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Abstract

A malaria transmission disease model with host selectivity and Insecticide-
treated bed nets (ITNs), as an intervention for controlling the disease, is for-
mulated. Since the vector is an insect, the vector time scale is faster than the
host time scale. This leads to a singularly perturbed model with two distinc-
tive intrinsic time scales, two-slow for the host and one-fast for the vector.
The basic reproduction number R0 is calculated and the local stability anal-
ysis is performed at equilibria of the model when the perturbation parameter
ε > 0. The model is analyzed when ε→ 0 using asymptotic expansions tech-
nique. The dynamics on the slow surface indicate that the infected vectors
decays fast when ε = 0.001 according to the numerical simulations.

Keywords: Malaria; vector-bias effect; bed-net control; fast-slow dynamical sys-
tems.

1 Introduction

Malaria infectious disease is one of the major public health problem in the poor-
est area of the world such as sub-Saharan Africa, which is caused by four species
of Plasmodium protozoan parasites and it is transmitted to humans as a result
of bites of female Anopheles mosquitoes. Despite the promising results of control
policies that have led to reducing the number of cases and deaths, malaria remains
one of the most widespread human infection. Serious complications affecting kid-
ney, brain, lungs are consequences of malaria disease. It causes an estimated
300 to 500 million cases and 1.5 to 2.7 million deaths each year worldwide [1].
Africa shares 80% of the cases and 90% of deaths as most cases and deaths occur
in sub-Saharan Africa [2]. Many intervention strategies such as Dichlorodiphenyl-
trichloroethane (DDT), antimalarial drugs, larvicides, insecticides and choppy pre-
ventive treatment are used to eradicate malaria in Europe, North America, and
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parts of Asia and South-Central America in the early 20th century. Insecticide-
treated bed nets (ITNs) is the most chosen tool to decline malaria transmission
and lessen disease burden [3, 4]. To understand the disease transmission spread,
mathematical models are devoted to simulate the spread of the disease through a
population and hence make a prediction on the long-term of the disease spread.
Malaria is a mosquito-borne disease in which its dynamics are strongly related to
the interaction between humans and mosquitoes. Consequently, malaria mathe-
matical models are usually consisting of coupling two models for the host (humans)
and vectors (mosquitoes), respectively [5–16].

Some mosquitoes exhibit host selectivity which means blood-sucking mosquitoes
may prefer to choose infected hosts [17]. Recent studies indicate that malaria
parasite manipulate a host to be more attractive to mosquitoes via chemical
substances [18–22]. The attractiveness is considered in the following way: the
mosquito arrives at a human at random and bits him with probability p if he is
infectious, and with a probability l if he is susceptible with p > l. Picking humans
in different probabilities represents the so-called vector-bias model [19]. In order
to reduce virus spread, it is necessary to limit the contact between infectious and
susceptible individuals [23]. This can be done using ITNs which is one of the most
effective non-pharmaceutical interventions (NPIs) for preventing disease spread.
In many African parts, it is shown that ITNs succeeded in reducing the death of
children under five years from causes of the disease by about 20% [24,25].

On the other hand, many biological processes involve actions on very intrinsic
time scales which, in consequence, lead to rapid changes in number of variables
while the others act more slowly. Such processes transform the model to what is
called a singular perturbed model [26, 27]. In this paper, we rely on the fact that
vector dynamics are much faster than host dynamics as discussed in [28–30]. We
formulate and analyze a malaria model taking into account three aspects. The
first is the host selectivity represented in a vector-bias term for the infectious host.
Second, the ITNs interventions represented in the bed-net users for population.
Third, singularly perturbation due to the fact that the vector is an insect which in
turn operates much faster than the host. The baseline of our model is the model
proposed in [19], which is extended here to include both singular perturbation
aspect and bed-net usage adopted from [31,32]. The rest of the paper is organized
as follows. In Section 2, the formulation of the model is presented. The existence of
disease-free equilibrium and endemic equilibrium and their local stability analysis
at them is shown in Section 3 when the perturbation parameter 0 < ε < 1. In
Section 4, the model is analyzed when ε→ 0. Numerical simulations are reported
in Section 5. Finally, we conclude in Section 6.
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2 Model formulation

Consider the following system of nonlinear ordinary differential equations [19]

Ṡh = µNh −
lβ

pIh + lSh
ShIv − µSh + νIh,

İh =
lβ

pIh + lSh
ShIv − (µ+ ν)Ih,

Ṡv = ηNv −
pα

pIh + lSh
IhSv − ηSv,

İv =
pα

pIh + lSh
IhSv − ηIv,

(2.1)

where the dots denote the derivative with respect to the time t and Sh, Ih, Sv and
Iv are susceptible humans, infected humans, susceptible mosquitoes, and infected
mosquitoes, respectively. All parameters are strictly positive and their description
is given in Table 1.

