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Abstract

Invasive  Non-Native  Species  (INNS)  can  co-transport  externally  and  internally  other

organisms including viruses, bacteria and other eukaryotes (including metazoan parasites),

collectively referred to as the symbiome. These symbiotic organisms include pathogens, a

small minority of which are subject to surveillance and regulatory control, but most of which

are  currently  unscrutinised  and/or  unknown.  The  (putatively)  pathogenic  symbionts  co-

transported by an INNS host may be latent or associated with asymptomatic infection and

unable to cause disease in the INNS, but may be opportunistic  pathogens of other hosts,

causing impact to one or more hosts in their new range. These pathogens potentially pose

diverse  risks  to  other  species,  with  implications  for  increased  epidemiological  risk  to

agriculture  and  aquaculture,  wildlife/ecosystems,  and  human  health  (zoonotic  diseases).

Aquatic INNS and their symbionts have many introduction pathways, including commodity

and  trade  (releases,  escapes,  contaminant),  transport  (stowaway),  and  dispersal  (corridor,

unaided).  The  risks  and  impacts  arising  from  co-transported  pathogens,  including  other

symbionts of unknown pathogenic virulence,  remain largely unexplored,  unlegislated,  and

difficult to identify and quantify. Here, we propose a workflow to determine any known and

potential pathogens of aquatic INNS. This workflow acts as a prerequisite for assessing the

nature and risk posed by co-transported symbionts of INNS. A better understanding of co-

transported organisms, the risks they pose and their impact, is necessary to inform policy and

INNS risk assessments. This leap in evidence will be instrumental to devise an appropriate

set of statutory responsibilities with respect to these symbionts, and to underpin new and

more effective legislative processes relating to the disease screening and risk assessment of

INNS. 

KEYWORDS

INNS, Alien Species, Invasive Pathogen, Parasite, Symbiont, Opportunistic pathogen

1  |  INTRODUCTION

Invasive  Non-Native  Species  (INNS)  are  “species  whose  introduction  by  human activity

outside their  natural  past  or present distribution threatens  biodiversity”  as defined by the

Convention  on Biological  Diversity  (CBD,  2010),  and  are one  of  the  greatest  threats  to

biodiversity  (IPBES global  assessment,  2019).  New introductions  of INNS are increasing
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globally each year, with no indication that introduction events are decreasing in frequency

(Seebens et  al.,  2020).  It  is  increasingly recognised that  invasions are  not the product of

single  species  introduction  but  are  present  as  holobionts  (Skillings,  2016):  i.e.,  units  of

biological  organisation  including  the  host  and  all  its  symbionts  (external  and  internal),

including pathogenic species. Therefore,  organisms such as viruses, bacteria, fungi, protists

and other (micro-)eukaryotic parasites and pathogens are introduced to new regions along

with  their  invasive  non-native  host  and can  be  important  factors  in  the  invasion  process

(Peeler  et  al.,  2011; Roy et  al.,  2017).  A broad basis for referring to these organisms as

‘pathogens’ is required: they may not be recognized as pathogens, or cause disease in the

INNS host transporting them, but may impact on or more related (or unrelated) hosts in their

new  range.  Further,  pathogenesis  can  be  very  context  dependent,  as  described  by  the

symbiotic continuum concept (Bass & del Campo, 2020). Therefore a biologically informed

approach to horizon scanning for such ‘pathogens’ is necessary, to enable effective horizon

scanning for potentially new and emerging diseases. For the purposes of this paper, to avoid

repetition of “parasites/pathogens” to refer to symbionts that take nutritional advantage of

their hosts potentially causing disease, we henceforth use “parasite” as a catch-all term.

In the field of invasion biology,  invasions by pathogens (emerging infectious  diseases in

public  and wildlife  health)  are increasingly being researched as important  driving factors

(Ogden et al., 2019; Thakur et al., 2019); however, this is not currently reflected in national

and international policy and legislation. For example, co-introduced pathogens are explicitly

excluded from the EU Invasive  Alien Species  Regulation  1143/2014.  Instead,  potentially

invasive co-introduced pathogens are considered as potential impacts of INNS establishment.

Understanding and predicting the impacts of INNS is essential to inform risk analysis, for

example,  via horizon scanning, risk assessments and impact  assessments,  which underpin

many components of INNS policy and management.  However, pathogens associated with

most (potential) INNS are very poorly known (Roy et al.,  2017; Pagenkopp et al.,  2020),

except in the few cases where they are recognised under animal disease or human health

legislation and are monitored and reported accordingly. In general, INNS risk analyses focus

on the environmental and/or cumulative impacts of INNS, without (specific) reference to co-

transported pathogens and symbionts (e.g., Dick et al., 2017).

Knowledge  and  policy  gaps  result  in  inadequate  scrutiny  and  assessment  of  the  risks

associated  with  co-introduced symbionts  (including  parasites/pathogens)  into  new regions
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and countries (Hulme, 2014; Dunn and Hatcher, 2015). Earlier and more comprehensive risk

assessments for horizon INNS, with a focus on pathogenic impacts is urgently needed (Roy et

al., 2017); supported by the prioritisation of empirical research required to cover knowledge

gaps  about  transmitted  pathogens  (Chinchio  et  al.,  2020).  Therefore,  a  framework  for

quantifying  and  documenting  our  existing  knowledge  of  invasive  animals  and  plant

symbionts  (including  pathogens)  is  vital.  This  involves  conducting  literature-based  and

pathogen screening tools to fill knowledge gaps, where such information is lacking. These

data will then lead to the development of invader pathogen profiles, outlining what is known

about the invader’s pathogens/symbionts and those of related taxa. 

