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Abstract

Nest  building  can  represent  an  energetically-costly  activity  for  a  variety  of  animal  taxa.

Besides,  the  determinants  of  within-species  variation  in  the  design of  nests,  notably  with

respect to natural and sexual selection, are still poorly known although the situation has been

partly  remedied recently.  Based on an observational  study,  we examined the influence of

nesting conditions (nesting-substrate quality, colony, laying date, and year) on the volume of

male-built  nests  and  its  potential  role  as  a post-mating  sexually-selected  display in  the

whiskered  tern  Chlidonias  hybrida,  a  monogamous  species  with  obligate  bi-parental  care

breeding on unstable aquatic vegetation beds. No relationship was found between the nest

volume and the  nesting-substrate  quality  (i.e.  nest  stability)  indicating that  the  density  of

white waterlily leaves was large enough when whiskered terns breed. In contrast, building a

large  nest likely  constitutes  a  selective  advantage  since  nests  were larger  in  less  densely

populated  colonies  and  for  early  breeders  whatever  the  year.  Since  being  influenced  by

nesting conditions, the volume of male-built nests was unlikely to be a sexually selected trait

in whiskered terns. The reproductive effort by females (the probability of laying one, two or

three eggs, and variation in mean egg volume per clutch) was indeed not correlated with the

volume of male-built nests. The fitness consequences of building a large nest are yet to be

studied and additional investigations are recommended to better depict the participation of

males  early  during  breeding  (including  notably  courtship  feeding)  and  later  to  chick

provisioning.

Keywords

Chlidonias hybrida · Colony size · Egg number and/or size · Laying date · Nesting-substrate

quality · Post-mating sexual signal
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Introduction

Nest building is a critical stage in the lifetime of a variety of animal taxa. Nests can exhibit

large between- and within-species variation in their design, but their causes and the relative

fitness consequences are not still well determined (Hansell 2000). The primary function of a

nest is to provide a secure structure for eggs during their development and nestlings during

rearing  (in  the  case  of  altricial  species).  Additional  functions  include  environmental

adjustment, crypsis against predators, and parasite control (e.g. Hansell 2000, Deeming and

Mainwaring  2015).  This,  in  turn,  make  it  more  difficult  to  determine  the,  sometimes

conflicting, selective pressures responsible for variation in nest characteristics. Nest features

(materials, form, structure, size, placement, and duration of nest building) have been indeed

shown, mainly in birds, to be influenced by a variety of environmental (extrinsic) factors

including the local availability of materials, the microclimatic conditions, the nature and/or

quality of the substrate, the time of year, and the risk of nest predation (Collias and Collias

1984; Hoi  et  al.  1994;  Persson and Öhrström 1996; Palomino et  al.  1998;  Deeming and

Mainwaring 2015). They are also influenced by individual state variables including sex, body

size, experience, and quality (Soler et al. 1998, Hansell 2000; Muth and Healy 2011). 

For species nesting colonially, an increasing body of literature supports the idea that a

variety  of  life-history  (e.g.  clutch  size,  body condition  and/or  size)  and behavioural  (e.g.

aggressiveness or, conversely, tolerance toward conspecifics, vigilance) traits and their fitness

consequences vary with social environment, notably with group size (i.e. a phenotypic sorting

of  individuals  based  on  their  competitive  ability,  see  the  review  of  Brown  (2016)  and

references therein). Although a large panel of phenotypic traits tend to vary among colonies

(but  not  necessary  with  colony  size;  Brown 2016),  variation  in  the  design  of  nests  with

colonial  nesting  remains  a  neglected  issue  whereas  nest  characteristics  may  substantially

3

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

5

6



affect various indicators of reproductive success (Hansell 2000;  Deeming and Mainwaring

2015). More precisely, given that nest building behaviours can be energetically costly due to

the numerous trips that individuals make to gather the necessary nesting materials (Collias

and Collias 1984; Hansell 2000; Mainwaring and Hartley 2013) and that nesting materials can

be limited, competition for nesting materials is expected to be exacerbated in large colonies

(Carrascal  et  al.  1995).  Furthermore,  Moreno  et  al.  (1995)  reported  that  nesting-material

stealing by conspecifics is particularly associated with colonial nesting. Hence, colony size

may influence nest size (Carrascal et al. 1995).