Table 1: Biological description and values of parameters in model (2.1).
Parameter Description Values Source

µ Birth and death rate of humans 1/70 (year−1) [19]

l
Prob. that a mosquito arrives at human at random

and picks him in case he is susceptible
0-1 Varying

p
Prob. that a mosquito arrives at human at random

and picks him in case he is infected
0-1 Varying

βmax Maximum transmission rate in humans 0.1 [25]
βmin Minimum transmission rate in humans 0 [25]
ν Recovery rate of infectious humans 1/4 (year−1) [25]
ηn Natural mortality rate in mosquitoes 1/14 (year−1) [38]
ηb Maximum ITNs-induced death rate in mosquitoes 1/14 Assumed
b Proportion of ITNs usage 53/100 [37]

αmax Maximum transmission rate in mosquitoes 0.4 Assumed
αmin Minimum transmission rate in mosquitoes 0 [25]
Nh Total size of human population 200000 [19]
Nv Total size of mosquito population mNh [19]

m = Nv
Nh

Number of female mosquito per human host 1-2 [39]

In model (2.1), the host population is formed of two classes, susceptible and in-
fectious with total population size Nh = Sh + Ih. Similarly, the vector population
is grouped into two classes, susceptible and infectious with total population size
Nv = Sv + Iv. All the newborn individuals are assumed to be susceptible and
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there is no vertical transmission of the disease. We assume that mosquitoes reach
humans with equal probability, but the biting will be with probability p if the
human is infectious and with probability l if he is susceptible [19]. Hence, when a
human is bitten, the probability that this human is infected is given by the ratio
between the total bitten infectious humans and the total bitten humans, pIh

pIh+lSh
,

whereas the probability that this human is susceptible is given by the ratio be-
tween the total bitten susceptible humans and the total bitten humans lIh

pIh+lSh
.

The incidence function for humans is given by βpIh
pIh+lSh

and the incidence function

for mosquitoes is given by αlIh
pIh+lSh

. If p = l, then the model is without vector-bias
and the nonlinear incidence becomes standard. If p increases, then a vector-bias
effect increases. Following [31, 32], the biting rate of mosquitoes is modeled by a
linearly decreasing function of the proportion of ITNs adopters b as follows:

β(b) = βmax − b(βmax − βmin), 0 ≤ b ≤ 1,

where b = 0 means that no one uses bed-nets, while b = 1 means all host population
are users. The goal of insecticide treated bed-nets is to reduce the probability
that mosquitoes bite humans, that is b should reduce the contact rats β and α
and increase the death rate η. Thus, we also assume that

α(b) = αmax − b(αmax − αmin), 0 ≤ b ≤ 1.

The death rate of mosquitoes is modeled by a linearly increasing function of b as
follows:

η(b) = ηn + bηb, 0 ≤ b ≤ 1.

Instead of dealing with the actual population, we scale model (2.1) to deal with
portion of quantities by normalizing them in the form sh = Sh

Nh
, ih = Ih

Nh
, sv =

Sv
Nv
, iv = Iv

Nv
,m = Nv

Nh
. Taking into account that Nh = Sh + Ih and Nv = Sv + Iv,

model (2.1) is rewritten in the following form

ṡh = µ− mlβ(b)

pih + lsh
shiv − µsh + νih,

i̇h =
mlβ(b)

pih + lsh
shiv − (µ+ ν)ih,

ṡv = η(b)− pα(b)

pih + lsh
ihsv − η(b)sv,

i̇v =
pα(b)

pih + lsh
ihsv − η(b)iv.

(2.2)

Note that the total population sizes Nh and Nv do not appear in the equations of
model (2.2). Since sv + iv = 1, model (2.4) is reduced to the following system of
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equations

ṡh = µ− mlβ(b)

pih + lsh
shiv − µsh + νih,

i̇h =
mlβ(b)

pih + lsh
shiv − (µ+ ν)ih,

i̇v =
pα(b)

pih + lsh
ih(1− iv)− η(b)iv.

(2.3)

In fact, there is a difference in time ecologies between infectious agents and the
host’s response. In other words, in vector disease transmission models the vector
population time scale is much more expeditious than the host population time
scale, therefore, we introduce the quantities α∗(b) = α(b)

ε and η∗(b) = η(b)
ε to

model (2.3), where ε ∈ [0, 1] is the perturbation parameter. This means that both
the transmission and the death rates of mosquitoes are very high compared to
those of humans. Singular perturbation is often identified by a small parameter
in front of the highest derivative such that the order of the system drops by one
when this parameter tends to zero. In view of the above assumptions, model (2.3)
now takes the following form (keeping old variables notations Sh, Ih, and Iv for
convenience)

Ṡh = µ− mlβ(b)

pIh + lSh
ShIv − µSh + νIh,

İh =
mlβ(b)

pIh + lSh
ShIv − (µ+ ν)Ih,

εİv =
pα∗(b)

pIh + lSh
Ih(1− Iv)− η∗(b)Iv,

(2.4)

with initial conditions Sh(0) = Sho, Ih(0) = Iho and Iv(0) = Ivo. The model makes
biological sense in the region

Ω = {(Sh, Ih, Iv) ∈ R3
+, 0 < Sh + Ih ≤ 1, 0 < Iv ≤ 1}.

