REFERENCES
- Antonelli, A., Kissling, W. D., Flantua, S. G. A., Bermúdez, M. A.,
Mulch, A., Muellner-Riehl, A. N., Kreft, H., Linder, H. P., Badgley,
C., Fjeldså, J., Fritz, S. A., Rahbek, C., Herman, F., Hooghiemstra,
H., and Hoorn, C. (2018). Geological and climatic influences on
mountain biodiversity. Nature Geoscience, 11(10),
718–725. https://doi.org/10.1038/s41561-018-0236-z
- Antonelli, A., Nylander, J. A. A., Persson, C., and Sanmartín, I.
(2009). Tracing the impact of the Andean uplift on Neotropical plant
evolution. Proceedings of the National Academy of Sciences,106(24), 9749–9754. https://doi.org/10.1073/pnas.0811421106
- Barthlott, W., Hostert, A., Kier, G., Küper, W., Kreft, H., Mutke, J.,
Rafiqpoor, M. D., and Sommer, J. H. (2007). Geographic Patterns of
Vascular Plant Diversity at Continental to Global Scales
(Geographische Muster der Gefäßpflanzenvielfalt im kontinentalen und
globalen Maßstab). Erdkunde, 61(4), 305–315.
- Bennett, K. D., Tzedakis, P. C., and Willis, K. J. (1991). Quaternary
Refugia of North European Trees. Journal of Biogeography,18(1), 103–115. https://doi.org/10.2307/2845248
- Brummitt, N., Araújo, A. C., and Harris, T. (2021). Areas of plant
diversity—What do we know? PLANTS, PEOPLE, PLANET,3(1), 33–44. https://doi.org/10.1002/ppp3.10110
- Brummitt, R. K. (2001). World geographical scheme for recording
plant distributions(ed. 2). Hunt Inst. for Botanical Documentation.
- Cardelús, C.L., Colwell, R.K., and Watkins, J.E. (2006) Vascular
epiphyte distribution patterns: explaining the mid-elevation richness
peak. J. Ecol., 94(1), 144-156.
http://doi.wiley.com/10.1111/j.1365-2745.2005.01052.x
- Clarke, A., and Gaston, K. J. (2006). Climate, energy and diversity.Proceedings of the Royal Society B: Biological Sciences,273(1599), 2257–2266. https://doi.org/10.1098/rspb.2006.3545
- Craine, J. M., Ocheltree, T. W., Nippert, J. B., Towne, E. G., Skibbe,
A. M., Kembel, S. W., and Fargione, J. E. (2013). Global diversity of
drought tolerance and grassland climate-change resilience.Nature Climate Change, 3(1), 63–67.
https://doi.org/10.1038/nclimate1634
- Dagallier, L.-P. M. J., Janssens, S. B., Dauby, G., Blach‐Overgaard,
A., Mackinder, B. A., Droissart, V., Svenning, J.-C., Sosef, M. S. M.,
Stévart, T., Harris, D. J., Sonké, B., Wieringa, J. J., Hardy, O. J.,
and Couvreur, T. L. P. (2020). Cradles and museums of generic plant
diversity across tropical Africa. New
Phytologist,225(5), 2196–2213.
https://doi.org/10.1111/nph.16293
- Donoghue, M.J. (2008) A phylogenetic perspective on the distribution
of plant diversity. PNAS, 105, 11549-11555.
- Egli, M., and Poulenard, J. (2016). Soils of Mountainous Landscapes.
In D. Richardson, N. Castree, M. F. Goodchild, A. Kobayashi, W. Liu,
and R. A. Marston (Eds.), International Encyclopedia of
Geography: People, the Earth, Environment and Technology(pp. 1–10).