 

Nest building has also been proposed to have a sexually-selected component (e.g. Soler et

al. 1998). In birds, the energy costs during breeding are among the highest throughout their

lifetime (Williams 1996), breeders may therefore trade their effort between current breeding,

their own survival, and upcoming breeding events (as predicted by life-history theory: Stearns

1992; Gustafsson et al. 1994; Liker and Székely 2005). In this respect, adults able to assess

the quality of their mates as future parents on the basis of sexual signals would experience a

critical advantage adjusting their own reproductive effort (Burley 1986; Hoelzer 1989; Møller

1994; Soler  et  al.  1998).  An  extensive  body  of  literature  has  provided  evidence  that,  in

monogamous species with obligate bi-parental care,  the activity of males early during the

breeding season (e.g. nest building and courtship feeding performance) may serve as a post-

mating sexually-selected display allowing females to assess the quality of males (reviewed in

Collias and Collias 1984; Hansell 2000; Wachtmeister 2001). For instance, Soler et al. (2001)

showed  that  Eurasian  magpie  Pica  pica females  laid  larger  clutches  when  nests  were

experimentally  enlarged to  simulate  increased nest-building effort  by males.  A number of

studies, notably in passerines, support the idea that sexual selection would favour large nests

(e.g. Moreno et al. 1994, Palomino et al. 1998; Soler et al. 1998).
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The whiskered tern Chlidonias hybrida, is a colonial long-lived migratory monogamous

bird with obligate bi-parental care that,  by contrast to most  terns (Collias and Collias 1984;

Gochfeld and Burger 1996), builds floating open-nesting platforms on aquatic vegetation beds

(Bakaria  et  al.  2002;  Paillisson et  al.  2006).  It  makes  its  nests  particularly  vulnerable  to

environmental  conditions  (floods,  and  wave  and  wind  actions).  Notably,  it  may  be  less

adaptive to build a small nest  in sparsely aquatic vegetated beds (e.g. Collias and Collias

1984). Previous works showed that, during early breeding, whiskered tern females spend the

major part of their time at the nesting place (Paillisson et al. 2007, Chambon et al.  2020)

whereas males nearly alone bring nesting-plant materials (85% in Chambon et al. (2020)).

Nest building  per se is often not very sophisticated since both members of a pair  loosely

gather plant materials to constitute a floating platform (Figure 1). The nest size rather results

from the accumulation of plant materials brought by whiskered tern males. 

The aims of this study are threefold. First, we document the extent of nest size variation

in the whiskered tern; this aspect of its breeding biology has been little documented to date

(but  see  Mužinić  and Delić  1997;  Bakaria  et  al.  2002,  Figure 1).  Second,  we consider  a

variety of environmental and social factors to explain nest size variation. The nest support

hypothesis posits that nesting materials are used to form a solid base for the nest, increasing

its stability (Collias and Collias 1984, Palomino et al. 1998). This hypothesis predicts that the

amount of nesting material is negatively correlated with the nesting-substrate stability. Hence,

we expect that nest volume is negatively correlated with the density of aquatic plant beds as

the theory predicts.  In addition, we examine a possible laying date effect on nest volume.