2.1 Positivity and boundedness of solutions

All parameters in model (2.4) are strictly positive since the model represents
populations of both humans and mosquitoes. Thus, given non-negative initial
values, it can be shown that the solutions of the model are non-negative. We now
show that the solutions in Ω remain in Ω for all t > 0, that is Ω is positively
invariant set.
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Theorem 1. The solutions Sh, Ih, and Iv of malaria model (2.4) with non-
negative initial conditions in the feasible region Ω, remain non-negative in Ω for
all t > 0.

Proof. We will proceed as [33, 34]. It is easy to see that Sh > 0 for all t ≥ 0. If
not, let there exists t∗ > 0 such that Sh(t∗) = 0, Ṡh(t∗) ≤ 0 and Sh, Ih, Iv > 0 for
0 < t < t∗. Then from the first equation of model (2.4), we have

Ṡh(t∗) = µ− mlβ(b)

pIh(t∗) + lSh(t∗)
Sh(t∗)Iv(t

∗)− µSh(t∗) + νIh(t∗),

= µ+ νIh(t∗) > 0,

which is a contradiction. Hence, Sh(t) > 0.
Now assume that Ih(t∗) = 0. Multiplying both sides of the second equation of
model (2.4) by e(µ+ν)t, we obtain

e(µ+ν)tİh + e(µ+ν)t(µ+ ν)Ih =
mlβ(b)

pIh + lSh
ShIv.

Here on the left side stands the derivative of the function e(µ+ν)t(µ+ν)Ih. Hence,
integrating this equality on the interval [0, t] we get

e(µ+ν)tIh(t)− Ih(0) =

∫ t

0
e(µ+ν)s

mlβ(b)

pIh(s) + lSh(s)
Sh(s)Iv(s)ds.

Putting t = t∗, we obtain

Ih(t∗) = e−(µ+ν)t
∗
Ih(0) +

∫ t∗

0
e−(µ+ν)(t

∗−s) mlβ(b)

pIh(s) + lSh(s)
Sh(s)Iv(s)ds.

Hence Ih(t∗) > 0, which is a contradiction.
Finally, we assume that Iv(t

∗) = 0. Then the third equation in model (2.4) at
t = t∗ results in the following relation

εİv(t
∗) =

pα∗(b)

pIh(t∗) + lSh(t∗)
Ih(t∗)(1− Iv(t∗))− η∗(b)Iv(t∗),

=
pα∗(b)

pIh(t∗) + lSh(t∗)
Ih(t∗) > 0,

which means that Iv(t) is strictly monotonically increasing in t∗, which is a contra-
diction. These steps prove that there is no such t∗ where any of Sh, Ih, Iv turns into
zero. Since at the initial values the components are positive, due to the continuity
of the functions every component is positive for all t.
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In Theorem 1 we have proved the positivity of the solution, which means the
model is bounded from below. In the following we consider its boundedness from
above.

Theorem 2. The region Ω is positively invariant with respect to the model (2.4)
with non-negative initial conditions in Ω.

Proof. Since the total population size for humans equals Nh(t) = Sh(t) + Ih(t),
we obtain

Ṅh(t) = Ṡh(t) + İh(t),

= µ− µ(Sh + Ih),

= µ− µNh.

This leads to Nh(t) = e−µtNh(0)+(1−e−µt). A standard comparison theorem [35]
can be then used to show that Ṅh(t) ≤ 1 if Nh(0) ≤ 1. As a consequence, Iv is
also bounded from the third equation of model (2.4) if Iv(0) ≤ 1. Thus, the region
Ω is positively invariant. Hence, it is sufficient to consider the dynamics of the
flow generated by (2.4) in Ω. In this region, the model is epidemiologically and
mathematically well-posed [36]. Thus, every solution of the basic model (2.4) with
initial conditions in Ω remains in Ω for all t > 0.

Throughout this paper, we consider model (2.4) with initial values in Ω.

3 Analysis of model (2.4) in case ε > 0

The equilibria of model (2.4) are the solution of the following algebraic equations

µ− mlβ(b)

pIh + lSh
ShIv − µSh + νIh = 0,

mlβ(b)

pIh + lSh
ShIv − (µ+ ν)Ih = 0,

pα∗(b)

pIh + lSh
Ih(1− Iv)− η∗(b)Iv = 0.

(3.1)

Hence, model (2.4) has the disease-free equilibrium point E0(1, 0, 0) and an en-
demic equilibrium point E∗(S∗h, I

∗
h, I
∗
v ) with components will be discussed later.

