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Summary

In this paper, the critical condition to achieve rational solutions of the multi-
component nonlinear Schrödinger equation is proposed by introducing two nilpotent
Lax matrices. Taking the series multisections of the vector eigenfunction as a set
of fundamental eigenfunctions,an explicit formula of the nth-order rational solution
is obtained by the degenerate Darboux transformation, which is used to generate
some new patterns of rogue waves. A conjecture about the degree of the nth-order
rogue waves is summarized. This conjecture also holds for rogue waves of the multi-
component complexmodified Korteweg-de Vries equation. Finally, the semi-rational
solutions of the Manakov system are discussed.
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1 INTRODUCTION

In the past 50 years, rogue waves (RWs), known as freak waves or extreme waves, which appear from nowhere and disappear
without a trace[1, 2], are regularly observed as giant and devastating waves in the ocean. The height of a RW is at least twice
the significant wave height[3, 4]. In recent decades, the concept of RWs has been widely studied beyond oceanic applications,
and the phenomena of RWs have been observed in a wide variety of areas of mathematics and physical sciences, including e.g.
watertanks[5, 6], Bose-Einstein condensates[7, 8], plasmas[9, 10], nonlinear optics[11–14], and so on.
One of the mathematical models for describing RWs is the rational solutions associated with the focusing nonlinear

Schrödinger equation(NLS)[15, 16]. In its dimensionless form, NLS can be written as (each subscripted variable stands for
partial differentiation)

iqt + qxx + 2|q|2q = 0, (1)
with the form of a (quasi-)rational solution:

q(x, t) =
G(x, t)
F (x, t)

exp (i(ax + bt)).

Here, i denotes the imaginary unit; q = q(x, t) is the wave envelope; t is the temporal variable; x is the spatial variable; F ,G are
both polynomials in x, t; and real parameters a, b denote the wavenumber and frequency of the progressive wave, respectively.
Indeed, the Korteweg-de Vries (KdV) and NLS equations are the prototypes of integrable nonlinear partial differential equations,
however, KdV for shallow water wave and NLS for deep water wave. Taking NLS (1) as an example, while the complex spectral
parameter � tends to a certain critical value �0 ∈ ℂ ⧵ ℝ, the breather solutions (space-period Akhmediev breather[17] and
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time-period Kuznetsov-Ma soliton[18, 19]) lead to the ideal Peregrine soliton[20]

q(x, t) =
(

4(1 + 4it)
1 + 4x2 + 16t2

− 1
)

e2it,

which is known as the representation of 1st-order RW for its localized nonlinear structure and highly similar profile. The Pere-
grine soliton above is also obtained by semi-classical approximate expansion of a solution for the NLS at the gradient catastrophe
point[21], although there it is called rational breather solution.
This solution is of fundamental significance, because it is doubly localized in both time and space, and defines the limit of a

class of breather solutions of the NLS. The mechanism of generating RWs has been presented in e.g. Refs.[22–24]. Recently, it
is suggested that the nonlinear stage of modulational instability is a better interior mechanism for RWs[25–28].
The construction of high-order rational (or rogue wave) solutions is one of the important advances in the study of nonlinear

waves. In particular, high-order rational solutions have been found by inverse scattering transformation (IST)[26, 29, 30], Hirota
bilinear method[31, 32], Darboux transformation (DT) method[33–36], and so forth. For the sake of brevity, in this paper, we
use the augmented matrix instead of the ratio of the determinant representation of the DT[37, 38], based on the Cramer’s rule.
In addition, a class of rational solutions of several physical systems governed by the complete integrable system, e.g. modified

KdV equation (mKdV) [39, 40] and NLS[41], can also be obtained by applying the degenerate DT method to the Ablowitz-
Kaup-Newell-Segur (AKNS) hierarchy[42].
Essentially, one of the RWs’ characteristics is the height of the fundamental pattern[43–47]. Two sorts of patterns, fundamental

patterns and decomposed patterns, are discussed in detail in Refs. [48, 49]. A wide range of decomposed patterns of the nth-order
RWs of NLS have been constructed[34, 50], such as triangular pattern[51], circular pattern[52] with one (2(n−1)+1)-peak ring
outside and (n − 2)th-order RW inside, dicyclic pattern with double (2(n − 2) + 1)-peak rings outside and (n − 4)th-order RW
inside, tricyclic pattern with triple (2(n−3)+1)-peak rings outside and (n−6)th-order RW inside, etc. Besides the peak height and
various RW patterns, another essential algebraic characteristic of RWs is the degree of the denominator (numerator) polynomial
of the rational solution, which is twice the number of the 1st-order RW peaks in the completely decomposed pattern[48]. For
example, Table 1 in Refs. [41, 43] shows that the nth-order RWs of NLS possess n(n + 1) degrees of F (x, t), which means that
the completely decomposed patterns of RWs have n(n + 1)∕2 1st-order RW peaks.
However, in a variety of physical contexts, several waves rather than a single one need to be considered, since numerous