Early breeders are expected to access to better quality nesting places (Ketterson and Nolan

(1983); i.e. dense aquatic vegetation in the whiskered tern) and would build small nests as the
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nest support hypothesis suggests. An alternative prediction would be that early breeders, also

considered as high-quality individuals (Verhulst and Nisson 2008) take more time to build

nests and, in turn, build larger nests (Deeming and Mainwaring 2015). Moreover, opposing

forces can influence the nest size for late breeders. As the season progresses, breeders have

less time to build nests (referring to the optimal breeding time hypothesis,  Mainwaring and

Hartley 2008), hence, we expect that late breeders build smaller nests. At the same time, late

breeders may settle in less densely vegetated beds (i.e.  suboptimal nesting places) and be

constrained to build large nests as the nest support hypothesis predicts. We also expect that

nest  size  varies  with  colony;  more  specifically,  high  competition  for  nesting  materials  is

intended in large colonies and would select for, or favour, smaller nests.  Third, we examine

the potential benefit of nest size in terms of sexual selection. We hypothesize that, whether the

nest-building activity of males provides reliable information on their  participation to future

parental effort that females are able to assess, females would adjust their own reproductive

effort  accordingly.  Hence,  a  positive  relationship  would  exist  between  nest  size  and  egg

production. To test these various hypotheses, we conducted a three-year observational study in

a French breeding area supporting several whiskered tern colonies. All studied colonies were

characterized  regarding their size;  colony, laying date and year, together with nest volume,

were used as predictors of females’ egg production (see also Paillisson et al. 2007).

Materials and Methods

Study site and fieldwork

The study was conducted at the Lake of Grand-Lieu, in northwestern France (47°05’ N, 1°39’

W), which supports one of the major breeding populations of whiskered terns in the country

(900–1,460 breeding pairs over the study period, 25–39% of the national population size).

Grand-Lieu is a very large (ca. 4,000 ha in summer), shallow and eutrophic natural freshwater
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lake with extensive beds of floating macrophytes (around 700 ha depending on the year),

including mainly white waterlily  Nymphaea alba beds where whiskered terns settle in well-

spaced colonies (see Paillisson et al. (2008) for more details). Whiskered terns build nesting

platforms from macrophyte fragments,  mainly  waterlily  leaves  and stems,  and sometimes

from common club-rush  Scirpus lacustris stems (depending on the proximity of colonies to

this nesting-material source). The almost circular platforms are generally completed before

egg-laying. However, the nest cup (when present) is built by both members of a pair when

incubating eggs using soft plant materials (water chestnut Trapa natans, yellow-floating heart

Nymphoides peltata, and primrose yellow Ludwigia grandiflora).

JMP visited all the active nests of eight colonies by boat in 2008, 2009 and 2018 only

once during egg incubation to limit disturbance (see basic information on colonies in Table 1).

The  measurement  of  nest  size  and  egg  size  takes  less  than  five  minutes  per  nest.  Field

observations showed that parents came back to the nest within 1–15 minutes then after. The

largest external diameter of the nests was measured using a giant caliper (d, to the nearest 1

cm), and their maximum height above the water line using a bracket equipped with a spirit

level (h, to the nearest 0.1 cm). Nest size was approximated using the formula of the volume

of a cone: (d/2)2 × π × h/3 (cm3). The dominant plants used for nest building were recorded. A

small number of platforms were made mostly of club-rush (< 5% of the total number of nests

once  all  selection  criteria  are  applied,  see  below);  they  were  discarded  from the  dataset

because they were larger than nests composed of waterlily (data not shown) and were too few

to represent a competing factor in subsequent analyses. The quality of the nesting substrate

was visually estimated by determining the leaf density of white waterlily in a 1-m radius

around the nests  (i.e.  a  proxy of  its  biomass, see Paillisson and Marion (2006) for more
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details). Two classes were defined: low (when one leaf layer covers the water surface totally

or not), or high (when several floating and aerial leaf layers cover the total water surface).

Egg number and egg size are classically used to describe females’ reproductive effort

(Birchard and Deeming 2015; Brulez et al. 2015). As whiskered terns typically lay up to three

eggs (Paillisson et al. 2007), clutches with more than three eggs were discarded (< 1% of the

total)  because  they  probably  resulted  from conspecific  brood  parasitism (Paillisson  et  al.