An important threshold in epidemiology is the basic reproduction number R0

[40–45]. It is defined as the average number of secondly infectious produced by
a single primary infectious introduced into the susceptible population. Following
the next generation matrix approach proposed in [41], we can easily calculate R0
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as follows. In model (2.4), the disease states Ih and Iv define the vector-valued
functions F̃ and Ṽ as follows

F̃ =

(
mlβ(b)
pIh+lSh

ShIv
pα∗(b)
pIh+lSh

IhSv

)
, Ṽ =

(
−(µ+ ν)Ih
−η∗(b)

)
.

The Jacobian matrices of F̃ and Ṽ evaluated at the disease-free equilibrium are
given by

DF̃ (E0) =

(
F 0
0 0

)
, DṼ (E0) =

(
V 0

mβ(b) 0

)
,

where

F =

(
0 mβ(b)

pα∗(b)
l 0

)
, V =

(
(µ+ ν) 0

0 η∗(b)

)
.

Now, R0 is defined as the spectral radius of

FV −1 =
1

(µ+ ν)η∗(b)

(
0 mβ(b)

pα∗(b)
l 0

)(
−η∗(b) 0

0 −(µ+ ν)

)
.

Accordingly, it is given by

R0 =
mpβ(b)α∗(b)

lη∗(b)(µ+ ν)
.

Note that some references use the square-root for R0 which is obtained from direct
calculations such as in [46]. As it is clear, we can quantify that higher values of
β(b) and α∗(b) allow the outbreak of the disease. From the expression for R0, we
can see the impact of bed-net usage in reducing the the disease burden. This can
be seen by differentiating R0 with respect to b which gives

dR0

db
= −mp

(
α∗(b)(βmax − βmin) + β(b)(αmax − αmin)

lη∗(b)(µ+ ν)
+

ηbα
∗(b)β(b)

lη∗(b)2(µ+ ν)

)
< 0.

As it is clear, the bed-net usage decreases R0 and hence, reduces the disease
burden. Now, we discuss the local stability of equilibria.

Proposition 1. The disease-free equilibrium E0(1, 0, 0) of model (2.4) is locally
asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. See Appendix A.
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For the existence of the endemic equilibrium E∗(S∗h, I
∗
h, I
∗
v ) in Ω, its components

should satisfy Eq. (3.1) which can be rewritten in the following form

µ− θ∗vS∗h − µS∗h + νI∗h = 0,

θ∗vS
∗
h − θI∗h = 0,

θ∗h(1− I∗v )− η∗(b)I∗v = 0,

where

θ∗v =
mlβ(b)I∗v
pI∗h + lS∗h

, θ∗h =
pα∗(b)I∗h
pI∗h + lS∗h

, and θ = µ+ ν. (3.2)

Hence, we obtain S∗h = θµ
θ(θ∗v+µ)−νθ∗v

, I∗h = θ∗vµ
θ(θ∗v+µ)−νθ∗v

, and I∗v = θ∗v
θ∗h+η

∗(b) . As a

consequence we obtain

θ∗h =
pα∗(b)θ∗v
pθ∗v + lθ

, (3.3)

θ∗v =
mlβ(b)θ∗h(θ(θ∗v + µ)− νθ∗v)
µ(θ∗h + η∗(b))(pθ∗v + lθ)

. (3.4)

Substituting Eq.(3.3) into Eq.(3.4) we get the quadratic equation

γ1θ
∗2
v + γ2θ

∗
v + γ3 = 0,

where γ1 = µp2(α∗(b) + η∗(b)), γ2 = µlθp(2η∗(b) + α∗(b)) − µmlpβ∗(b)α∗(b), and
γ3 = µl2η∗(b)θ2(1−R0). We may state the following proposition

Proposition 2. Model (2.4) has the following possible numbers of endemic equi-
libria. It may have

• a unique endemic equilibrium if γ3 < 0(R0 > 1),

• a unique endemic equilibrium if γ2 < 0 and either γ3 = 0 or γ22 − 4γ1γ3 = 0,

• two endemic equilibria if γ3 > 0, γ2 < 0, and γ22 − 4γ1γ3 > 0,

• else, there are none.

In order to discuss stability of E∗ of model (2.4), the additive compound matrices
proposed in [47] is used as shown in Appendix B.
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4 Analysis of model (2.4) with singular perturbation

The main thrust of our consideration now is the following singularly perturbed
system

Ṡh = f(Sh, Ih, Iv, 0),

İh = g(Sh, Ih, Iv, 0),

εİv = z(Sh, Ih, Iv, 0),

(4.1)

where

f = µ− mlβ(b)

pIh + lSh
ShIv − µSh + νIh,

g =
mlβ(b)

pIh + lSh
ShIv − (µ+ ν)Ih,

z =
pα∗(b)

pIh + lSh
Ih(1− Iv)− η∗(b)Iv.

Recall that the slow surface of system (4.1) is described by the equation

z(Sh, Ih, Iv, 0) = 0. (4.2)

Let Iv = φ(Sh, Ih) be an isolated root of equation (4.2). The subsets Sst, and Suns

of S defined by
∂z

∂Iv
(Sh, Ih, φ(Sh, Ih), 0) < 0, (> 0), (4.3)

are called the stable (unstable) leaf of S. The breakdown surface of S is defined
by

∂z

∂Iv
(Sh, Ih, φ(Sh, Ih), 0) = 0.