John Wiley and Sons, Ltd.
https://doi.org/10.1002/9781118786352.wbieg0197
- Elsen, P. R., and Tingley, M. W. (2015). Global mountain topography
and the fate of montane species under climate change. Nature
Climate Change, 5(8), 772–776.
https://doi.org/10.1038/nclimate2656
- Emerson, B. C., and Gillespie, R. G. (2008). Phylogenetic analysis of
community assembly and structure over space and time. Trends in
Ecology and Evolution, 23(11), 619–630.
https://doi.org/10.1016/j.tree.2008.07.005
- Fick, S. E., and Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial
resolution climate surfaces for global land areas. International
Journal of Climatology, 37(12), 4302–4315.
https://doi.org/10.1002/joc.5086
- Flantua, S. G. A., O’Dea, A., Onstein, R. E., Giraldo, C., and
Hooghiemstra, H. (2019). The flickering connectivity system of the
north Andean páramos. Journal of Biogeography,46(8),
1808–1825. https://doi.org/10.1111/jbi.13607
- Folk, R. A., Siniscalchi, C. M., and Soltis, D. E. (2020). Angiosperms
at the edge: Extremity, diversity, and phylogeny. Plant, Cell
and Environment, 43(12), 2871–2893.
https://doi.org/10.1111/pce.13887
- Graham, A. (1999). Late Cretaceous and Cenozoic History of North
American Vegetation.Oxford University Press.
- Graham, A. (2010). Late Cretaceous and Cenozoic History of Latin
American Vegetation and Terrestrial Environments. Missouri Botanical
Garden Press.
- Graham, A. (2011). The age and diversification of terrestrial New
World ecosystems through Cretaceous and Cenozoic time. American
Journal of Botany, 98(3), 336–351.
https://doi.org/10.3732/ajb.1000353
- Grytnes, J.A. (2003) Species-richness patterns of vascular plants
along seven altitudinal transects in Norway. Ecography,26(3), 291-300.
http://doi.wiley.com/10.1034/j.1600-0587.2003.03358.x
- Grytnes J.A. and Vetaass, O.R. (2002) Species richness and altitude: a
comparison between null models and interpolated plant species richness
along the Himalayan altitudinal gradient, Nepal. Am. Nat.,159(3), 294-304.
- Guo, Q., Kelt, D. A., Sun, Z., Liu, H., Hu, L., Ren, H., and Wen, J.
(2013). Global variation in elevational diversity patterns.Scientific Reports, 3(1), 3007.
https://doi.org/10.1038/srep03007
- Hawkins, B. A., Rueda, M., Rangel, T. F., Field, R., and Diniz‐Filho,
J. A. F. (2014). Community phylogenetics at the biogeographical scale:
Cold tolerance, niche conservatism and the structure of North American
forests. Journal of Biogeography, 41(1), 23–38.
https://doi.org/10.1111/jbi.12171
- Hughes, C. E. (2017). Are there many different routes to becoming a
global biodiversity hotspot? Proceedings of the National Academy
of Sciences , 114 (17), 4275–4277.
https://doi.org/10.1073/pnas.1703798114
- Hughes, C., and Atchison, G. W. (2015). The ubiquity of alpine plant
radiations: From the Andes to the Hengduan Mountains. New
Phytologist, 207(2), 275–282.
https://doi.org/10.1111/nph.13230
- Hughes, C., and Eastwood, R. (2006). Island radiation on a continental
scale: Exceptional rates of plant diversification after uplift of the
Andes. Proceedings of the National Academy of Sciences,103(27), 10334–10339. https://doi.org/10.1073/pnas.0601928103
- Körner, C. (1995). Alpine Plant Diversity: A Global Survey and
Functional Interpretations. In F. S. Chapin and C. Körner (Eds.),Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem
Consequences(pp. 45–62). Springer.
https://doi.org/10.1007/978-3-642-78966-3_4
- Körner, C. (2003). Alpine plant life: Functional plant ecology
of high mountain ecosystems.(2nd ed.). Springer.
- Körner, C. (2004). Mountain Biodiversity, Its Causes and Function.AMBIO: A Journal of the Human Environment, 33(sp13),
11–17. https://doi.org/10.1007/0044-7447-33.sp13.11
- Körner, C., Jetz, W., Paulsen, J., Payne, D., Rudmann-Maurer, K., and
M. Spehn, E. (2017). A global inventory of mountains for
bio-geographical applications. Alpine Botany, 127(1),
1–15. https://doi.org/10.1007/s00035-016-0182-6
- Körner, C., and Paulsen, J. (2004). A world-wide study of high
altitude treeline temperatures. Journal of Biogeography,31(5), 713–732.
https://doi.org/10.1111/j.1365-2699.2003.01043.x
- Körner, C., Paulsen, J., and Spehn, E. M. (2011). A definition of
mountains and their bioclimatic belts for global comparisons of
biodiversity data. Alpine Botany, 121(2), 73–78.
https://doi.org/10.1007/s00035-011-0094-4
- Levins, R. (1968). Evolution in changing environments.Princeton
University Press.
