cycle”  of

destruction(Karamage et  al.,  2017).  In smaller  catchment  areas,  the negative  effects  of LUCC

changes  take the form of  upstream-downstream conflicts(Fayos,  2002).  On the other  hand,  in

transboundary  catchments  setting  like  the  SMM  basin,  this  becomes  a  serious  issue  of



international  concern  involving  different  political  jurisdictions  with  the  potential  to  instigate

bilateral conflicts between neighboring states(Petursson et al., 2011).

Land  use-change  studies  attempt  to  qualitatively  and  quantitatively  measure  LULC

changes at different spatiotemporal scales using available satellite data (Ban et al., 2015) and field

measurement techniques(Congalton et al., 2014). Understanding the impacts of LUCC involves

unpacking  and  assessing  the  complex  interrelationships  between  the  biophysical  and  socio-

economic factors involved using empirical models and scientific tools (Behera & Behera, 2020).

However, developing sustainable land-use management plans and policy in the long-term requires

an assessment of future land-use trajectories using techniques that extrapolate trends and perform

scenario analysis  (Briassoulis, 2019). Land-use change models provide a means to explore and

simplify the complex spatiotemporal relationships between LUCC and potential driving factors

(Briassoulis, 2019; Peter H Verburg et al., 2004). Empirical and spatially explicit models have

been developed to study spatial patterns of LULC and therefore acting as decision support tools,

an  explanatory  means  of  observed  relationships,  prediction  and  impact  assessment  tools

(Briassoulis, 2019; UNDP, 2018; Peter H. Verburg et al., 2002, 2019).

Several models have been developed across the globe for assessing LULC changes and

understanding the complex linkages and feedbacks between these changes and potential driving

factors  (Chaudhuri  &  Clarke,  2013;  Irwin  &  Geoghegan,  2001;  Matthews  et  al.,  2007;  van

Soesbergen & MacArthur Foundation,  2016).  Yirsaw et  al.,  (2017) for instance used the CA-

Markov(Cecullar  Automata)  model  to  explore  future  LULC  changes  in  China  and  predict

ecosystem services values (ESV) for each LULC category. The model was able to predict how

each ESV was affected by different LULC activities over the course of the study period. However,

(Liping et al., 2018) used the same model in a similar geographical setting but prediction results

were affected by limited data  availability.  Saxena & Jat,  (2019) applied the SLEUTH model,

which is a CA-based model to capture the heterogenous urban landscape in India and recorded

satisfactory results that highlighted different forms of urban development. However, the model

could not capture small unit fragments of growth. Schulp et al., (2019) on the other hand used an

integrated approach by combining macro-economic, sectoral and land use allocation model (Dyna-

CLUE) to simulated land use changes in the cultural landscapes in Europe. Their study was able to

establish  the  co-occurrence  of  land  trajectories  and  cultural  landscape  types.  However,  local

change processes affecting cultural landscape were not well represented. 



The Conversion  of  Land use/cover  and its  Effects  at  Small  regional  extent  (CLUE-S)

model (Peter H. Verburg & Overmars, 2009) has also been used as a tool to model future changes

in LULC given a set of explanatory factors that drive the changes(P.H. Verburg & Overmars,

2007; Peter H. Verburg et al., 2002). CLUE-S model has been used in hydrological studies (Peng

et al., 2020; Waiyasusri et al., 2016; Wang et al., 2021; Zhou et al., 2013), land cover change

dynamics and environmental studies  (Behera & Behera, 2020; Griscom et al., 2010; Kucsicsa et

al., 2019; Mohammady et al., 2018; P.H. Verburg & Overmars, 2007) and urban studies (Huang et

al., 2019; Jiang et al., 2015). In southern Spain, (Claessens et al., 2009) coupled the CLUE model

with  a  landscape  process  model  to  investigate  the  interactions  between LULC and landscape

dynamics. In Africa, the CLUE-S model has been applied in various studies. For instance,  (Judex

&  Menz,  2006),  used  different  scenarions  to  model  land-cover  changes  in  a  West  African

catchment  using  the  CLUE-S  framework.  The  model  was  able  to  produce  realistic  model

predictions of the study using available biophysical and field data. In a similar study,  (Tizora et

al., 2018) applied the Dyna-CLUE model to simulate LULC change in South Africa and achieved

results that indicated a good simulation fit between model results and reference map. 