In an ε-neighborhood of Sst(Suns) there exists a stable (unstable) slow manifold.
This means that the slow surface is an approximation to the slow integral manifold
(for ε = 0) [50]. Taking the limit ε → 0 of system (2.4) we obtain the reduced
(slow) system

Ṡh = µ− mlβ(b)

pIh + lSh
ShIv − µSh + νIh,

İh =
mlβ(b)

pIh + lSh
ShIv − (µ+ ν)Ih,

0 =
pα∗(b)

pIh + lSh
Ih(1− Iv)− η∗(b)Iv.

(4.4)
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This is a two-dimensional dynamical system on the manifold of solutions of the
third equation. The quasi-steady state in model (2.4), which is the case when
ε = 0, is given by the equation

Iv =
α∗(b)Ih

η∗(b)(pIh + lSh) + α∗(b)pIh
. (4.5)

As we can see from Eq.(4.5), there is a functional dependency between two infected
populations. Substituting for Iv in the equations of model (2.4), equations for Sh
and Ih are given as follows

Ṡh = µ− mlpα∗(b)β(b)ShIh
(pIh + lSh)(η∗(b)(pIh + lSh) + α∗(b)pIh)

− µSh + νIh,

İh =
mlpα∗(b)β(b)ShIh

(pIh + lSh)(η∗(b)(pIh + lSh) + α∗(b)pIh)
− (µ+ ν)Ih.

(4.6)

Equations (4.6) mean that we may formulate vector host transmission as equations
of hosts only. Transform the slow time t to the fast time scale by ε where the fast
time is τ = t

ε we get the equivalent fast system

S′h = ε(µ− mlβ(b)

pIh + lSh
ShIv − µSh + νIh),

I ′h = ε(
mlβ(b)

pIh + lSh
ShIv − (µ+ ν)Ih),

I ′v =
pα∗(b)

pIh + lSh
Ih(1− Iv)− η∗(b)Iv,

(4.7)

where the dash denotes the derivatives with respect to τ . By taking the limit
ε→ 0 in system (4.7), we obtain the layer problem

S′h = 0,

I ′h = 0,

I ′v =
pα∗(b)

pIh + lSh
Ih(1− Iv)− η∗(b)Iv.

(4.8)

System (4.8) is a one-dimensional dynamical system in the fast variable Iv with
the slow variables Sh and Ih acting as parameters. We can analyze the dynamics
of model (2.4) using geometric singular perturbation theory, which was founded by
Fenichel ( [51]), by combining the dynamics of the reduced problem (4.4), which
is a differential algebraic system, and the dynamics of the layer problem (4.8). We
note that the the reduced fast system (4.8) determines the fast dynamics of Iv
through

I ′v =
pα∗(b)

pIh + lSh
Ih(1− Iv)− η∗(b)Iv, (4.9)
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which can be solved explicitly for Iv(τ), since Sh and Ih are constants, in the form

Iv(τ ;Sh, Ih) =
−Ce−τ(K+η∗(b)) +K

K + η∗(b)
, (4.10)

where K = pα∗(b)Ih
pIh+lSh

and C is the integration constant. Meanwhile, we have

Sh(τ) = Sh(0), Ih(τ) = Ih(0).

The critical manifold S is the algebraic part of the slow (reduced) problem (4.4)
which is given by the equation

S = {(Sh, Ih, Iv) ∈ R3
+ :

pα∗(b)

pIh + lSh
Ih(1− Iv)− η∗(b)Iv = 0}. (4.11)

The local stability of points (Sh, Ih, Iv) in S, which are the equilibria of the layer
problem (4.8), depends on the sign of ∂z

∂Iv
. That is we obtain

∂z

∂Iv
(
pα∗(b)

pIh + lSh
Ih(1− Iv)− η∗(b)Iv) = −(

pα∗(b)Ih
pIh + lSh

+ η∗(b)) < 0,

Accordingly, equilibria of the layer problem (4.8) are locally stable. If ∂z
∂Iv

(Sh, Ih, Iv, 0)
is uniformly bounded away from zero for all (Sh, Ih, Iv) ∈ S0, where S0 ⊂ S is com-
pact, the critical manifold S0 is normally hyperbolic [52]. The flow of the reduced
problem is slow and constrained to the manifold S. By solving for Iv we have

Iv =
α∗(b)Ih

η∗(b)(pIh + lSh) + α∗(b)pIh
.