In this paper we present a framework to meet these imperatives. This can be applied to INNS

already present in a region, those with the potential to arrive, and those already present but

yet to establish. For the purposes of this paper, we focus on (potentially) pathogenic/parasitic

symbionts of aquatic INNS of concern to the UK, which may be permanently or transiently

associated  with  one  or  multiple  water  bodies.  We  include  all  symbiont  types:  viral,

microscopic,  and macroscopic parasites  (including Metazoa).  The underlying premise can

also be applied equally to all habitat types, and all symbionts including pathogens/parasites

that  manipulate  behaviours  of  one  or  more  of  their  hosts,  and  symbionts  that  have  no

discernible effect on their hosts.

2. | BIOLOGY AND ECOLOGY OF PARASITES CO-TRANSPORTED BY INNS 

Movement  of INNS beyond their  native  range can result  in changes  to  established host-

pathogen/parasite  relationships,  including INNS losing or  gaining  parasites  (Peeler  et  al.,

2011;  Dunn  &  Hatcher,  2015;  Vilcinskas,  2015).  The  multitude  of  potential  outcomes

resulting from relationship changes are summarized the schematic shown in Figure 1. The

enemy release hypothesis (see glossary) states that INNS can lose their parasites as they

move into a new range, which may be due to ecological factors, or for heteroecious parasites,

the  absence  of  a  secondary  host  (Colautti  et  al.,  2004).  Co-introduced  parasites  can

potentially infect native species (Keane & Crawley, 2002). In some cases, parasite loss can

also increase invasion success by reducing parasite burden and associated health costs as well

as  reducing/eliminating  competing  susceptible  native  species  (Prenter et  al.,  2014).

Furthermore, lack of co-evolution potentially results in the increased susceptibility of native

hosts to the invading parasite (Taraschewski, 2006). For example, a study comparing invasive
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parasite  pathogenicity  in  co-introduced  and  native  hosts  suggests  that  in  85% of  cases,

pathogenicity is higher in native hosts compared to non-native hosts (Lymbery et al., 2014).

INNS can also affect  native  host-parasite  relationships,  altering  population  dynamics  and

disease  transmission.  Theiltges  et  al.  (2008)  demonstrated  that  the  presence  of  invasive

Crepidula fornicata and  Crassostrea  gigas significantly  reduced  the  trematode  parasite

burden of native  Mytilis edulis, by interfering with the transmission of free-living infective

trematode  larval  stages  and  therefore  reducing  infection  of  M.  edulis.  Host-parasite

ecosystem interactions  prove  complex,  creating  challenges  for  the  prediction  of  invasion

success  at  different  locations.  The  invasive  amphipod  Echinogammarus ischnus has

outcompeted the native  Gammarus fasciatus at many locations in the Great Lakes and St.

Lawrence River in North America through predation and competition (Dermott et al., 1998).

A native oomycete infects E. ischnus and causes greater mortality to the invasive host than to

the native G. fasciatus, which facilitates the coexistence of the two species in areas of disease

prevalence (Kestrup et al., 2011). This relationship is further nuanced in that  E. ishnus can

also act as a reservoir of the oomycete and facilitate parasite spillback to native amphipods.

Many diseases initially thought to be caused by one primary agent are now known to be the

result of interactions between multiple symbionts, the host, and their environment; resulting

in the pathobiome concept (Bass et al., 2019). Each INNS individually co-transports its own

symbiome, making it difficult to predict its effect on the invaded ecosystem. A survey of

symbionts  of  the  invasive  green  crab  Carcinus  maenas in  its  native  and  invaded  range

showed  many  co-transported  parasites  persisted  within  the  host  at  its  invasion  territory

(Bojko et al., 2018). The latest approximation suggests this species is associated with ~82

known symbionts, many of which are pathogenic and pose risks to native ecosystems and the

bioeconomy (Bojko et al., 2020).

The combination of hosts and their symbionts is of more immediate concern than considering

the  simple  transposition  of  a  pathogenic  agent,  such as  a  single  virus  or  bacterium.  Co-

introduction of symbionts with an INN host is more likely to result in pathogen establishment

because the co-evolved biological system is already in place to facilitate transmission (Peeler

et al., 2011). Generalist pathogens are the main cause for concern since they can utilize native

hosts more readily (Peeler et al.,  2011). Symbiotic co-invaders may also present parasitic

traits in new locations. For example,  Aphanomyces astaci, the oomycete agent of crayfish
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plague,  is  a symbiont  of many invasive North American crayfish species (Tilmans et  al.,

2014);  however,  the  introduction  of  A.  astaci into  Europe  has  resulted  in  large-scale

mortalities  in  native  crayfish  populations,  including:  Austropotamobius  pallipes,  Astacus

astacus and  Astacus leptodactylus. In some cases, their local extinction is possible and has

been noted in many regions (Mrugula et al., 2014). Box 1 details examples of known co-

transported  pathogens  and  their  effects,  co-transported  symbionts  and  how  symbiome

research can help to assess invasion risks.