The CLUE-S model was therefore adopted in this study to model land use-cover changes

in SMM basin by first identifying important biophysical and socio-economic driving factors based

on trend extrapolation using historical land-cover change data for the past thirty years to model

future change trajectories under different realistic scenario conditions. The findings will contribute

scintific  knowledge and information to the ongoing land management  efforts  in the basin and

provide  critical  baseline  data  to  support  a  transboundary  and  integrated  land-use  planning

framework that fosters sustainable development

2 Materials and Methods

2.1 The Study Area 

The study was carried out in Sio-Malaba-Malakisi catchment located on the border region between

Kenya and Uganda (Fig. 1). It covers approximately 2,605 km2,  and extends from 105’10” N,

3406’10”  E  and  0014’45”  N,  34036’25”  E.  The  upper  reaches  of  the  catchment,  form  the

headwaters of rivers Malakisi, Malaba and Sio, flowing southwards towards Lake Victoria. The

altitude range between approximately 1100 to 4,200 m. The study area experiences a bimodal

rainfall  pattern(Alemayehu et al.,  2017), with a mean annual rainfall  of approximately 1500 –

2000mm (Reed & Clokie, 2000; Wanyama et al., 2020), characterized by a period of “long-rains”



(March – May), and “short-rains” (October – December)  (Ongoma et al., 2018). This coincides

with the passage of north-south/south-north intertropical convergence zone (ITCZ) (Camberlin &

Okoola,  2003;  Yang  et  al.,  2015).  Vegetation  distribution  is  influenced  by  altitude,  and  is

comprised of montane forest, bushland and grassland communities(Reed & Clokie, 2000). The

rich  volcanic  soils  support  crop  cultivation,  mainly  maize,  soy  beans,  sorghum,  millet,  rice,

peanuts, and vegetables. Coffee, sugarcane and cotton are important cash crops in the area. The

largely agrarian population, is approximated to be 192 persons km-2, by data from both Uganda

Bureau and Kenya Bureau of statistics. This population occupies a potential arable land of less

than 60% of the total basin area, thus exerting pressure on the limited land resource. 

The  Sio-Malaba-Malakisi  basin  is  a  transboundary  river  basin,  dominated  by  farming

communities mainly relying on rain-fed agriculture for their livelihood. However, over the recent

past,  the  basin  has  experienced  an  increase  in  human  population  (Roussel,  2012) leading  to

unsustainable land subdivision and intensification of land use activities. As a result, more pressure

has  been  exerted  on  the  limited  land  resource  leading  to  unplanned  land  use  activities  with

unpredictable outcomes. Consequently, agricultural activities have expanded in to marginal lands

including steep slopes of Mt. Elgon forest leading to massive soil erosion, land degradation and

sedimentation on Rivers Sio, Malaba and Malakisi(Karamage et al., 2017). These changes pose a

direct threat on the livelihoods of the basin community and the environment overall. An urgent

and sustainable solution to the prevailing land management problems is therefore required that

will support transboundary land use planning and policy in the area.



Figure 1. The location of the Sio-Malaba-Malakisi water catchment area between Kenya and 
Uganda

2.2 Data Status and Methods

2.2.1 Model Data Requirements

The data, their sources and applications important to define the land cover change driving factors

and subsequent simulation of the future spatial patterns of land use/cover types of the basin are

provided  in  Table  1.  The  datasets  can  be  summarized  as  climatic  (temperature  and  rainfall),

physiographic  (altitude,  slope,  aspect),  soil  chemical  properties  i.e.,  pH,  CEC,  SOC),  socio-

economic i.e., population density, literacy levels), and initial land-use map for the period of 2017

previously derived through consistent classification of Landsat 8 satellite data†. Another land-use

map  for  2018  representing  “reality”  was  used  for  validating  model  results  after  the  initial

simulation run. 