2008) and, hence, did not reliably represent the reproductive effort by the host females. Egg

volume (cm3) was calculated based on the measurement of egg length and width (using a

Vernier caliper, to the nearest 0.01 mm) using the formula provided in Coulson (1963). Egg

weight (measured using an electronic scale to the nearest 0.1 g) was used to estimate egg age

using the linear egg density/age relationship we published elsewhere (Paillisson et al. 2007).

Egg age was used to determine whether one- and two-egg clutches were complete, knowing

that an interval of at least one day is necessary between the laying of successive eggs. Only

clutches defined as complete with certainty were kept for subsequent analyses (see Paillisson

et al. 2007). Egg age was also used to estimate the clutch initiation date (i.e. the laying date of

the first  egg of  a  clutch).  We took the clutch initiation date  into account  in  the analyses

because egg number and/or size may vary as the season progresses (due to,  for example,

changes in food availability (Parsons 1975; Sydeman et al.  1991) or replacement clutches

(Coulson and Thomas 1985; Wendeln 1997)). To do this, we converted the estimated clutch

initiation  dates  (i.e.  Julian  dates)  into  residual  laying dates  (i.e.  relative  dates)  to  control

between-year  differences  in  the  egg-laying  period.  More  exactly,  the  estimated  clutch

initiation dates were expressed in pentades (5-day time intervals,  beginning May 20) and

converted into residual laying dates by subtracting each clutch-laying date (in pentades) from

the peak laying date of all nests of each year (pentades 5, 7 and 7 in 2008, 2009 and 2018,
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respectively). Finally, clutches were classified into three classes: early (pentades ranging from

– 6 to – 2), peak (– 1 to 0) and late (+ 1 to + 5) clutches. The number of nests assigned to the

early-laying class was too small (4% of the total number of nests finally used for analysis) to

be  retained  for  subsequent  statistical  analyses.  Lastly,  given  that  nesting  platforms  are

composed of  slowly decaying plant  fragments,  we assumed that  we reasonably  evaluated

males’ nest-building effort by keeping only nests with ≤ 10-day old eggs (i.e. nests whose size

was  measured  during  the  first  half  of  the  egg-incubation  stage).  An alternative  approach

would have been to control the effect of egg age on nest volume to consider the complete

dataset for subsequent analyses, but we had no idea whether it would accurately reflect the

plant  breakdown rate.  Overall,  the  dataset  used  for  analysis  included  297  nests,  for  4–6

colonies per year (see details in Table 1). In addition, behavioural observations of focal nests

were made in 2008 to provide an extensive overview of the activity of males before egg-

laying with respect to sexual selection aspects (see Appendix 1 and the discussion section).

Statistical analyses

We used Linear  Models  (LMs)  to  investigate  the  effects  of  the  aforementioned variables

potentially influencing nest size in birds: time of year (peak or late laying; Mainwaring and

Hartley 2008; Britt  and Deeming 2011),  year (Britt  and Deeming 2011),  nesting-substrate

quality  (Collias  and  Collias  1984),  and  colony  (colony  identity  refers  both  to  local  and

environmental  conditions).  These  analyses  were  performed  on  the  297  nests.  We  also

examined whether egg production varied according to nest volume (after controlling for the

effects of the aforementioned variables on nest volume), year, colony, and laying date (i.e. a

proxy of breeders’ quality: Verhulst et al. 1995; Wendeln 1997; Verhulst and Nilsson 2008).

For this purpose, we used multinomial models and LMs to examine the probability of laying

one,  two or  three  eggs,  and variation  in  mean  egg volume per  clutch,  respectively,  as  a
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function of the candidate variables. Egg number was also considered as a candidate predictor

in models investigating variation in mean egg volume per clutch. Due to small or unbalanced

sample  size  issues,  the  analyses  on  egg  production  were  performed  on  a  subset  of  four

colonies (n = 225 nests, see Table 1).