BOX 1

1) Co-transportation of Pathogens
The  invasive  Asian  eel  (Anguilla  japonica)  brought  with  it  the  parasitic  swim-bladder
nematode Anguillicoloides crassus, which has caused high mortalities in native European eels
(Anguilla anguilla) and significantly affected the sustainability of future populations (Peeler
et  al.,  2011).  The OIE listed pathogen,  Bonamia ostreae has caused decimation of native
oysters (Ostrea edulis) in Europe, when it arrived with cultivated American populations of O.
edulis for aquaculture in the late 1970s (Peeler et al., 2011). 

The ornamental trade has been implicated in the introduction of the chytrid Batrachochytrium
dendrobatidis; a pathogenic agent partly responsible for the global decline of amphibians and
species extinctions (Fisher & Garner, 2007). Trade of freshwater molluscs has long caused
concern  about  the  potential  for  snail-mediated  zoonotic  diseases  as  they  can  act  as
intermediate hosts for parasites of significance to humans and livestock (Ng at el., 2016), e.g.,
angiostrongyliasis  in  humans  caused  by  the  parasitic  nematode  Angiostrongyliasis
cantonensis co-introduced with the snails Pomacea canaliculata and Pomacea maculata. 

Symbionts co-transported with INNS may be known pathogens which impact on wildlife in
an expanded range (e.g., white spot syndrome virus; Diggles et al., 2020), or their pathogenic
potential  may only be revealed  when presented with new and susceptible  hosts  (e.g.,  the
impact of Aphanomyces astaci on white-claw crayfish; Tilmans et al., 2014).

2) Co-transportation of commensal organisms
The killer shrimp Dikerogammarus villosus, invaded the UK in 2010, carrying the gregarine
protists Uradiophora longissima and Cephaloidophora mucronata characterised from Polish
freshwaters  (Ovcharenko  et  al.,  2009;  Bojko  et  al.,  2013).  Gregarines  are  common
commensal  organisms of  invertebrates  that  cover  a  wide  symbiotic  to  parasitic  spectrum
(Rueckert et al., 2019) and undergo sexual reproduction in the animal gut, releasing spores
into the environment that are consumed by other organisms. U. longissima and C. mucronata
appear to be commensal organisms that have co-invaded with their host and do not exhibit
any  controlling  effect  upon  the  killer  shrimp  population  (Bojko  et  al.,  2013).  Further
molecular and histological studies will better identify commensal species by screening native
and invasive populations of high-risk groups, such as the Amphipoda.
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3) Invasion of the symbiome
Assessing the symbiome of an organism requires the use of multiple tools, including both
visualisation  (microscopy)  and  diagnostic  (molecular  detection)  techniques.  By
understanding the symbiome, we can explore co-infection and approach the invasion from a
pathobiome  perspective  (Bass  et  al.,  2019).  The  symbiome  of  the  demon  shrimp
Dikerogammarus  haemobaphes,  a  European  invader  originating  from the  Ponto  Caspian
region, has been shown to include viruses, bacteria, protists (including microsporidia) and
metazoans (Bojko et al., 2019; Bojko & Ovcharenko, 2019), identifying risks coupled with
the invasion process (Bojko et al., 2015; Allain et al., 2020; Subramaniam et al., 2020). For
example,  the microsporidian parasite,  Cucumispora ornata, has been shown to reduce the
activity of the demon shrimp and increase its rate of mortality, initiating population control at
invasion sites and lowering its host direct impact on local biodiversity and the environment.
In tandem, this parasite is also capable of infecting native  Gammarus pulex, constituting a
wildlife risk (Bojko et al., 2019). 

Metabarcoding and metagenomic techniques provide us with a capacity to easily pre-screen
native  species  before  they  may  become  translocated.  Metabarcoding  of  the  Homarus
americanus cuticle  revealed 170 associated bacterial  taxa,  suggesting that  these microbial
symbionts may have the capacity  to invade with their  host (Meres et  al.,  2012).  Without
technologies like these being used to advance invasion science, we remain in the dark about
the complete symbiome and its associated risks.

3  |  INNS IN AQUATIC SYSTEMS

Aquatic ecosystems are considered especially vulnerable to the effects of INNS introduction

and  spread,  when  compared  to  terrestrial  ecosystems  (Thomaz  et  al.,  2015).  Aquatic

ecosystems are highly connected, and freshwater catchments link terrestrial,  estuarine, and

marine habitats longitudinally as water moves downstream, providing corridors along which

organisms can move easily (Ormerod et al., 2011). Sites at high-risk of INNS introduction

occur where vector activity associated with key introduction pathways is high, such as ports,

marinas,  and  aquaculture  sites  (Keller  et  al.,  2011;  Tidbury  et  al.,  2016).  Many  aquatic

organisms have larval stages, which facilitate their dispersal across large distances (Wood et

al., 2005). Detection of aquatic INNS often occurs after populations have already established,

due  to  their  patchy  distribution  and  low abundance  in  the  early  stages  of  invasion,  and

difficulty  in  detecting  and identifying  early life  stages using standard sampling strategies

(Robinson et al., 2018). 