Table 1. Data requirements and applications for simulating LULC for SMM basin

Data Source Format Application

Cultivated crops Field survey (April – July, 2017) Questionnaire Total area under different crop 

†



category, distribution and yield

Farm inputs Field survey (April – July, 2017) Questionnaire Crop-yield estimation

Literacy level National Bureau of Statistics Text files Proxy for land use change driving 
factors

Land-use cover maps‡ Unites States Geological Survey 
(https://earthexplorer.usgs.gov/) 

Raster (GeoTIFF) For simulating land use change and
validation

Demographic data National Bureau of Statistics Text files Simulation for all scenarios
Altitude Digital elevation model (DEM – 90 m) Raster (GeoTIFF) Effect of relief on land-use/cover 
Slope (degree) Digital elevation model (DEM – 90 m) Raster (GeoTIFF) Effect of slope on land-use/cover
Aspect Digital elevation model (DEM – 90 m) Raster (GeoTIFF) Effect of aspect on land-use/cover
Proximity to roads 
(trunk, primary and 
secondary class)

Open street map roads. Distance 
calculated using Euclidean distance 
function 
(https://download.geofabrik.de/)

Raster (GeoTIFF) Effect of distance to roads on land 
use type (1 Km)

Proximity to rivers DEM. Distance calculated using 
Euclidean distance function

Raster (GeoTIFF) Effect of distance to rives on land 
use type (buffer dist. 1 Km)

Proximity to major 
towns

Open street map towns. Distance 
calculated using Euclidean distance 
function

Raster (GeoTIFF) Effect of distance to major towns 
on land use type (buffer dist. 5 km)

Erosion and deposition Calculation of erosion and deposition 
from RUSLE parameters

Raster grid Simulation of erosion effect on 
LULC

Annual average 
temperature

WorldClim (30 seconds/~1Km) Raster (GeoTIFF) Simulation of temperature effect of
on LULC pattern

Annual average 
precipitation (mm) 

WorldClim (30 seconds/~1Km) Raster (GeoTIFF) Simulation of precipitation effect 
of on LULC pattern

Soil cation exchange 
capacity in mmol(c)/kg

Soil Grids (250x250m) Raster (GeoTIFF Simulation of SCE on vegetation 
cover and pattern

Soil organic carbon in 
dg/kg

Soil Grids (250x250m) Raster (GeoTIFF Simulation of SOC on vegetation 
cover and pattern

pH water in soil Soil Grids (250x250m) Raster (GeoTIFF Simulation of pH on vegetation 
cover and pattern

The input layers for simulation i.e., all driving factors and the initial land cover map of the study,

were initially projected to the same coordinate reference system (WGS 1984 - UTM Zone 36N) of

the area and then resampled to 250x250m spatial resolution considering the large size of the basin

and data availability  (P. Verburg & Veldkamp, 2002). Thereafter, the layers were converted to

ASCII file format, as required by CLUE-S, each with the same number of rows, columns and

extent similar to the initial  land-use map layer of 2017. Tabular  data from questionnaires and

reports were vectorized in a Geographic Information Systems (GIS)  (P. Verburg & Veldkamp,

2002) and later interpolated into a raster grid using the inverse distance weighted method (Luo et

al., 2010) . 

2.3 Identification of Land Cover Change Driving Factors 

‡ This dataset was previously classified and the manuscript from this work is under review



The spatial representations of the potential land cover change driving factors in the study basin are

provided  in  Figure  2.  Considering  the  importance  of  agriculture  in  the  study  area,  the

identification of biophysical drivers of change was done by evaluating the strength of relationship

between  the  potential  driving  factors  and spatial  patterns  of  land use  types  against  classified

historical land cover maps of the study for the period 1985, 1995 and 2008. The use of exploratory

regression  analysis  (Braun & Oswald,  2011) produced the  highest  adjusted  R2 value  of  0.85

(85%) for all land cover classes from combined soil chemical properties, topographical factors and

climatic variables. Population density on the other hand produced an adjusted R2 value of 0.78.

Other underlying proximate causes of land cover change i.e., socio-economic factors like literacy

levels  of  the  household  head  and  per  capita  income  were  selected  using  questionnaires  and

interviews sessions conducted between May – July 2017,  and evaluated as potential proxies to

land-cover change in the study (Briassoulis, 2019; Veldkamp & Verburg, 2004). 