It is necessary to note that neither the manifold nor the dynamics on the manifold
depend on ε. Outside from a neighborhood of the critical manifold S for small
ε, Fenichel theory assures that there exists a locally invariant manifold Sε close
to the critical manifold S for compact subsets of S where ∂z

∂Iv
6= 0. Outside the

manifold, the system will follow the fast trajectories. Thus, we evaluate ∂z
∂Iv

on

the critical manifold. The part of S where ∂z
∂Iv

< 0 is called the attractive part of

the critical manifold. In our case since we have ∂z
∂Iv

< 0 hence, the whole critical
manifold is attractive. The scenario of the dynamics of model (2.4) when ε→ 0 is
as follows. There is a rapid settlement of the vector population to a quasi steady-
state value on a time scale of order ε followed by a slower transformation of the
host population on a time scale of order 1. In what follows, we describe these
processes by formulating outer and inner solutions and match them together.
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4.1 Outer solution

Consider the following expansion

Sh = S0
h(t) +O(ε),

Ih = I0h(t) +O(ε),

Iv = I0v (t) + Îv
0
(τ) +O(ε),

(4.12)

where τ = t/ε and lim
τ→0

Îv(τ) = 0. Substituting expansion (4.12) in model (2.4)

and equating leading order of ε0 we obtain

dS0
h(t)

dt
= µ− mlβ(b)

pI0h + lS0
h

S0
hI

0
v − µS0

h + νI0h,

dI0h(t)

dt
=

mlβ(b)

pI0h + lS0
h

S0
hI

0
v − (µ+ ν)I0h,

0 =
pα∗(b)

pI0h + lS0
h

I0h(1− I0v )− η∗(b)I0v ,

(4.13)

which is again a differential algebraic system to the leading order. Thus we have
from the third equation

I0v (t) =
α∗(b)I0h(t)

η∗(b)(pI0h(t) + lS0
h(t)) + α∗(b)pI0h(t)

, (4.14)

consequently, we obtain the system

dS0
h

dt
= µ−

mlpα∗(b)β(b)S0
hI

0
h

(pI0h + lS0
h)(η∗(b)(pI0h + lS0

h) + α∗(b)pI0h)
− µS0

h + νI0h,

dI0h
dt

=
mlpα∗(b)β(b)S0

hI
0
h

(pI0h + lS0
h)(η∗(b)(pI0h + lS0

h) + α∗(b)pI0h)
− (µ+ ν)I0h,

(4.15)

with initial conditions S0
h(0) = Sh0 and I0h(0) = Ih0. There is a mismatch in the

initial condition such that I0v (0) 6= Iv0 which can be justified by imposing Î0v where
I0v (0) = ˆIv0 − I0v (0) and lim

τ→∞
Îv0(τ) = 0. Note that

S0
h(t) = S0

h(ετ) = S0
h(0) + ετS0

h(0) +O(ε2),

I0h(t) = I0h(ετ) = I0h(0) + ετI0h(0) +O(ε2),

I0v (t) = I0v (ετ) = I0v (0) + ετI0v (0) +O(ε2).

(4.16)
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As a consequence, we get

dÎ0v
dτ

= −(η∗(b)(pIh0 + lSh0) + α∗(b)pIh0)Î0v ,

which gives

Î0v = (Iv0 −
α∗(b)Ih0

η∗(b)(pIh0 + lSh0) + α∗(b)pIh0
)e−(η

∗(b)(pIh0+lSh0)+α
∗(b)pIh0)τ .

The expansion given in (4.12) is asymptotic as can be seen from the following
theorem.

Theorem 3. For sufficiently small ε > 0, there exists a constant L1 > 0 indepen-
dent of ε such that

‖X −X0‖∞ ≤ εL1,

where Xε(t) = (Sh(t), Ih(t), Iv(t)), X
0(t, τ) = (S0

h(t), I0h(t), I0v (t) + Î0v (τ)), and
‖.‖∞ denotes the uniform norm in [0,∞). Moreover, there exist two constants
L2, L3 > 0 such that for t > εL2 for which

‖Xε − X̂0‖∞ ≤ εL3,

where X̂ε(t) = (S0
h(t), I0h(t), I0v (t)).

Proof. See [53].

4.2 Inner solution

Now for times τ = O(ε), both Sh and Ih adjust from their initial values to values
consistent with the outer solution just found above. Define the inner variables
sh(τ, ε) = Sh(t, ε), ih(τ, ε) = Ih(t, ε), and iv(τ, ε) = Iv(t, ε). Again we seek an
asymptotic expansion in the form

sh = s0h(t) + ŝ0h +O(ε),

ih = i0h(t) + î0h +O(ε),

iv = i0v(t) +O(ε),

(4.17)

where τ = t/ε and lim
τ→∞

(ŝ0h, î
0
h) = 0. Thus we have

0 = µ− mlβ(b)

pi0h + ls0h
s0hi

0
v − µs0h + νi0h,

0 =
mlβ(b)

pi0h + ls0h
s0hi

0
v − (µ+ ν)i0h,

di0v
dt

=
pα∗(b)

pi0h + ls0h
i0h(1− i0v)− η∗(b)i0v.