3.1  |  Routes of Introduction of Aquatic INNS
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The  CBD  categorizes  the  pathways  of  introduction  of  an  invasive  species  into  3  main

categories;  movement  of  commodities  (releases,  escapes,  contaminants),  via  transport

(stowaway), or by dispersal (corridor, unaided) (Hulme et al., 2008; Pergl et al., 2020). The

human-mediated spread of INNS in marine systems is predominantly through global shipping

networks via transfer in ballast water or hull fouling on vessels (Tidbury et al., 2016; Bailey

et al.,  2020). A review by Keller et al.  (2011) suggests that, in Europe, this has been the

pathway  of  introduction  for  47%  of established  non-native  marine  species  and  25%  of

established non-native freshwater species. 

Releases and escapes via ornamental trade and aquaculture are also responsible for INNS

introductions  within Europe (Nunes et  al.,  2015). The aquatic  ornamental  animal  trade is

worth  $25  billion  per  annum  worldwide  and  represents  a  significant  invasion  pathway

(Padilla & Williams, 2004). INNS are also introduced through the illegal trade of ornamental

aquatic animals. Laws regulating the aquatic pet trade are often poorly communicated and

enforced, and in some cases can increase unwanted introductions of banned species (Patoka

et al., 2018).

Aquaculture  production  has  expanded  rapidly  in  recent  years  and  global  demands  are

expected  to  increase  to  meet  the  needs  of  the  growing  worldwide  human  population

(Stentiford  et  al.,  2017).  The  movement  of  non-native  animals  between  countries  for

aquaculture  can  spread  INNS,  and  the  open  nature  of  many  aquaculture  sites  to  their

surrounding environment can mean that INNS and their symbionts can be released into those

environments (Atalah & Sanchez-Jerez, 2020).  The biggest risk to aquaculture production

and  growth  has  been  identified  as  disease  (Jennings  et  al.,  2016),  which  highlights  the

importance of potential invasive aquatic pathogens and the need to control emerging disease

threats.  The increasing  pressures  on  aquaculture  to  support  global  food  security  makes

minimising pathogen spill-over to the environment and wildlife,  and vice versa, a critical

priority to improve both the efficiency of production and ensure environmental sustainability

(Stentiford et al., 2020).

Bait  used  in  recreational  fishing  is  a  potential  pathway  for  pathogen  introduction  and

dispersal if anglers dispose of bait or storage water/sediment into aquatic systems (Mahon et

al., 2018). Discharge of effluent water from aquaria has also been identified as a high risk for

incidental INNS release (Duggan, 2010). Transport of live aquatic animals also means that
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the water in which they are transported becomes a potential source of non-native microbes

(Amaral-Zettler et al., 2018).  Furthermore, the transit of live animals can produce stressful

conditions  that can change the microbial  communities  that  they harbour, often leading to

disease (Smith et al., 2012). Analysis of imported fish and their carriage water through the

supply  chain  showed  increased  levels  of  opportunistic  pathogens  such  as  Vibrio  spp.

(Amaral-Zettler et al., 2018).

Climate change can also facilitate natural range expansion of holobionts (Cottier-Cook et al.,

2017).  Increased  water  temperatures,  altered  hydrodynamics  and  more  frequent  extreme

weather events are all predicted to increase the rate of aquatic species invasions (Rahel &

Olden, 2008). Rising water temperatures may mean that more ornamental species, and their

symbiome,  are  able  to survive and establish in  the UK. Warmer  temperatures  also allow

pathogenic microbes to complete their life cycle more rapidly and attain higher population

densities, increasing their virulence (Dutta & Dutta, 2016).

4   |   ADDRESSING  THE  KNOWLEDGE  GAP  BETWEEN  INNS  AND  THEIR

SYMBIONTS 

4.1  |  Literature Search Methodology

Data on the impacts of aquatic INNS is scarce (Ojaveer et al., 2015; Bojko et al., 2020) and

although there are some well-known cases of pathogens being introduced along with INNS,

in many cases the nature and subsequent effects of symbionts are unknown. This information

is essential for assessing the risks posed by co-transportation, or any INNS introduction to a

new area. Such risks fall into three main categories: 1) pathogenic threats to native hosts or to

species cultured or harvested for consumption or trade, 2) trade and legislative implications;

for example, listed pathogens being introduced to regions previously considered free of them,

and 3) effects of, or changes, to the invading species’ symbiome in a new range, conferring

novel ecological/behavioural characteristics on the invader. 

Here we propose a literature-based workflow for compiling existing knowledge on a host’s

symbiome, members of which could be co-transported with INNS. To perform the literature

search, both PubMed and Google Scholar were used to develop the best methodology (Figure

2).  Figure  2 illustrates  the  workflow options  and key considerations  for  choosing which

database to search. Each has different characteristics that may preferentially  suit different
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investigations.  Both  are  subscription-free.  The search  terms  used in  this  paper  are  given

below; these can be adapted as required. This process can be used/adapted for non-aquatic

species and with respect to any geographic region.