Figure 2. Selected biophysical and socio-economic potential land-use/cover driving factors for 

model simulation

2.4 Modelling Future Land-use –Land-cover Scenarios

2.4.1 Description of the CLUE-S Model 

For this study, the Conversion of Land Use and its Effects at Small regional extent (CLUE-S)

model was applied (Verburg et al., 2002; Verburg & Overmars, 2007). The model is an integrated,

spatially  explicit,  dynamic  and  multi-scale  modelling  framework  developed  at  Wageningen

University to model land-use change trajectories and processes that determine land-cover patterns

at local to regional scales (Briassoulis, 2019; Verburg & Overmars, 2009). The model is composed

of two modules namely: (i) a non-spatial demand module used to compute the cumulative area

change in LULC and, (ii) a spatially explicit allocation module used to allocate projected demands



in LULC to cell grids based on location characteristics, land-use transition sequences and demand

(Manual for the CLUE-Kenya application, 2005; Peter H. Verburg et al., 2002). The contribution

of potential  drivers (herein known as Explanatory Variables)  of land-use change are normally

estimated using empirical analytical methods (outside the model), where potential driving factors

are determined using either the local knowledge of the area or theories of factors of land-use

change  (D. & A., 1998; Lambin et al., 2001) Simulation using the model require definitions of

land requirements, spatial policies and restrictions, conversion elasticity and land use conversion

sequences. In this study, the variables were defined as follows:

(a) Land Requirements

The land requirement files were prepared through simple trend extrapolation in land use change

over the recent past into the near future  (P. Verburg & Schulp, 2005; Peter H. Verburg et al.,

2002). The trends were corrected for changes in population growth using population projection

data  from the  Kenya  National  Bureau  of  Statistics  (https://www.knbs.or.ke/)  and  the  Uganda

National Bureau of Statistics (https://www.ubos.org/). Three scenarios were explored in the study

based on historical  trends in the basin,  and their  overall  impact  on local  hydrology for future

assessment of effects on soil erosion and degradation processes. 

First  was  the  Agri-based Scenario  with  protection which  explored  possible  land-use

configurations and trajectories following two possibilities: The first explored a situation where the

amount  of annual  rainfall  received across the basin remains constant  and sufficient  enough to

support crop growth over the modelling period. In this case, it is assumed that the agricultural land

would expand into fallow and open fields with conditions suitable for agriculture. However, due to

land-use policy protecting zones of ecological importance i.e., wetlands and natural forest, pixels

representing such areas were constrained in the model from changing to cropland. In the second

Agri-based scenario without protection,  cropland areas would expand and occupy neighboring

wetland areas capable of supporting rice cultivation. This scenario assumes lack of enforcement of

existing land-use regulations leading to encroachment into wetlands. In addition, an increase in

commodity  prices  for  rice  and human  population  would  be  additional  driving  forces  for  this

conversion.

In the Afforestation scenario, the area covered by mixed forest class would increase as a

result of public education and the implementation of afforestation programs by public and local

private organizations aimed at reducing the rate of land degradation and massive soil erosion. In

this scenario, areas previously under open land category would be converted to mixed forest. It is



assumed that the rate of population growth would remain stable over the modelling period and

communities  living  in  SMM  basin  would  appreciate  the  benefits  of  soil  and  environmental

conservation.

(b) Spatial Policies and Restrictions

Spatial policies restrictions defined areas where change was allowed and areas under government

protection. In this study, we experimented with two scenarios. The first scenario represented status

quo in which existing policies  restricted  the conversion of  protected  areas  i.e.,  forest  reserve,

wetlands  and  catchments  area  to  other  land-use  types.  In  the  second  scenario,  a  section  of

protected land was converted to other land use types if they met certain set conditions i.e., forest

land with fertile soil and favorable climate was converted to agricultural land.

(c) Conversion Elasticities

Land use types were allowed to change from one state to another based on their elasticity. Lu

types with high capital investment or irreversible impact on the environment were not allowed to

easily change (Table 2). A dimensionless factor representing relative elasticity to conversation was

used  ranging  from  0-easy  conversion  to  1-  irreversible  change  (Kucsicsa  et  al.,  2019;  P.H.