For all  analyses,  we tested all  possible additive combinations of up to  two candidate

variables to  limit  the complexity of the models.  Interaction effects  were not  tested as no

biological  hypothesis  seemed  prevalent.  Models  were  ranked  by  the  Akaike  information

criterion corrected for small sample sizes (AICc), and the models with the lowest AICc were

identified as the best models when their AICc was at least two units lower than those of all

other models. A multi-model inference approach was used when several models were with

ΔAICc ≤ 2 to calculate model-averaged parameter estimates (with 95% Confidence Intervals,

95% CIs) for the variables included in the selected models.  An explanatory variable  was

considered  as  significant  when  its  parameter  estimate  (the  slope  of  the  relation,  for  a

quantitative  variable)  or  at  least  one  of  all  parameter  estimates  (the  differences  in  the

estimated values of the response variable between a reference factor level and all the other

levels, for a qualitative variable) was different from zero (when the 95% CI excluded zero).

Pairwise post-hoc comparisons of the adjusted estimates of a response variable (means ± SE,

based on estimated marginal means from the models) according to the retained effects were

performed using Tukey’s multiple comparison tests.

All statistical analyses were performed with R 3.5.2 (R Development Core Team 2018)

using  the  AICcmodavg,  car, emmeans,  lme4,  MuMIn,  nnet,  r2glmm and  RVAideMemoire

libraries. The significance level was fixed at α = 0.05.
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Results

Estimated nest volumes ranged from 477 to 8,701 cm3, with a mean value of 2,618 ± 63 SE

cm3. The first-ranked model explaining variation in nest volume was better supported than the

other models (Table 2); it included laying date and colony (R2 = 0.19). Nest volume was on

average smaller for late clutches than for peak clutches (2,013 ± 148.2 and 2,853 ± 94.7 cm3,

respectively; Figure 2a). Nest volume was particularly low in large colonies (1,739 ± 218 and

1,820 ± 153 cm3 in colonies VII and V (see Table 1), respectively), it was twice as high in

colony IV (3,673 ± 165 cm3, a less densely populated colony), and intermediate in all the

other colonies (Figure 2b).

One-egg clutches  were  much  less  represented  (18%) than  two-  (39%)  and  three-egg

clutches (43%) across the complete dataset  (n = 297 nests). Proportions were very similar in

the subset of four colonies (colonies I, IV, V and VI) used to examine the drivers of egg

production (19, 38 and 43%, respectively). Nest volume was the only variable included in the

best model explaining the propensity for whiskered tern females to lay one, two or three eggs

(Table 3). However, the estimated equal probabilities for all egg numbers we found whatever

the nest volume (post-hoc comparisons) revealed that nest volume did not exert an influence

on  egg  number.  Four  models  best  explained  mean  egg  volume  per  clutch  (Table  3);

nevertheless, colony was the only significant variable (R2  = 0.07; 95% CIs of its estimates

using colony I as the reference level: 0.51 to 1.53 for colony IV, -0.06 to 1.08 for colony V,

and 0.24 to 1.24 for colony VI; Figure 3). Egg volume was the lowest in colony I (mean ± SE

= 14.39 ± 0.20 cm3), the highest in colonies VI and IV (15.20 ± 0.11 and 15.39 ± 0.16 cm3,

respectively), and intermediate in colony V (14.93  ± 0.13 cm3) without any relationship to

colony size (Table 1).
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Discussion

Nesting platforms exhibited large variation in size between whiskered tern breeding pairs.

This  was  attributed  to  laying  date  and  colony  but  not  to  the  nesting-substrate  quality.

Therefore,  nest volume is not very likely to be sexually selected in whiskered terns since

partly depending on nest site conditions. Moreover, no relationship was shown between nest

volume and females’ egg production. 