 PubMed

(Species or genus name# [All Fields]) AND (microbiome[Title/Abstract] OR symbio*[Title/

Abstract]  OR  pathogen*[Title/Abstract]  OR  parasit*[Title/Abstract]  OR

protist[Title/Abstract]  OR  protozoa[Title/Abstract]  OR  bacteria*[Title/Abstract]  OR

virus[Title/Abstract]  OR  host[Title/Abstract]  OR  reservoir[Title/Abstract]  OR

vector[Title/Abstract] OR infection [Title/Abstract])

Google Scholar

 “Species name#" AND pathogen OR parasite OR commensal OR symbiont OR protist OR

bacteria OR virus
#In  cases  where  INNS  taxa  have  recently  been  subject  to  taxonomic  changes  or  are

taxonomically ambiguous, multiple searches using alternative but equivalent names may be

required.

PubMed search  tools  enabled  a  more accurate  search as  highly  structured  search  criteria

could be applied to just  the title  and abstract  of papers  allowing a more focused search.

However, the library of literature available in PubMed is smaller than on Google Scholar, and

data from some figures and tables  is  not screened,  sometimes leading to the omission of

useful information. Google Scholar returned a significantly higher number of publications;

the library of literature is much larger and it also scans grey literature and academic thesis

repositories. However, Google Scholar also returns a much higher rate of irrelevant results

which require significant manual sifting, in part because it scans the references of articles,

and because the search cannot be narrowed by abstract. It is also important to scrutinise the

source of literature from Google Scholar as it includes non-peer reviewed literature which

may not always be suitable depending on the remit of the literature search. Haddaway et al.

(2015) provides evidence to show that Google Scholar can be a powerful resource when used

alongside other search methods; but is best used as a complementary tool.

4.2  |  Symbiome literature search results 
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A list of incoming aquatic INNS of concern to the UK was compiled from the lists of Roy et

al.  (2014)  and  a  GBNNSS  horizon  scanning  exercise  (GBNNSS,  2019).  Seventy-seven

aquatic  INNS were identified from these lists (see Table 1).  The literature searches were

completed between August-October 2020. Using PubMed; 34 of the 77 aquatic INNS were

found to have no relevant literature relating to any known symbiotic species or pathogens. At

genus  level  this  number  falls  to  23;  however,  the  relevance  of  symbionts  and  potential

pathogens associated with the genus-level compared to the target species is uncertain but aids

prediction. Symbiont and pathogen information extracted from the literature search for each

species is listed in Supplementary Information Table 1.

There were nine taxa for which species-level symbiont/pathogen data were published in 20+

papers;  Neogobius  melanostomus, Homarus  americanus, Oncorhynchus  gorbuscha,

Carassius  gibelio, Micropterus  salmoides, Castor  canadensis, Marsupenaeus  japonicus,

Myocaster coypus, and Ondatra zibethicus. The importance of these species in aquaculture,

fisheries and human health is likely to explain their dominance within the literature. Homarus

americanus,  Marsupenaeus japonicus and Oncorhynchus gorbuscha are all highly valuable

aquaculture species.  Carassius gibelio  and Micropterus salmoides  are associated with the

ornamental trade and recreational angling respectively. Castor canadensis, Myocaster coypus

and  Ondatra zibethicus  carry multiple pathogens of human importance (see Supplementary

Information Table 1).

The results  from PubMed and Google Scholar show some similarity.  For taxa with little

relevant literature, Google Scholar was more likely to return relevant data. As shown in Table

1, only 26 of the 77 aquatic INNS returned no relevant literature through Google Scholar in

comparison to 34 from PubMed. For taxa with more literature;  PubMed returned a larger

proportion of useful papers in fewer results, and although these were usually also identified in

Google Scholar, significantly more manual sifting of results in order to find these papers was

required.  For  example,  Marsupenaeus  japonicus had  65  relevant  papers  selected  from

PubMed, but only 28 were identified from the first 100 Google scholar results despite a vastly

larger overall return. This is likely to be because PubMed allowed for a more targeted search.

We found using both PubMed and Google Scholar in parallel gives the most comprehensive

picture. 
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Where there is a knowledge gap regarding the symbionts and pathogens of the target species,

expert advice may be highly beneficial.  This is likely to be the case for many known and

potential INNS in most countries. Collaborative expert-elicitation is also a highly valuable

tool within the field of biological invasion policy and has been implemented in numerous

successful studies (Booy et al., 2017; Hughes et al., 2020; Peyton et al., 2019; Roy et al.,

2014, 2017, 2018). These methods have been refined to ten guiding principles to consider

within expert-elicitation to increase the effectiveness of this tool (see Roy et al., 2020).

5.  |  CURRENT AND FUTURE POLICY AND LEGISLATION

5.1  |  GB Legislation

Recognition of the negative impacts of INNS is evidenced by the increase in international to 

national legislation and policy that aim to mitigate or reduce INNS impacts. Aichi Target 9 of

the Convention on Biological Diversity commits signatories, including the UK, to minimise 

new introductions of INNS, and control and eradicate priority species (UNEP, 2011). This 

commitment is reflected in European legislation, including Regulation (EU) No 1143/2014 

on the prevention and management of the introduction and spread of invasive species (EU, 

2014), now transposed into national law. There are additional legislative drivers within the 

EU to reduce the introduction and spread of INNS as a driver of environmental degradation 

(Water Framework Directive 2000/60/EC) and as an indication of human pressures (Marine 

Strategy Framework Directive 2008/56/EC). Given increasing numbers of INNS, risk 

assessment to include consideration of symbionts and pathogens of key INNS, is required to 

support the prioritisation of species for management. Whilst the role of pathogens in 

biological invasions has been recognised, much work is still needed to gather the empirical 

evidence required for robust assessment of risk, as demonstrated in this paper.  