physical phenomena require modeling waves with two or more components in order to account for different modes, frequencies,
or polarizations. One important example is the well-known Manakov system[53] in optical systems in regard to the resonance
phenomena. In these circumstances, RWs should be described by the solutions of multi-component systems of equations rather
than by the single-component models. Under certain conditions, the dispersion relation allows for resonances, and multiple-scale
perturbation method shows that the amplitudes of two or more monochromatic waves couple to each other leading to nonlinear
partial differential equation (PDE) systems, even an integrable system. The simplest of such integrable systems is the Manakov
system (also known as the 2-component NLS (2CNLS), vector NLS and coupled NLS), given by the following two coupled
equations[53]:

{

iq1t + q1xx + 2
(

|q1|2 + |q2|2
)

q1 = 0,
iq2t + q2xx + 2

(

|q1|2 + |q2|2
)

q2 = 0.
(2)

Here, qj = qj(x, t), (j = 1, 2). The DT method for 2CNLS has been presented in e.g. Ref. [54] and for N-component NLS
(NCNLS) in Ref. [55]. Using the n-fold DT, the n-breather solutions of 2CNLS can be derived by the “seed” solution – i.e., a
plane wave solution.
Besides the envelope solitons, the NCNLS also admits a class of localized structure which has been significant interest

in space-time localized solutions undergoing periodic energy exchange with a finite background. In the recent decade, the
degenerate DT method has been used to construct rational solutions[56–58] and semi-rational solutions of 2CNLS[35, 59] as
well. The patterns of 3CNLS are also discussed in e.g. Refs.[60, 61], which show that the 2nd-order RWs of 3CNLS possess
five-, seven- and even nine-peak patterns as in Figs. 3-5[60]. These solutions of a multi-component system have a remarkable
nonvanishing boundary, which leads to the significant difficulties in solving process by IST[62]. For example, only solitons of
the defocusing 3CNLS have been solved in Ref. [62] by IST.
In the studies of the RWs for a multi-component system, the first important problem is to find critical condition for this solu-

tion. The condition can automatically imply the critical value of �0 in order to construct RWs from breathers. We shall solve
this problem by proposing a specialized scheme, in which two techniques are used: 1) introducing two nilpotent Lax matri-
ces by gauge transformation and 2) finding a new equivalent fundamental matrix G by series multisections of eigenfunctions.
Another important problem is to investigate what are the characteristics of a multi-component system, such as the degree of
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the polynomials in the high-order rational solutions. In this paper, first a set of classified rational solutions of NCNLS will be
constructed, and the degree of them will be investigated and summarized. Some decomposed patterns of RWs ofNCNLS will
also be illustrated.
This paper is organized as follows. In Section 2, the 2nd-order flow of the multi-component AKNS, (i.e. multi-component

NLS equation) is introduced. In Section 3, two theorems about DT are reformulated by augmented matrix. In Section 4, the
critical condition to obtain rational solutions is given. In Section 5, the series multisections of vector eigenfunction are taken as
fundamental eigenfunction to construct the rational solutions by the degenerate DT. In Section 6, the characteristics of rational
solutions of the NCNLS are summarized. In Section 7, the rational solutions of the 3rd-order flow of the multi-component
AKNS (i.e. multi-component complexmodified KdV equation) are constructed in brief and the characteristics of these solutions
are obtained again. In Section 8, the semi-rational solutions of the multi-component AKNS are discussed shortly. In Section 9,
the conclusions are presented.

2 MULTI-COMPONENT AKNS HIERARCHY

N-component AKNS hierarchy[63] results from the compatibility condition (�x)t = (�t)x of the following Lax pair:
{

�x = M�,
�t = N�, (3)

where eigenfunction � = �(x, t) is a column vector of dimensionN +1, and square matricesM andN are matrix polynomials
with respect to the complex iso-spectral parameter �:

{

M = �U + V ,
N = �mVm +⋯ + �V1 + V0.