(4.18)
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The first two equations give s0h = 0 and i0h = 1. This means that the inner solution
for the human variables remain constant. Substituting in the third equation we
get for mosquito variable

di0v
dt

= α∗(b)(1− i0v)− η∗(b)i0v,

which has the solution along with the initial condition

i0v =
α∗(b)− C1e

−(α∗(b)+η∗(b))τ

α∗(b) + η∗(b))
,

where C1 is the integration constant.

4.3 Matching outer and inner solutions

To determine an accurate approximation to the solution of a singularly perturbed
problem, asymptotic matching is used here. Assume that both outer and inner
expansions are valid for ε � t � 1. Thus, the expansions are linked together
and must agree asymptotically when t → 0 and τ → ∞ as ε → 0. The matching
condition is

lim
τ→∞

sh0(τ) = lim
t→0

Sh0(t) = sh(0),

lim
τ→∞

ih0(τ) = lim
t→0

Ih0(t) = ih(0),

lim
τ→∞

iv0(τ) = lim
t→0

Iv0(t) =
α∗(b)

α∗(b) + η∗(b)
.

(4.19)

Now we can obtain a uniform solution Ŝh0, Îh0, and Îv0 as follows

Ŝh0 = Sh0(t) + sh0(
t

ε
)− Sh(0),

Îh0 = Ih0(t) + ih0(
t

ε
)− Ih(0),

Îv0 =
α∗(b)− C1e

−(α∗(b)+η∗(b)) t
ε

α∗(b) + η∗(b)
.

(4.20)

Introducing the limits in (4.19), we obtain

Ŝh0 = Sh0(t),

Îh0 = Ih0(t),

Îv0 =
α∗(b)− C1e

−(α∗(b)+η∗(b)) t
ε

α∗(b) + η∗(b)
.

(4.21)

Equations (4.21) mean that the outer solutions are the uniform solutions for human
population while the inner solution is for the mosquitoes population.
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5 Numerical simulations

In this section, we will investigate both the vector-bias effect and bed-net control
on malaria disease transmission along with the perturbation effect numerically to
confirm theoretical results obtained above. Since nonlinear Ordinary differential
Equations (ODEs) may exhibit complicated behaviors over long time, more com-
plicated numerical solvers such as the Runge-Kutta method have been developed
to avoid the inaccuracy of standard methods such as Euler [54]. In this paper we
use ODE45 Matlab tool, which is a six stage, fifth order Runge-Kutta method.
Based on estimations and the literature, a set of parameter values is considered
as shown in Table 1. The following cases are illustrated numerically.

1. Let ε = 1, and p = 1 = 0.5, that is model (2.4) is neither singularly per-
turbed, nor biased. For an initial condition (Sh(0), Ih(0), Iv(0)) = (0.5, 0.5, 0.1),
the long-term behavior for a portion of population is plotted in Fig.(1)a. It
can be seen that the number of both infected humans and mosquitoes de-
creases. For ε = 0.1, p = 0.7, and l = 0.4, the peak of infected mosquitoes
increases then suddenly decreases as seen in Fig.(1)b. Now let ε = 0.01,
p = 0.8, and l = 0.6. The peak of infection is increased then decreased as
seen in Fig.(1)c. Finally, let ε = 0.01, p = 0.7, and l = 0.4 as depicted
in Fig.(1)d. Comparing Fig.(1)b with Fig.(1)d reveals that decreasing the
perturbation parameter ε from 0.1 to 0.01 results in increasing the peak of
infected vectors then suddenly reducing it to make the number of infected
mosquitoes very small. In all parts of Fig.(1), the basic reproduction number
R0 is below one and the disease-free equilibrium E0(1, 0, 0) is locally stable.
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(a) (b)

(c) (d)

Figure 1: Time profile of model (2.4) with parameter values taken from Table 1.
where (a)ε = 1, p = l = 0.5, (b)ε = 0.1, p = 0.7, and l = 0.4, (c)ε = 0.01, p = 0.8,
and l = 0.6, (d) ε = 0.01, p = 0.7, and l = 0.4. Here R0 < 1.

2. To examine both the vector-bias effect and bed-net control on the infected
humans only in the presence of the perturbation parameter ε, we plot the
long-term behavior of portion of the infected humans. Let us take p = l =
0.5, p = 0.7, l = 0.4, and p = 0.8, l = 0.2 while decreasing ε as follows.
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In Fig.(2)a, we take ε = 1 and in Fig.(2)b, ε = 0.5, while in Fig.(2)c and
Fig.(2)d, ε = 0.1, and ε = 0.02, respectively. As we can see, the epidemic
outbreak does not take place at any of the values of p (the attractiveness of
infectious humans to mosquitoes). The epidemic is eradicated more slowly
for p = 0.8 and q = 0.2, while such behavior occurs faster for p = 0.7 and
q = 0.4, then for p = q = 0.5. The same thing can be said when ε = 0.5, 0.1,
and 0.02. The notable thing is when reducing the value of ε, the epidemic
is eradicated fast as we see in Fig.(2)(d) for ε = 0.02.
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(a) (b)

(c) (d)

Figure 2: Time profile of the infected humans only of model (2.4) with parameter
values taken from Table 1. with p = 1 = 0.5, p = 0.7, l = 0.4, and p = 0.8, l = 0.2
and (a)ε = 1, (b)ε = 0.5, (c)ε = 0.1, and (d)ε = 0.02.