The World Organisation for Animal Health (OIE) has the mandate to prevent the spread of

important  animal  pathogens,  including  those  of  aquatic  animals  (defined  as  amphibians,

crustaceans,  fish,  and  molluscs).  OIE  standards  are  recognised  by  the  World  Trade

Organisation (WTO) and applied within its Sanitary and Phytosanitary (SPS) agreement. The

182 members of the OIE include all major economies. National and supra-national (e.g., EU

laws) need to be consistent with OIE standards. The EU Regulation 2016/429 (Animal Health

Law) provides the legal basis to prevent the spread of important listed infectious pathogens.

The criteria necessary for listing a pathogen include a significant negative impact on farmed
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animal production or biodiversity (through biosecurity, contingency planning, surveillance,

and eradication) and will be applicable from 21 April 2021 (Council of Europe, 2019). 

5.2  |  International and supranational legislation 

The Convention on Biological Diversity places an obligation on contracting parties to ‘as far

as possible and as appropriate, prevent the introduction of, control or eradicate those alien

species which threaten ecosystems, habitats or species’.

At an international level, countries under the SPS agreement must provide a risk assessment

to support measures to prevent disease spread that go beyond international (OIE) standards.

Co-transported pathogens however, cannot be regulated and controlled if they are unknown

and unquantified. Therefore, we propose the following methods:

1) More intensive study of INNS and their associated symbionts (including known and

potential pathogens), using both experimental and diagnostic evidence.

2) Identification  of  high-risk  potential  INNS  and  recent  invaders  and  targeted

investigation.

3) Investigation of which INNS taxa might co-transport high risk pathogens, based on

what we know of the pathogens/symbionts of those groups more generally.

As suggested by Roy et al. (2017), the inclusion of information on pathogens within alien

species databases, including the communication of such information, is critical to the success

of monitoring and managing emerging co-invasive diseases. Future priorities should be to

collect baseline information on the distribution and population dynamics of pathogens, hosts

and  vectors,  to  determine  the  relative  importance  of  invasion  pathways,  and  to  develop

methods  for  predicting  host  shifts,  pathogen–host  dynamics  and  the  evolution  of  alien

pathogens (Roy, 2016). Many aspects of the study and management of emerging infectious

diseases  and  biological  invasions  work  in  parallel.  Collaboration  across  disciplines  is

important  to  effectively  tackle  these issues,  such as  adopting the  One Health  framework

(Ogden et al., 2019; Bojko et al., 2020).

6.  |  CONCLUSION

Invasion biology needs more robust methods for reliably evaluating the risks associated with

INNS introductions (Kumschick et al., 2015). One of the important factors to consider as part

of risk assessments is evaluating the symbiome of INNS. Therefore, there is a need to better

understand  symbionts  associated  with  INNS  in  order  to  evaluate  the  potential  threat  of
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emerging  co-invasive  disease  as  part  of  the  INNS  risk  assessment  processes  (including

horizon  scanning).  The  framework  proposed  here  contributes  a  simple  yet  elegant

methodology for the robust and standardised assessment of symbionts associated with INNS.

As such it  provides  a  crucial  step towards  addressing the  knowledge gaps  regarding co-

transportation  of  symbionts,  facilitating  integration  of  such  knowledge  into  INNS  risk

assessment.

While limitations exist with respect to INNS data, the increasing use of histological, eDNA,

and  molecular  diagnostics  also  offer  new opportunities  for  monitoring  INNS,  potentially

enabling the capture of pathological data more easily. Innovative modelling approaches, such

as those using evolutionary trait-based frameworks (Barwell et al., 2020), can also inform

horizon scanning and risk assessment to identify potentially impactful pathogens.

The  introduction  of  INNS is  widely  recognised  as  important  in  both  introducing  known

pathogens and a driver for the emergence of new pathogens (Peeler et al., 2011). There is a

need at both international and national level for a collaborative approach to the assessment of

INNS, efficient resource use and the formulation of guidance and risk assessment tools to

both  prevent  and  control  the  introduction  of  INNS  and  their  symbionts. INNS  do  not

recognise  political  boundaries  so  their  effective  management,  particularly  the  marine

environment, requires transboundary co-ordination and collaboration. 

This issue is now more pressing than ever; climate change could act synergistically with other

stressors, to increase the impacts of invading microbes. Rising water temperatures may mean

more INNS and their pathogens are able to survive and establish in the UK. Furthermore, the

increasing global demands on aquaculture production, mean that risks arising from emerging

aquatic  diseases  are  increasing  in  frequency,  and  have  increasingly  diverse  and  serious

economic implications.
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Glossary 

Symbiont Host-associated  organisms  and  viruses,  including  long-term  or
transitory associations, epibionts and endobionts.

Pathogen A symbiont that causes disease in certain hosts under certain 
conditions. Its presence need not result in disease. Often used 
interchangeably with ‘parasite’.

Parasite A symbiont that derives nutrition/material  resource from its host in
one  of  several  ways,  not  necessarily  resulting  in  disease.  Includes
indirect feeding types including host stomach contents or metabolic
products. Often used interchangeably with ‘pathogen’.