Verburg & Overmars, 2007). Areas with permanent structures i.e., urban centers, tree cover and

wetlands  under  protected  area  were  assigned  high  elasticity  values  (0.7  –  0.9)  limiting  their

conversion to other land use types. Cropland and open soils on the other hand were assigned low

values (0 – 0.4).

Table 2. Land use conversion elasticities for SMM catchment

Land-use/cover class Elasticity
Mixed forest 0.9
Permanent wetland 0.8
Open land/field 0.1
Built-up 1.0
Water 1.0
Open shrubland 0.7
Barren 1.0
Cropland and pasture 0.2

(d) Land-use Conversion Sequence



The conversion sequence file outlines land-use/cover changes allowed and conversions that are

not possible. Possible conversions are normally a function of location characteristic defined in

equation 1 (P. Verburg et al., 2005). 

Rki=akX1 i+bk X2i+…(1)

Where R is the preference to devote location i to land use type k. X1,2,… are biophysical and socio-

economic characteristics of the location  i  and ak and bk represents the relative impact of these

characteristics on the preference of land use type K. The logit model (Judex & Menz, 2006; Peter

H. Verburg et al., 2002) was also used to relate probabilities of LULC allocations with biophysical

and socio-economic location characteristics following:

log {
Pi
1−P i }=β0+β1 X1 ,i+β2X2 , i…βn Xn ,i(2)

Where  Pi is the probability of a grid cell for the occurrence of the considered land use type on

location  i  and the X’s are the location factors. The coefficients  (β) were estimated using logistic

regression using the actual land use pattern as dependent variable (Schneider & Gil Pontius, 2001;

P. Verburg & Schulp, 2005).

2.5 The Modelling Approach Employed. 

The model was parameterized using thirteen independent  variables for the regression equation

with  most  variables.  The initial  model  run  allowed  changes  in  all  land-use  classes  without  a

constraining restriction file layer in place. Conversion elasticities were initially set to 0.1, which

made changes in all the classes possible.  After twenty model runs, elasticity values that provided

the most reliable results were 1.0, 0.9, 0.7, 0.8, 0.2, 1.0, 1.0, and 0.1 for barren, mixed forest, open

bushland,  permanent  wetland,  cropland  and  pasture,  built-up,  water  and  open  land/field

respectively. The output map was compared to the 2018 land-cover map used for calibration to

assess the level of agreement(Behera & Behera, 2020). The maps of simulated future change in

LULC were validated by cross-tabulating each class against the 2019 land use map. The degree of

agreement  between  the  two  maps  was  measured  to  determine  the  accuracy  of  the  results

(Schneider & Gil Pontius, 2001).

3 Results 

3.1 Importance of Driving Factors for dynamic LULC classes



A logistic regression analysis was carried out to determine the importance of each biophysical and

socioeconomic factors that influence location and spatial patterns of LULC in SMM. The ROC

values obtained for the mixed forest, permanent wetland, cropland and pasture and built-up classes

ranged between 0.6 – 0.7 (Table 3) indicating the results are statistically better than random (Gil

Pontius Jr & Schneider,  2001). Higher ROC values were noted among the cropland (0.6) and

mixed forest (0.7) classes (Fig.3) indicating a strong correlation between these land cover classes

and the selected driving factors against each LULC class. Generally, given the spatial dynamic

nature of cropland and pasture, more driving factors were included in the regression equation to

help explain the spatial distribution of cropland and pasture class across the basin. Proximity to

major roads, rivers and towns did not show significant influence on the spatial patterns of land use

classes  in  the  study  area.  However,  soil  chemical  properties  and  climatic  variables  strongly

influence spatial distribution of different crop types. Coffee and tea for instance, are found in high

altitude areas in the basin while grains and leguminous crops were found well distributed across

the basin. 