(4)

Here,

U =
(

−i 0
0 iIN

)

,V =
(

0 q
r 0

)

, (5)

IN denotes the N-by-N identity matrix, 0 denotes the zero matrix and m stands for the order of the multi-component AKNS
flow. Potential functions q = (q1, q2,⋯ , qN ) and r = (r1, r2,⋯ , rN )T are row and column vectors, respectively. The superscript
“T ” represents matrix transposition.
According to the compatibility condition, Lax pair (3) yields the zero-curvature equation Mt − Nx + [M ,N] = 0. The

simplest and important nontrivial example,NCNLS, can be derived in term of the zero-curvature equation by the complementary
restriction (reduction condition):

r = −q†, (6)
at the 2nd-order flow (viz. m = 2). Here, † denotes the Hermitian conjugation.
As a result, the temporal part matrixN for theNCNLS reduces to

N = 2�2U + 2�V + U
(

V 2 − Vx
)

. (7)

Therefore, theNCNLS reads as
iqt + qxx + 2qq†q = 0, (8)

that possesses a periodic “seed” solution q[0]:
q[0] = cE. (9)

Here, E = exp (diag (�)), � = i(ax + bt), a = (a1, a2,⋯ , aN ), b = (b1, b2,⋯ , bN ), c = (c1, c2,⋯ , cN ), with aj , cj ∈ ℝ, and bj
satisfying the dispersion relation ofNCNLS:

bj = 2c2 − a2j ,
(

c2 =
∑N
j=1 c

2
j

)

. (10)

3 DARBOUX TRANSFORMATION

In this section, by referring to Ref. [55], the DT ofNCNLS will be reformulated by augmented matrix based on the preceding
works[38, 56].
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Using the gauge transformation T [1]:

T [1] = T [1](�) = �IN+1 −Q0, Q0 =
(

A0(x, t) B0(x, t)
C0(x, t) D0(x, t)

)

, (11)

the seed solution (�[0]; q[0]) of Lax pair (3) can be transformed to a new solution:

�[1] = T [1]�[0],

that satisfies
{

�[1]x = M [1]�[1],
�[1]t = N [1]�[1],

(12)

and,
{

M [1] = �U + V [1],
N [1] = 2�2U + 2�V [1] + U

(

V [1]2 − V [1]
x

)

.
(13)

Here,

V [1] =
(

0 q[1]
r[1] 0

)

, (14)

and the new potential functions retain the reduction condition r[1] = −q[1]†, which implies that C0 = −B
†
0 .

By a tedious calculation, the one-fold DT forNCNLS[55, 56] can now be derived from the coefficients of � in the following
equations:

{

M [1]T [1] = T [1]x + T [1]M [0],
N [1]T [1] = T [1]t + T [1]N [0].

(15)

In this paper, to unify the determinant representation form of solutions, hereby, we rewrite the Theorem 2 in Ref. [55] follows.

Theorem 1. Let (�[0]; q[0]) be a seed solution of the eigenfunction and potential function in Lax pair (3), then the new
eigenfunction and potential function (�[1]; q[1]) generated by the one-fold DT (11) are expressed as

�[1] = T [1]�[0], q[1] = q[0] − 2iB0, (16)

where, (A0,B0)T is the solution of the following system of linear equantions:

⎛

⎜

⎜

⎜

⎜

⎜

⎝

f11 f12 f13 ⋯ f1,N+1
−f ∗12 f ∗11 0 ⋯ 0
−f ∗13 0 f ∗11 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

−f ∗1,N+1 0 0 ⋯ f ∗11

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

A0

BT
0

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

�1f11
−�∗1f

∗
12

−�∗1f
∗
13

⋮
−�∗1f

∗
1,N+1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (17)

of which (f11, f12,⋯ , f1,N+1)T = �[0]
|

|

|�=�1
is an eigenfunction of Lax pair (3) associated with eigenvalue �1.

Here, asterisk denotes complex conjugation. According to Theorem 1, the system of linear equantions (17) can be abbreviated
as an augmented matrix �[1] =

(

Δ[1,0] ∣ � [1,1]
)

in the absence of ambiguity, where Δ[j,l] = Δ[j,l](fj , �j ;l) is defined by

Δ[j,l] ≜

⎛

⎜

⎜

⎜

⎜

⎜

⎝

�lj fj1 �lj fj2 �lj fj3 ⋯ �lj fj,N+1
−(�lj fj2)

∗ (�lj fj1)
∗ 0 ⋯ 0

−(�lj fj3)
∗ 0 (�lj fj1)

∗ ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

−(�lj fj,N+1)
∗ 0 0 ⋯ (�lj fj1)

∗

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (18)

and vector � [j,l] is the first column of Δ[j,l]. Here, fj = (fj1, fj2,⋯ , fj,N+1)T ≜ �[0]||
|�=�j

is an eigenfunction of Lax pair (3)
associated with eigenvalue �j .
Iteration of DT and ansatz of T [n]:

T [n] = T [n](�) = �nIN+1 −
n−1
∑

j=0
�jQj , Qj =

(

Aj(x, t) Bj(x, t)
Cj(x, t) Dj(x, t)

)

, (19)

withCj = −B
†
j , the n-fold DT forNCNLS can be derived by a similar way as in e.g. Refs. [55, 56]. For convenience, we rewrite

the determinant representation of the theorem in the following form.
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Theorem 2. Let (�[0]; q[0]) be a solution of the eigenfunction and potential function in Lax pair (3), then the new eigenfunction
and potential function (�[n]; q[n]) generated by the n-fold DT (19) are expressed as

�[n] = T [n]�[0], q[n] = q[0] − 2iBn−1, (20)

where, (A0,B0, A1,B1,⋯ , An−1,Bn−1)T is the solution of the system of linear equations contained in the following augmented
matrix �[n]:

�[n] =

⎛

⎜

⎜

⎜

⎜

⎝

Δ[1,0] Δ[1,1] ⋯ Δ[1,n−1] � [1,n]
Δ[2,0] Δ[2,1] ⋯ Δ[2,n−1] � [2,n]
⋮ ⋮ ⋱ ⋮ ⋮

Δ[n,0] Δ[n,1] ⋯ Δ[n,n−1] � [n,n]

⎞

⎟

⎟

⎟

⎟

⎠

, (21)

of which Δ[j,k] (k = 0, 1,⋯ , n − 1) and � [j,n] are defined by Eq. (18) associated with n distinct eigenvalues �j (j = 1, 2,⋯ , n).

According to the theorem above, vector eigenfunction �[0] is regarded as a generation function of high-order solution. The
n-soliton and n-breather solutions of NCNLS can be obtained by n-fold DT given by Eq. (20) with n distinct eigenvalues
�j (j = 1, 2,⋯ , n), i.e., using non-degenerate n-fold DT. Next, we will now discuss a specific degenerate case of n-fold DT,
by setting all �j approach to a particular value �0, such that an nth-order breather solution will be converted into an nth-order
rational solution. A key point in this process is to find critical condition to implement this interesting conversion.

4 CRITICAL CONDITION FOR RATIONAL SOLUTIONS OFNCNLS

In this section, using two complex parameters m0 and n0 introduced in a gauge transformation, a pair of nilpotent matrices and
an eigenfunction with polynomial entries will be derived to construct the rational solutions ofNCNLS. The construction details
of the nilpotent matrices are shown as follows.
As the “seed” solution q[0] (9) is a plane wave solution, using the gauge transformation ' = T0�, the Lax pair (3) can be

converted to the homogeneous linear differential equations,
{

'x =M0',
't = N0',

(22)

where,
T0 = diag (1,E) ⋅ exp

(

i
(

m0x + n0t
))

, (23)
m0 and n0 are two complex constants, and

M0 = i
(

diag (−2�,a) + (� + m0)IN+1
)

+
(

0 c
−cT 0

)

, (24)

N0 = iM̃2
0 + 2�M̃0 + i(�2 + 2c2 + n0)IN+1, (M̃0 ≜M0 − im0IN+1). (25)

Apparently, the characteristic polynomial P (�) ofM0,

P (�) = |

|

�IN+1 −M0
|

|

= �N+1 +
N
∑

j=0
iN−j+1�j�j , (26)

hasN+1 eigenvalues �j ∈ ℂ, (j = 1, 2,⋯ , N+1). Because of Eq. (25), each eigenvalue!j ofN0 corresponding to �j satisfies

!j = i�̃2j + 2��̃j + i(�
2 + 2c2 + n0), (�̃j ≜ �j − im0). (27)

Since matricesM0 and N0 commute and share the same eigenvector �j , (j = 1, 2,⋯ , N + 1), the fundamental matrix 	0 of
system (22) can be achieved in a non-degenerate case,

	0(x, t) = exp (M0x +N0t) = ���−1, (28)

where the diagonal matrix � = exp (diag (�x + !t)), � = (�1, �2⋯ , �N+1), ! = (!1, !2⋯ , !N+1) and� = (�1, �2,⋯ , �N+1).
Therefore, the vector eigenfunction of system (22) can be written as