- MacArthur, R. H. (1972). Geographical ecology: Patterns in the
distribution of species.Princeton University Press.
- Martínez-Padilla, J., Estrada, A., Early, R., and Garcia-Gonzalez, F.
(2017). Evolvability meets biogeography: Evolutionary potential
decreases at high and low environmental favourability.Proceedings of the Royal Society B: Biological Sciences,284(1856), 20170516. https://doi.org/10.1098/rspb.2017.0516
- McFadden, I. R., Sandel, B., Tsirogiannis, C., Morueta‐Holme, N.,
Svenning, J.-C., Enquist, B. J., and Kraft, N. J. B. (2019).
Temperature shapes opposing latitudinal gradients of plant taxonomic
and phylogenetic β diversity. Ecology Letters, 22(7),
1126–1135. https://doi.org/10.1111/ele.13269
- Meyer, C., Kreft, H., Guralnick, R., and Jetz, W. (2015). Global
priorities for an effective information basis of biodiversity
distributions. Nature Communications, 6(1), 8221.
https://doi.org/10.1038/ncomms9221
- Moles, A. T., Perkins, S. E., Laffan, S. W., Flores‐Moreno, H.,
Awasthy, M., Tindall, M. L., Sack, L., Pitman, A., Kattge, J.,
Aarssen, L. W., Anand, M., Bahn, M., Blonder, B., Cavender‐Bares, J.,
Cornelissen, J. H. C., Cornwell, W. K., Díaz, S., Dickie, J. B.,
Freschet, G. T., … Bonser, S. P. (2014). Which is a better
predictor of plant traits: Temperature or precipitation? Journal
of Vegetation Science,25(5), 1167–1180.
https://doi.org/10.1111/jvs.12190
- Ohler, L.-M., Lechleitner, M., and Junker, R. R. (2020). Microclimatic
effects on alpine plant communities and flower-visitor interactions.Scientific Reports , 10 (1), 1366.
https://doi.org/10.1038/s41598-020-58388-7
- Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum
entropy modeling of species geographic distributions. Ecological
Modelling, 190(3), 231–259.
https://doi.org/10.1016/j.ecolmodel.2005.03.026
- Qian, H. (2017). Relationship between clade age and temperature for
angiosperm tree species in forest communities along an elevational
gradient in tropical Asia. Journal of Plant Ecology,10(4), 618–625. https://doi.org/10.1093/jpe/rtw074
- R Development Core Team. (2020). R: a language and environment
for statistical computing.R Foundation for Statistical Computing.
- Rahbek, C., Borregaard, M. K., Antonelli, A., Colwell, R. K., Holt, B.
G., Nogues-Bravo, D., Rasmussen, C. M. Ø., Richardson, K., Rosing, M.
T., Whittaker, R. J., and Fjeldså, J. (2019). Building mountain
biodiversity: Geological and evolutionary processes.Science,365(6458), 1114–1119.
https://doi.org/10.1126/science.aax0151
- Rahbek, C., Borregaard, M. K., Colwell, R. K., Dalsgaard, B., Holt, B.
G., Morueta-Holme, N., Nogues-Bravo, D., Whittaker, R. J., and
Fjeldså, J. (2019). Humboldt’s enigma: What causes global patterns of
mountain biodiversity? Science, 365(6458), 1108–1113.
https://doi.org/10.1126/science.aax0149
- Rasmann, S., Pellissier, L., Defossez, E., Jactel, H., and Kunstler,
G. (2014). Climate-driven change in plant-insect interactions along
elevation gradients. Functional Ecology,28(1), 46–54.
https://doi.org/10.1111/1365-2435.12135
- Roy, M. S. (1997). Recent diversification in African greenbuls
(Pycnonotidae: Andropadus) supports a montane speciation model.Proceedings of the Royal Society of London. Series B: Biological
Sciences, 264(1386), 1337–1344.
https://doi.org/10.1098/rspb.1997.0185
- Segovia, R. A., Pennington, R. T., Baker, T. R., Souza, F. C. de,
Neves, D. M., Davis, C. C., Armesto, J. J., Olivera-Filho, A. T., and
Dexter, K. G. (2020). Freezing and water availability structure the
evolutionary diversity of trees across the Americas.Science
Advances, 6(19), eaaz5373.
https://doi.org/10.1126/sciadv.aaz5373
- Sklenář, P., Kučerová, A., Macková, J., and Romoleroux, K. (2016).