Table 3. Beta values for regression results of spatial distribution of land use in SMM basin

Mixed forest Permanent wetland Cropland and pasture Built-up Open bushland

Driver Beta Exp(B) Beta Exp(B) Beta Exp(B) Beta Exp(B) Beta Exp(B)

Constant -8.719 1.072 -1.300 -6.083 -2.393

Elevation 0.001 1.001 0.000 1.000 0.000 0.999 0.000 1.000 -0.001 0.999

Slope 0.015 1.015 -0.002 0.998 -0.028 0.972 0.034 1.034 0.000 1.000

Aspect 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000

Erosion/deposition 0.004 1.004 -0.004 0.996 -0.003 0.997 0.005 1.005 0.001 1.001

Ave. precipitation (p.a) 0.002 1.002 0.000 1.000 0.000 1.000 0.000 1.000 0.004 1.004

Ave. temperature (p.a) 0.003 1.003 0.025 1.025 0.015 1.015 0.002 1.002 0.023 1.023

Distance to stream 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000

Distance to road 0.000 1.000 -0.001 0.999 0.000 1.000 0.000 1.000 -0.001 0.999

Distance to town 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000

Population density 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000

Soil pH -0.015 0.985 0.091 1.096 0.027 1.028 0.38 1.039 -0.004 0.996

Soil cation exchange 

capacity

0.016 1.016 0.035 1.035 -0.019 0.981 0.001 1.001 -0.001 0.999

Soil organic carbon 0.023 1.023 -0.013 0.987 -0.006 0.994 -0.001 0.999 0.001 1.001

ROC value 0.698 0.580 0.612 0.578 0.597



Figure 3. Sensitivity analysis for (a) cropland and pasture, (b) mixed forest, (c) open bushland, (d)
permanent wetland, (e) built-up, (f) open field.  The area under the curve represents the ROC
values.

3.2 Validation against Historical Land cover states 

Historical land use maps for Sio-Malaba-Malakisi basin were available which made the validation

of  the  CLUE-S model  performance  possible.  Model  simulations  were  initialized  in  2008 and

thereafter a comparison between model results and actual land use changes was made. Eight land

use/cover types were simulated for SMM basin (Fig. 4). The most important land-use/cover types

were mixed forest, permanent wetland, cropland and pasture, open bushland, built-up and open

fields. During the simulation, the barren and water cover types remained static over the modeling

period. The Kappa statistic (Manakos & Braun, 2014) was used to evaluate the models ability to

replicate statistic was used to evaluate the model’s ability to replicate reality and the location of

land cover classes(Pontius & Neeti, 2010).  The model recorded overall accuracy of 85.7% and a

Kappa coefficient of 0.78 for the eight simulated classes. Built-up areas were exaggerated by 10%



due to a limited number of driving factors available in the model. However, barren and water areas

produced user’s accuracies  of 83.6% and 86.3% respectively indicating  the model’s  ability  to

replicate these classes.

Figure 4. Land use situation in the Sio-Malaba-Malakisi basin in 2008 and 2017 and simulated
land use in 2017. The study area covers a total extent of 5200km2. Each grid-cell is 250m.

3.3 Projected land-use cover for the period 2017 - 2047

Table 5 provides an illustration of changes in land cover classes under different scenarios. The

area in hectares for land cover classes for the starting period in the model are represented under

the current state column. In 2017, open fields occupied the largest land cover size in the basin at

40.1%. Cropland and pasture came second occupying 22.7%, while mixed forest, open shrubland,

permanent wetland and water occupied 6.8%, 6.7%, 9.2%, 0.3% respectively (Fig. 6-So). 

3.3.1 Scenario 1 – Projected LULC Change for Afforestation Scenario

The afforestation scenario explored changes in LULC in SMM over a continuous period of thirty

years  when  afforestation  programs  are  enhanced  across  the  basin  to  control  soil  erosion  and

vegetation cover. This scenario assumes availability of land and other incentives to promote the

growth of both exotic and indigenous trees by the local community. In addition, forested areas

previously lost to cropland in areas near Busitema forest and the southern edges of Mt. Elgon

forest would be reclaimed back.  In this scenario therefore, 64,279ha of mixed forest and 69,438ha

of open bush were recovered, representing a 54.7% and 50% growth respectively. This involved

conversion of previously open land and fallow areas capable of supporting trees (Fig. 5). On the

edges  of  Mt.  Elgon forest,  this  involved conversion  of  cropland areas  in  Chepyuk settlement



scheme  which  originally  were  under  natural  forest  in  1986.  Other  regions  that  experienced

significant  change  include  Busitema forest  in  Uganda and its  surroundings  areas  which  were

encroached by neighboring farming communities.