Enemy  Release
Hypothesis

INNS can lose their  parasites as they move into a new range,  thus
increasing host biological  fitness as the resources used to fight  the
infection are no longer required (Keane and Crawley, 2002).

Parasite Spillback INNS can acquire parasites from the new range, resulting in parasite
spillback to  native species by increasing the population of infected
individuals (Sheath et al., 2015), thus changing disease dynamics of
infected native species at individual and population scale levels (Kelly
et al., 2009).

Parasite Spillover When parasites from INNS are transmitted to susceptible native host
species (Power and Mitchell, 2004)

Disease Facilitation
Hypothesis

INNS may act as ‘disease facilitators’ by aiding the physical transfer
of parasites through acting as vectors or a reservoir, or via their role in
habitat  alteration  which  may  improve  parasite  environmental
conditions (Chalkowski et al., 2018). 

Co-transport Organisms which are transported with an alien host to a new location
outside of their native range (Lymbery et al., 2014)

Heteroecious
parasites

A parasite that requires at least two hosts.
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Figure Legends

FIGURE 1.  Potential fates of symbionts (including pathogens) co-transported with INN host

species. The left-hand panel represents a hypothetical INNS with a symbiome comprising

pathogens A, B, and uncharacterised symbionts 1, 2, 3. Potential symbionts already in the

native system are pathogens C, D, E, F, and uncharacterised symbionts 4, 5, 6. Symbionts can

be gained and/or lost by INNS hosts. The main panel on the right presents, with examples,

scenarios  of gains,  losses,  and transfers between non-native and native  hosts  of different

species,  and  outcomes  associated  with  such  interactions.  Boxes  with  grey  fill  indicate

theoretical outcomes for which no empirical evidence was found.

FIGURE  2.   Workflow  for  investigating  existing  data  relating  to  symbionts  (including

pathogens)  of  current  and  potential  INNS.  The  bullet  points  in  each  box  indicate  key

considerations  for each step of this  customisable process.  The list  of factors  in grey text

influence whether PubMed or Google Scholar (or both) would be more appropriate for the

particular species being researched.
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Table 1. Non-native species at risk of arriving in the UK, as defined by Roy et al. (2014) and GB-NNSS (2019),
and the results of literature searches as described in the main text. [x] is the number of publications informative 
about co-transported pathogens/symbionts, from which information was extracted and the publication cited in 
Supplementary Table 1. When x<4 in PubMed searches; informative publications were also searched for at 
INNS genus level (filtering to this degree was not possible or practical with Google Scholar). Only the first 100 
Google Scholar hits were searched for informative publications. References for all of the informative 
publications selected are in Supplementary Tables 2 and 3.

Taxonomic abbreviations: AL = Algae; AN = Annelida; ANG = Angiosperms; BR = Bryozoa; CH = Chordata 
(CH-U = Urochordata, CH-P = Pisces, CH-A = Amphibia, CH-R = Reptilia, CH-A = Aves, CH-M = 
Mammalia); CR = Crustacea; CT = Ctenophora; EC = Echinodermata; MO = Mollusca; NE = Nemertea; PL = 
Platyhelminthes; PO = Porifera

Species name Common name Taxon
PubMed

Genus search
[X]

PubMed
Species

search [X]

Google Scholar
Species search

[X]

Aglaothamnion halliae Brazilian red alga AL 1 [1] 0 34 [0]

Antithamnion pectinatum Australasian red alga AL 2 [0] 0 40 [0]

Caulerpa taxifolia killer alga AL 43 43 [8] 2660 [4]

Gracilaria vermiculophylla rough gar weed AL 90 6 [4] 1140 [4]

Rugulopteryx okamurae Asian fan weed AL 0 0 12 [0]

Eudistylia polymorpha/
Bispira polyomma

giant feather duster worm AN 1 [1] 0 6 [0]

Marenzelleria wireni red gilled worm AN 1 [1] 0 17 [0]

Limnobium spongia American frog's-bit ANG 68 0 128 [1]

Saururus cernuus swamp lily ANG 58 [0] 2 [0] 474 [0]

Trapa natans water chestnut ANG 17 [1] 7 [1] 1820 [0]

Zostera japonica Japanese seagrass ANG 98 [71] 1 [1] 563 [4]

Schizoporella errata branching bryozoan BR 0 0 209 [0]

Ommatotriton ophryticus northern banded newt CH-A 0 0 21 [0]

Tadorna ferruginea ruddy shelduck CH-A 21 10 [10] 562 [15]

Threskiornis aethiopicus African sacred ibis CH-A 7 [5] 4 [2] 435 [2]

Aonyx cinerea short clawed otter CH-M 232 2 [2] 166 [5]

Castor canadensis American beaver CH-M 486 27 [25] 3580 [12]

Myocaster coypus coypu CH-M 52 51 [43] 2270 [27]

Ondatra zibethicus muskrat CH-M 58 42 [42] 2650 [27]
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Babka gymnotrachelus racer goby CH-P 2 [2] 2 [2] 80 [8]

Carassius gibelio Prussian carp CH-P 516 30 [20] 1670 [30]

Gambusia holbrooki eastern mosquito fish CH-P 445 15 [5] 2660 [7]