Temperature Microclimates of Plants in a Tropical Alpine Environment:
How Much does Growth Form Matter? Arctic, Antarctic, and Alpine
Research , 48 (1), 61–78. https://doi.org/10.1657/AAAR0014-084
- Smith, S. A., and Brown, J. W. (2018). Constructing a broadly
inclusive seed plant phylogeny. American Journal of Botany,105(3), 302–314. https://doi.org/10.1002/ajb2.1019
- Smithers, B. V., Oldfather, M. F., Koontz, M. J., Bishop, J., Bishop,
C., Nachlinger, J., and Sheth, S. N. (2020). Community turnover by
composition and climatic affinity across scales in an alpine system.American Journal of Botany, 107(2), 239–249.
https://doi.org/10.1002/ajb2.1376
- Stevens, P. F. (2001). Angiosperm Phylogeny Website. Version 14,
July 2017 [and more or less continuously updated since].
- ter Steege, H., Prado, P. I., Lima, R. A. F. de, Pos, E., de Souza
Coelho, L., de Andrade Lima Filho, D., Salomão, R. P., Amaral, I. L.,
de Almeida Matos, F. D., Castilho, C. V., Phillips, O. L., Guevara, J.
E., de Jesus Veiga Carim, M., Cárdenas López, D., Magnusson, W. E.,
Wittmann, F., Martins, M. P., Sabatier, D., Irume, M. V., …
Pickavance, G. (2020). Biased-corrected richness estimates for the
Amazonian tree flora. Scientific Reports, 10(1), 10130.
https://doi.org/10.1038/s41598-020-66686-3
- Ulloa Ulloa, C., Acevedo-Rodríguez, P., Beck, S., Belgrano, M. J.,
Bernal, R., Berry, P. E., Brako, L., Celis, M., Davidse, G., Forzza,
R. C., Gradstein, S. R., Hokche, O., León, B., León-Yánez, S., Magill,
R. E., Neill, D. A., Nee, M., Raven, P. H., Stimmel, H., …
Jørgensen, P. M. (2017). An integrated assessment of the vascular
plant species of the Americas. Science, 358(6370),
1614–1617. https://doi.org/10.1126/science.aao0398
- Webb, C. O., Ackerly, D. D., McPeek, M. A., and Donoghue, M. J.
(2002). Phylogenies and Community Ecology. Annual Review of
Ecology and Systematics , 33 (1), 475–505.
https://doi.org/10.1146/annurev.ecolsys.33.010802.150448
- Wen, J., Zhang, J., Nie, Z.-L., Zhong, Y., and Sun, H. (2014).
Evolutionary diversifications of plants on the Qinghai-Tibetan
Plateau. Frontiers in Genetics, 5.
https://doi.org/10.3389/fgene.2014.00004
- Whittaker, R. H. (1970). Communities and ecosystems. Macmillan.
https://www.cabdirect.org/cabdirect/abstract/19740615709
- Xing, Y., and Ree, R. H. (2017). Uplift-driven diversification in the
Hengduan Mountains, a temperate biodiversity hotspot.Proceedings of the National Academy of Sciences,114(17), E3444–E3451. https://doi.org/10.1073/pnas.1616063114
- Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S.
A., FitzJohn, R. G., McGlinn, D. J., O’Meara, B. C., Moles, A. T.,
Reich, P. B., Royer, D. L., Soltis, D. E., Stevens, P. F., Westoby,
M., Wright, I. J., Aarssen, L., Bertin, R. I., Calaminus, A.,
Govaerts, R., … Beaulieu, J. M. (2014). Three keys to the
radiation of angiosperms into freezing environments. Nature,506(7486), 89–92. https://doi.org/10.1038/nature12872.