3.3.2 Scenario 2 – Projected LULC Change for Intense Agriculture Scenario

In the intense agriculture with no restrictions for expansion scenario  (S2), cropland and pasture

were projected to increase by 255,581ha and occupy up to 78.3% of the total basin area (Table 4)

representing a 49.6% growth from the base year. This involved conversion of open bushland and

open land and areas under permanent wetland to cropland and pasture (Fig. 5-S2). Improvement in

weather conditions, access to farm inputs like fertilizer and improvements in commodity prices

especially rice, were assumed to be key driving of change under this scenario.

Table 4. Percentage change in different land-use/cover classes under different scenarios

2017 2047

LULC S0 (ha) S1 (ha) S2 (ha) S3 (ha)

Water (Wt) 7781 7,325 7,169 7,169
Permanent wetland (Pw) 50,294 56,088 0 56,244
Open land (Ol) 206,700 0 0 0
Built-up (Bu) 17,475 22,088 22,088 22,088
Open bushland 34,719 104,157 0 0
Mixed forest (Mf) 35,188 99,467 67,688 67,688
Barren (Br) 15,263 14,894 14,894 14,894
Cropland and pasture (Cp) 147,580 210,981 403,161 346,917
Perc. change 54.7% 78.3% 61.7%



Figure  5. Land-use/cover change trajectories under afforestation(S1); Intense agriculture under
no  restrictions(S2)  and agriculture  expansion  under  protected  wetland(S3).  S0-current  LULC
state.

In figure 6-S2, areas that were previously under permanent wetland and open land areas in 2017

were  converted  to  cropland  as  a  result  of  the  expansion  and  intensification  of  agricultural

activities.  The  areas  under  mixed  forest  category  were  note  significantly  affected  by  this

expansion. 

3.3.3 Scenario 3 – Projected LULC Change for intense Agriculture under Protected Wetlands

The third scenario explored the land-cover trajectories in the basin when permanent wetlands areas

are protected from encroachment agricultural  activities. These changes were constrained in the

model by reducing conversion elasticities of permanent wetlands and mixed forest to 0.7 and 0.9

respectively.  However,  the  model  still  allowed  some changes  to  occur  in  areas  that  met  the

conversion criteria. Consequently, cropland and pasture increase by 199,337ha representing a 74%

increase from the initial modeling period. The constraint imposed in the model that reduced the

elasticity value of permanent wetland to 0.8, increased the conversion cost, subsequently leading

to the recovery of approximately 12% (5,950ha) of the permanent  wetland area. However,  all

available  land  under  open land  and  open  bushland  category  were  converted  to  cropland  and

pasture.  Overall,  areas  under  barren  and  water  covers  (Fig.  6-S0)  remained  static  over  the

modelling period with a constraining elasticity value of 1.0. This is because barren areas were

located in very high-altitude zones in the basin and are mainly covered by rock outcrops. Areas



under water on the other hand, were treated as protected areas with no conversion allowed. In

addition, such land cover types could not support agricultural activities. 

Figure 6. Model simulation results. S0 – Land-use situation at the start of the simulations in 2017;
S1, simulation results for the Afforestation scenario in 2047; S2, simulations result for 2047 under
intense agriculture conditions; S3, simulation results for 2047 under the intense agriculture under
protected land



Figure  7. Land cover types in SMM basin -  a) Areas of permanent wetland,  b) Cropland (rice)
cultivation on sections of wetlands,  c) Areas covered by permanent water (yellow arrows),  d)
Cultivation of food crops. Photos by Chasia and Wemer

4 Discussion

4.1 Accuracy assessment

Table 5 illustrates the cross-tabulation output for three scenarios over five model runs against the

reality  map.  The  false-positive  column  represents  pixels  considered  to  have  changed  in  the

modeled scenario output but in reality, the change didn’t occur. True-positive column on the other

hand represents pixels that changed in both reality and modeled scenario maps (Gil Pontius Jr &

Schneider, 2001). The ROC values for the afforestation scenario (S1), intense agriculture(S2), and

agriculture under protected wetlands scenario(S3), were 50%, 65% and 70% respectively.