Contrary to our expectations, nest volume was not correlated to the leaf density of white

waterlily as the nest support hypothesis posits. However, whiskered terns are known to be

sensitive to nesting-substrate quality (Paillisson et al. 2006, see a similar conclusion in Van

der Winden et al. (2004) in black terns Chidonias niger). More exactly, birds settle every year

when  a  minimum  waterlily  biomass  is  reached  (Paillisson  et  al.  2006).  Therefore,  we

conclude that nesting-substrate quality was surely high enough when most whiskered terns

settled over the present study period. Moreover, large nests take time and energy to build

(Soler  et  al.  1998; Hansell  2000; Mainwaring  and Hartley  2013).  This  is  a  critical  issue

notably for migrant species because of the optimal breeding time constraint (Mainwaring and

Hartley  2008).  Our  results  are  consistent  with  this  hypothesis  since  we showed that  late

breeders built  smaller nests.  An alternative explanation would be that poorer-quality birds

breed later in the season and therefore build small nests. In all cases, the prediction that late

breeders  would  build  large  nests  because  they  access  to  poor-quality  plant  beds  (i.e.

suboptimal nesting places) is refuted. Besides, it is generally admitted that early breeders are

high-quality parents (Verhulst and Nisson 2008); they are thought to access to better quality

nesting places and to initiate nest building well before egg-laying. Thus, they may have a long

nest building period, and, in turn, build larger nests (see Mainwaring and Hartley (2008), and

Smith  et  al.  (2013)  in  passerines).  Large  nests  may  constitute  a  selective  advantage  for
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whiskered terns because they are better anchored to floating plants. As a result, they are more

stable  and may better  survive  wind and wave action and water  level  fluctuations.  Future

investigations would be required to explore this issue.

Nest  volume also varied between whiskered tern colonies:  small  nests  were noted in

colonies with high challenging social conditions (i.e. a high number of breeders or a high

density of nests  depending on the year),  and occurred in less densely populated colonies.

These  results  support  the  idea  that  whiskered  terns  in  densely  populated  colonies  (being

however moderate compared to elsewhere; Minias et al.  2014; Chambon et al.  2020) face

increased  competition  for  the  nest  material  available.  Another  explanation  could  be  that

colonies with smaller nests were suboptimal sites (e.g. more exposed to the wind and the

waves), or colonies supporting poor-quality parents. In addition, nest predation pressure that

is known to favour small nests (Mainwaring et al. 2015 and references therein) is low in our

study site. Magpies Pica pica and black kites Milvus migrans are occasionally observed and

when an individual is detected close to a colony whiskered terns alarm and massively attack

it. 

To  function  as  a  sexually  selected  male  trait,  nest  may  primarily  reflect  significant

participation of males to build it. Time-activity budgets showed that whiskered tern males

indeed made practically alone all trips to gather nesting materials (97% of the total number of

nesting-material deliveries, Appendix A1). Time-activity budgets also revealed that males can

highly provision their mate before egg-laying. The functions of courtship feeding have long

been debated  in  the  past,  and several  hypotheses  have  been  supported  by  empirical  data

including  the post-mating sexual signal hypothesis (Wachtmeister 2001, and notably Nisbet

(1973) and Wiggins and Morris (1986) in common terns sterna hirundo). Hence, two displays
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(nesting-material  delivery  and  courtship  feeding)  would  potentially  act  simultaneously  as

sexual  signals  in  whiskered  terns  (see  also  Yoon et  al.  (2015)  in  oriental  storks  Ciconia

boyciana).  We found  that  males  exhibiting  the  most  intensive  courtship  feeding  brought

nesting material at a low rate (no negative relationship was however observed, Figure A1).

Therefore, the information gathered by a female from the activity of its mate during early

breeding is highly complex. What is more, males’ effort may vary in the course of the nest-

building period, so that the 3-day period during which their activities were recorded may not

have coincided with the period of maximum energy requirements of females for all studied

breeding pairs (peak energy requirements occurring, for instance, only 1–2 days before laying

in common terns;  Moore  et  al.  2000).  Additional  investigations  are  needed to clarify the

relationship between nesting-material and food supply throughout the whole pre-laying period

and to provide a better understanding of the functions of courtship feeding in whiskered terns.