Micropterus salmoides largemouth bass CH-P 1,939 131 [74] 9200 [39]

Neogobius fluviatilis monkey goby CH-P 44 6 [6] 400 [15]

Neogobius melanostomus round goby CH-P 44 35 [27] 2050 [33]

Oncorhynchus gorbuscha pink salmon CH-P 1,776 30 [25] 3560 [32]

Proterorhinus marmoratus Black Sea tubenose goby CH-P 9 [6] 2 [2] 383 [12]

Proterorhinus semilunaris western tubenose goby CH-P 9 7 [4] 209 [11]

Pterois volitans red lionfish CH-P 13 [6] 8 [3] 1140 [12]

Umbra pygmaea eastern mud minnow CH-P 5 [4] 0 215 [1]

Chelydra serpentina snapping turtle CH-R 22 21 [11] 2180 [14]

Chrysemys picta painted turtle CH-R 21 20 [12] 2860 [14]

Ciona savignyi sea squirt CH-U 123 123 [12] 1120 [4]

Styela plicata pleated tunicate CH-U 35 [6] 15 [2] 1350 [7]

Cercopagis pengoi fishhook water flea CR 1 [0] 1 [0] 624 [0]

Chelicorophium robustum
A Ponto-Caspian

amphipod
CR 0 0 24 [0]

Chelicorophium sowinskyi
A Ponto-Caspian

amphipod
CR 0 0 13 [0]

Cherax destructor common yabby CR 81 10 [6] 1420 [7]

Dikerogammarus bispinosus
A Ponto-Caspian

amphipod
CR 22 [5] 0 27 [0]

Dyspanopeus sayi Say's mud crab CR 2 [1] 2 [1] 172 [0]

Echinogammarus ischnus bald urchin shrimp CR 29 [21] 0 322 [2]

Echinogammarus trichiatus
curly haired urchin

shrimp
CR 29 [21] 3 [3] 59 [3]

Echinogammarus
warpachowskyi

A Ponto-Caspian
amphipod

CR 29 [21] 0 16 [0]

Hemigrapsus sanguineus Asian shore crab CR 24 6 [5] 251 [4]

Hemigrapsus takanoi brush-clawed shore crab CR 24 0 138 [3]



Homarus americanus American lobster CR 119 63 [38] 8230 [42]

Jaera istri A Ponto-Caspian isopod CR 3 [2] 1 [1] 72 [1]

Limnomysis benedeni A Ponto-Caspian mysid CR 1 [0] 1 [0] 169 [0]

Marsupenaeus japonicus kuruma prawn CR 2,088 173 [65] 4930[28]

Megabalanus coccopoma titan acorn barnacle CR 4 [0] 0 108 [0]

Megabalanus tintinnabulum sea tulip CR 4 [0] 0 130 [1]

Mytilicola orientalis red oyster worm CR 15 [0] 4 [0] 349 [0]

Neocaridina davidi/
Neocaridina heteropoda

cherry shrimp CR 8 [4] 1 [0] 93 [1]

Obesogammarus crassus
A Ponto-Caspian

amphipod
CR 0 0 78 [2]

Obesogammarus obesus
A Ponto-Caspian

amphipod
CR 0 0 45 [1]

Orconectes rusticus rusty crayfish CR 21 [15] 3 [2] 1280 [5]

Paramysis lacustris A Ponto-Caspian mysid CR 0 0 88 [0]

Pontogammarus robustoides
A Ponto-Caspian

amphipod
CR 2 1 [1] 250 [3]

Procambarus fallax marbled crayfish CR 484 1 [1] 323 [8]

Rhithropanopeus harrisii Harris’ mud crab CR 2 [1] 1 [1] 1220 [11]

Mnemiopsis leidyi
American comb jelly sea

walnut?
CT 36 12 [6] 2860 [15]

Asterias amurensis Northern Pacific seastar EC 38 8 [4] 1890 [6]

Bellamya chinensis Chinese mystery snail MO 27 [17] 1 [0] 90 [3]

Corbicula fluminalis Asian clam MO 37[18] 0 222 [0]

Dreissena rostriformis
bugensis

quagga mussel MO 79 10 [2] 683 [2]

Geukensia demissa Atlantic ribbed mussel MO 10 9 [4] 1750 [4]

Lithoglyphus naticoides gravel snail MO 4 [4] 3 [3] 373 [4]

Mulinia lateralis dwarf surf clam MO 4 [3] 3 [2] 906 [2]

Ocinebrellus inornatus Japanese sting winkle MO 0 0 146 [0]

Potamocorbula amurensis Amur river clam MO 0 0 887 [0]

Rapana venosa veined rapa whelk MO 12 7 [3] 965 [4]



Sinanodonta woodiana Chinese giant mussel MO 56 16 [3] 671 [4]

Theora lubrica Asian semele MO 0 0 162 [0]

Xenostrobus securis pygmy mussel MO 1 [0] 1 [0] 177 [2]

Cephalothrix simula
A NW Pacific Ocean

nemertean worm
NE 2 [2] 2 [2] 89 [7]

Gyrodactylus salaris salmon fluke PL 422 104 [0] 2710 [0]

Celtodoryx ciocalyptoides cauliflower sponge PO 1 [0] 0 21 [0]
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