Table 5. Cross tabulation between grid cells in a reality map and suitability map for 5 scenarios 
of afforestation, unrestricted intense agriculture, and intense agriculture within wetland 
protection

Scenario 
suitabilit
y

Reality Cumulative Reality Scenario statistics

Change No-change Change No-change Change Correct False positive True positive



S1  
1 0.1 0.1 0.1 0.1 12.3 99.9 11.1 6.7

2 0.6 0.4 0.7 0.5 65.7 99.5 55.6 46.7

3 0.2 0.2 0.9 0.7 21.6 99.3 77.8 60.0

4 0.4 0.1 1.3 0.8 2.1 99.2 88.9 86.7

5 0.2 0.1 1.5 0.9 2.4 99.1 100 100

S2

1 0.2 0.5 1.7 1.4 3.1 3.4 41.2 43.6

2 0.4 0.7 2.1 2.1 4.2 97.9 61.8 53.8

3 0.3 0.3 2.4 2.4 4.8 97.6 70.6 61.5

4 0.9 0.4 3.3 2.8 6.1 97.2 82.4 84.6

5 0.6 0.6 3.9 3.4 7.3 96.6 100 100

S3

1 0.4 0.2 4.3 3.6 7.9 17.4 20.7 81.1

2 0.3 0.3 4.6 3.9 8.5 96.1 22.4 86.8

3 0.4 0.7 5.0 4.6 9.6 95.4 26.4 94.3

4 0.2 0.5 5.2 5.1 10.3 94.9 29.3 98.1

5 0.1 12.3 5.3 17.4 22.7 82.6 100 100

Generally, there was a low agreement (ROC 50%) between afforestation scenario and the reality

map. However, intense agriculture and agriculture under protected wetlands, recorded relatively

higher  ROC values  of  65% and 70% respectively,  indicating  a  moderate  to  strong agreement

between the modeled scenarios and the reality map. The lower ROC values for the afforestation

scenario is attributed to the low elasticity values for open land and cropland classes which were

easily converted to the mixed forest class. Among the twelve potential  drivers analyzed in the

study against  the  land-use/cover  classes,  distance  to  streams,  road and towns  had little  to  no

influence on the location of land use activities (Fig. 8). However, chemical soil properties of pH,

organic carbon content, and the cation exchange capacity had a significant influence on cropland

and pasture, mixed forest class and permanent wetlands classes. The nature of soil property which

determines agricultural productivity was considered important in SMM basin since majority of the

community members there practice agriculture. The higher pH values for the permanent wetland

class could be attributed to nutrient loads from fertilizers washed off the farms and transported by

surface run-off to nearby rivers draining their water into the wetlands. 



Figure 8. Beta values from regression analysis indicating importance of biophysical and socio-
economic driving factors used for LULC classes

The afforestation scenario in the study presented an optimistic view of land management in the

basin following years of intensive human activities leading to land degradation. In this scenario,

areas that were originally under natural forests were reclaimed while any available open land area

capable of supporting tree plantations would be used to increase the percentage forest cover. The

scenario  envisioned  a  situation  where  incentives  for  land  conservation  outweighed short-term

benefits  that  normally  lead  to  soil  erosion  and  land  degradation.  Scenario  two  under  intense

agriculture presented a situation where farmlands extend into protected areas including wetlands

and open fields capable of supporting agriculture. A steady increase in human population and an

improvement in market prices, promoted the growth of rice in sections of wetlands capable of

supporting rice cultivation.  Other factors that  promote crop cultivation  include access to farm

inputs like fertilizers and farming technology. The third scenario projected a future characterized

by expansion in agriculture but only in areas not restricted by government policy like protected

areas. In this scenario therefore, less than 0.4% of the permanent wetland area would be converted

to cropland and pasture. 

In  conclusion,  scenarios  used  in  this  study  were  based  on  local  knowledge  and  analysis  of

historical land-cover data applying trend extrapolation technique. Future patterns in LULC in the



study  were  mainly  influenced  by  biophysical  variables  which  are  known  to  control  certain

conditions  like  suitable  areas  for  plant  growth i.e.,  temperature  regime,  precipitation  and soil

fertility. However, access to modern technology, farmers training and use of fertilizers has enabled

farmers  to  overcome some of  the  biophysical  limiting  factors  that  control  land use activities.

Consequently, this study considers socio-economic drivers playing an important role in land use

decisions and model performance in the basin. 
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