Besides,  it  is  also admitted that in order to be a reliable  post-mating sexual signal, a

parent’s display has to convey its ability to provide parental care to its partner; the partner, in

turn, adjusts its reproductive effort accordingly to acquire direct fitness benefits. This means

that data on chick provisioning by males are needed to examine whether males that invest

more in nest building (i.e. build a large nest) also invest more in chick provisioning or not.

Unfortunately, we do not possess such data. This requires trapping, banding and sexing adults

because  it  is  frequently  impossible  to  differentiate  sexes  when  chicks  require  intense

provisioning (see  for  instance  Ledwoń and Neubauer  2017).  Additional  investigations  are

needed to examine whether the activities of males before egg-laying well  inform on their

future investment in chick provisioning.
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Lastly, we found no evidence for a link between nest volume and egg number and size.

More  broadly,  variation  in  females’ egg  production  (egg  number  and  size)  was  poorly

correlated to the candidate predictors considered. At most, egg volume was colony-dependent,

without any straightforward explanation; no apparent relationship indeed occurred with the

number and density of active nests.  Other factors,  notably the own phenotypic quality  of

females, have been suggested to explain differences in females’ reproductive effort (Coulson

and Porter 1985; Slagsvold and Lifjeld 1990; Hipfner et al. 1999). Unfortunately, such data

are not available in the present study.

In conclusion, our findings contribute to the knowledge of the drivers of within-species

variation in nest size in birds. Nest building behaviours by whiskered tern males were mainly

influenced by nest site conditions (colony and laying date, this latter variable could indicate

changes in nesting conditions as the season progresses). Since whiskered terns build large

nests when nesting conditions are suitable (early in the season and in less densely populated

colonies),  they  likely  take advantage of  this  increased  costly  activity  later  in  the  season.

Hence,  the next step would be to assess  the relative fitness consequences of nest  size.  In

addition, nest building is unlikely a sexual signal in whiskered terns. By contrast, courtship

feeding may be an important  cue for females  before egg-laying;  future investigations  are

needed  to  explore  this  issue,  and,  in  turn,  to  contribute  to  a  better  understanding  of  the

breeding ecology of this monogamous bird.
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Tables

Colony size (nests) Nest density (nests.ha-1) Number of nests to study nest volume and egg production

Colony   Year Year Year  
Waterlily 
leaf density

  Laying date   Egg number Total

    2008 2009 2018 2008 2009 2018 2008 2009 2018   Low High   Peak Late   1 2 3
I   57 20 19 7.7 10.9 10.7 13 – 13   18 8   7 19   6 13 7 26
II   – – 18 – – 61.7 – – 12   12 0   12 0   2 4 6 12
III   12 12 – 11.5 33.7 – 6 – –   0 6   6 0   1 4 1 6
IV   22 38 43 8.4 7.3 2.7 12 15 16   22 21   6 37   11 15 17 43
V   – 91 – - 9.4 – – 61 –   54 7   60 1   11 24 26 61
VI   84 61 88 26.8 6.9 17.6 19 37 39   42 53   78 17   15 33 47 95
VII   61 23 – 96.2 13.3 – 14 11 –   25 0   25 0   3 10 12 25
VIII   18 46 – 6.9 9.4 – 7 22 –   17 12   14 15   5 12 12 29
Total 178 291 168 – – – 71 146 80 190 107 208 89 54 115 128 297

Table 1 Basic description of the colonies over the study (colony size and nest density) and summary of the number of nests (n = 297) among the

levels of factors used for exploring variation in nest volume and egg production (only colonies I, IV, V, and VI for this latter case; n = 225).

Colonies (I, II, III, IV, V, VI, VII, VIII) represent well-delimited areas where whiskered terns settle sometimes for several years, otherwise a dash is used. Year:
2008, 2009 and 2018. Waterlily-leaf density: low or high. Laying date: residual clutch initiation date classified as peak or late laying (too few data for the early
laying class). Egg number: one, two, or three eggs. 
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Table 2 Models tested to explain the nest volume of whiskered terns.