3. Now fix p = 0.87 and l = 0.13 and the rest of parameters are taken
from Table 1. According to Proposition 2, there exists a unique equilib-
rium point E∗ = (0.9998, 6.0128e − 04, 0.0014) when R0 = 2.0474 > 1 and
γ3 = −1.9302e− 06 < 0. Starting with and initial condition (0.9, 6.0128e−
04, 0.0014), we plot the long term behavior of model (3) with different per-
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turbation parameter values as depicted in Fig.(3). For all parts of the figure
a,b,c and d where ε = 1, 0.1, 0.01, and 0.001, respectively, we see that E∗

is locally stable. With high attractiveness p, both the number of infected
vectors and infected humans increases when decreasing ε from 1 to 0.1, then
it becomes stable from ε = 0.01 to ε = 0.001.

(a) (b)

(c) (d)

Figure 3: Time profile of model (2.4) with parameter values taken from Table 1
where p = 0.87, l = 0.13 and (a)ε = 1, (b)ε = 0.1, (c)ε = 0.01, and (d)ε = 0.001.
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4. Take p = 0.8, l = 0.6 and keep the rest of parameters taken from Table 1, a
surface plot for the basic reproduction number R0 is represented in Fig.(4)a.
As we can see, an increase of the bed-net usage b leads to a decline in the
value of R0, while a decrease in the perturbation parameter ε leads also to
a decline in the value of R0. With the same values for p and l, we plot the
relation between b and R0 in Fig.(4)b and as we can wee R0 is a decreasing
function of b. We also see that if over 30% of humans use ITNs, then R0

can be reduced below one, and hence, malaria disease can be reduced.

(a) (b)

Figure 4: (a)Surface plot of R0 of model (2.4) when p = 0.8 and l = 0.6 as
a function of the perturbation parameter ε and bed-net usage b, (b) Relation
between R0 and b.

5. The trajectories of solution on the slow surface for p = 0.8 and l = 0.4
are plotted in Fig.(5)(a-d) with different perturbation parameter values; ε =
1, 0.1, 0.01, and 0.001, respectively. We note that when ε = 0.001, the portion
of infectious mosquitoes decreases.

21



(a) (b)

(c) (d)

Figure 5: Slow surface dynamics with parameter values taken from Table 1 where
p = 0.8, l = 0.4 and (a)ε = 1, (b)ε = 0.1, (c)ε = 0.01, (d)ε = 0.001 and an initial
point (0.9, 0.1, 0.1).
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6 Conclusion

We modified a vector-bias model for malaria transmission proposed in (Cham-
chod et al. 2011), in which mosquitoes exhibit host selectivity. Several new
interventions are currently being used to reduce malaria disease burden such as
insecticide-treated bed-nets (ITNs). Since we are interested in reducing both the
contact rate of humans and the contact rate of mosquitoes, we incorporated the
bed-net usage b on both contact rates. Mosquitoes have a very short life cycle
compared to humans, hence, host and vector dynamics act on two different time
scales; slow for the host and fast for the vector. This is represented in our model
by scaling both transmission and death rates of mosquitoes by the perturbation
parameter ε ∈ [0, 1], that is, both the transmission and death rates of mosquitoes
are very high compared to those of humans. As a consequence, the model is
transformed into a singular perturbation model. The basic reproduction number
R0, a threshold to control malaria outbreak, is calculated using the next gener-
ation matrix method. Local stability analysis of the disease-free equilibrium and
the endemic equilibrium is investigated when the singular perturbation parameter
0 < ε < 1. The disease-free equilibrium is locally stable if R0 < 1, that is, the
disease dies out and the endemic equilibrium is locally stable if R0 > 1. The
combination of these three modeling approaches, vector-bias, bed-net control, and
singular perturbation, strongly affect the model dynamics. The peak of infection
is reduced when ε → 0 while using bed-net control. We have seen that if over
%30 of humans use ITNs, malaria disease burden can be reduced. Indeed, the
increase of the bed-net usage b declines the value of R0 when ε → 0 which have
a great role in decreasing the portion of infected humans. We discussed the sin-
gular perturbation model when ε = 0 by separating it into two subsystems, fast
and slow then investigating them by asymptotic expansions and matching them.
We point out that the deduced subsystems obtained here could be effective in
obtaining more simpler models. Finally, the numerical simulations confirmed the
theoretical analysis and revealed that the number of infected mosquitoes will be
declined if the perturbation parameter ε = 0.001. The proposed model can seen as
a nonlinear control system, then different feedback control strategies can be used
such as model predictive control (MPC) presented in [55].
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