Explanatory variable AICc ΔAICc ꙍAIC
c

Laying date + Colony 4956.10 0.00 0.91
Year + Colony 4960.86 4.76 0.08
Year + Waterlily density 4965.43 9.32 0.01
Colony + Waterlily density 4970.63 14.52 0.00
Colony 4976.82 20.71 0.00
Waterlily density 4984.58 28.48 0.00
Laying date + Waterlily density 4985.40 29.29 0.00
Year 4989.01 32.91 0.00
Laying date + Year 4990.63 34.52 0.00
Laying date 5003.87 47.77 00.0

Laying date: residual clutch initiation date classified as peak
or late laying (too few data for the early laying class). Year:
2008, 2009 and 2018. Colony: I, II, III, IV, V, VI, VII, VIII.
Waterlily-leaf density: low or high. ΔAICc (the difference in
AICc  units  between  the  first-ranked  model  and  a  given
model); ꙍAICc, Akaike weight.
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Table 3 Models tested to explain the egg production (egg number and size) of whiskered tern

females.

Response variable Explanatory variable AICc ΔAICc ꙍAIC
c

Egg number Nest volume 472.19 0.00 0.78
Laying date + Nest volume 476.06 3.87 0.11
Year + Nest volume 478.48 6.30 0.03
Laying date 478.91 6.73 0.03
Colony + Nest volume 479.04 6.85 0.03
Year 480.99 8.81 0.01
Colony 481.91 9.73 0.01
Year + Laying date 484.22 12.04 0.00
Colony + Laying date 485.45 13.26 0.00
Year + Colony 487.67 15.48 0.00

Egg volume Colony + Laying date 659.40 0.00 0.33
Colony 659.62 0.21 0.30
Colony + Nest volume 660.67 1.26 0.18
Colony + Year 661.24 1.84 0.13
Egg number + Colony 662.91 3.50 0.06
Year 671.20 11.79 0.00
Laying date 671.42 12.02 0.00
Nest volume 671.44 12.03 0.00
Nest volume + Laying date 672.51 13.10 0.00
Year+ Nest volume 672.69 13.29 0.00
Egg number 672.89 13.48 0.00
Year + Laying date 673.00 13.60 0.00
Egg number + Year 673.81 14.41 0.00
Egg number + Laying date 674.07 14.66 0.00
Egg number + Nest volume 674.36 14.95 0.00

Nest volume was controlled for the effects of laying date and colony (see
the  text  for  more  details).  Laying  date:  residual  clutch  initiation  date
classified as peak or late laying (too few data for the early laying class).
Year: 2008, 2009 and 2018. Colony: I, IV, V and VI (see the text and also
Table  1).  ΔAICc  (the  difference  in  AICc  units  between  the  first-ranked
model and a given model); ꙍAICc, Akaike weight. Multinomial and linear
models were used to explain variation in egg number and mean egg volume
per clutch, respectively.
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Figure Legends

Figure 1. A whiskered tern pair on a dense white waterlily bed (a), and a variety of nests (b,

c).

Figure 2. Nest volume (mean ± SE, in cm3) according to: (a) laying date (after controlling for

the colony effect), and (b) colony (after controlling for the laying-date effect). Different letters

above bars indicate significant post-hoc differences between factor levels for laying date and

colony. See sample sizes in Table 1.

Figure 3. Model-averaged parameter estimates (with 95% Confidence Intervals) for variables

explaining the mean egg volume per clutch (model selection with ΔAICc < 2). Laying date:

peak or late classes. Year: 2008, 2009 and 2018. Colony: I, IV, V and VI (see also Table 1).

Parameter estimates are provided for each factor level (the difference in estimated values to a

reference  level,  i.e.  colony  I,  2008,  and  late  clutches  for  colony,  year,  and  laying  date,

respectively). The estimate for nest volume is the slope of the linear regression.  A variable

was considered as significant when the 95% CI of its parameter estimate (or at least one of all

parameter estimates for a qualitative variable) excluded zero (the dashed line).

27

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

53

54