' = 	0�0 = ��� , (29)

where, � ≜ �−1�0 is an arbitrary non-zero constant vector due to the arbitrariness of the constant vector �0.
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In this paper, we mainly focus on the asymptotic behavior of complete resonant interaction, that is the case of eigenvalue
of multiplicity N + 1 of M0. One of the parameters introduced in Eq. (23), m0, will be used to translate the eigenvalue � of
multiplicity N + 1 to the original point, which will leadM0 to be a nilpotent matrix. Another parameter, n0, will translate the
multiple eigenvalue ! ofN0 to the original point as well.
Actually, to obtain the zero-eigenvalues of matricesM0 andN0 associated with multiplicityN +1, simply and conveniently,

let
�j = 0 (j = 0, 1, 2,⋯ , N) and Trace (N0) = 0, (30)

based on Eqs. (26) and (27). Obviously, Eq. (30) provides critical condition to obtain the eigenfunction with polynomial entries
for the system (22).
Firstly, the condition �N = 0 (equivalent to Trace (M0) = 0) yields

m0 =
−1

N + 1

(

(N − 1)� +
N
∑

j=1
aj

)

, (31)

and the condition Trace (N0) = 0 yields

n0 =
−1

N + 1

(

2(N − 1)�2 + 2Nc2 −
N
∑

j=1
a2j

)

. (32)

Secondly, by substituting Eq. (31) into the condition �N−1 = 0, subsequently, it implies that
(

� + 1
2N

N
∑

j=1
aj

)2

+ N + 1
4N2

(

2Nc2 +
∑

1⩽i<j⩽N
(ai − aj)2

)

= 0. (33)

With at least one of cj (j = 1, 2,⋯ , N) being non-zero, Eq. (33) gives rise to a pair of distinct complex (non-real) conjugate
roots �0 and �∗0, namely the critical value of the spectral parameter �:

�0 = −
1
2N

N
∑

j=1
aj + i

√

N + 1
2N

√

2Nc2 +
∑

1⩽i<j⩽N (ai − aj)2. (34)

Note that, setting �j = �0 + �N+1 in the n-fold DT given by Eq. (20) under the critical condition (30), q[n] becomes an
indeterminate form 0

0
that results in an nth-order rational solutions of theNCNLS by the limit � → 0, according to L’Hospital’s

rule. Therefore Eq. (30) is also a critical condition to achieve rational solutions of the NCNLS. Due to the extremely tedious
formula of the breather solutions given by Eq. (20), it is a challenge to find a simple expression of the critical value of �0 in
order to construct rational solutions from breathers, as we have carried it out for the single component NLS[34, 36].
Thirdly, it can be proven that all of the coefficients �j , (j = 0, 1,⋯ , N) in Eq. (26) are polynomials over ℤ with respect to

aj , cj , m0, and �. As for the rest conditions �j = 0, (j = 0, 1,⋯ , N − 2), ifN ⩾ 2, �j can be reduced to linear equations �̃j = 0
in � by Eqs. (31) and (33). Because of the 2N parameters aj and cj(j = 1, 2,⋯ , N) in �̃j are real, except �, the two coefficients
of �̃j in � should be vanishing. Based on the brief analysis above, there are two free real variables available among these 2N
parameters. Without loss of generality, we use two-dimensional coordinate space (a1, c1), in this context, to present the critical
condition explicitly.
Finally, substituting the values of parameters (aj , cj , 2 ⩽ j ⩽ N) back into Eq. (34) leads to an explicit formula of �0, further

substituting them back into Eqs. (31) and (32) associated with � = �0 , we get two explicit formulas for m0 and n0. We may
now claim that constants m0 and n0 are independent of � under the critical condition given by Eq. (30), which is an important
observation for us in order to construct degenerate DT in next section.
From the above, the nilpotent matrices associated with the fundamental matrix can be obtained by Eq. (30). For instance, in

the case ofN = 2, Eq. (30) yields
�0 =

1
4

(

−1 + 3
√

3i
)

c1 −
1
2
a1, (35)

and
⎧

⎪

⎪

⎨

⎪

⎪

⎩

c2 = c1,
a2 = a1 + c1,
m0 =

1
4

(

−1 −
√

3i
)

c1 −
1
2
a1,

n0 =
1
4

(

−5 +
√

3i
)

c21 +
1
2

(

1 +
√

3i
)

a1c1 +
1
2
a21.

(36)
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Thus,M0 degenerates to a nilpotent matrix,

M0 =
⎛

⎜

⎜

⎝

√

3 1 1
−1 i"1 0
−1 0 −i"2

⎞

⎟

⎟

⎠

c1 = QJ3Q−1,

where,

Q =
⎛

⎜

⎜

⎝

c21
√

3c1 1
−i�2c21 −c1 0
i�1c21 −c1 0

⎞

⎟

⎟

⎠

,J3 =
⎛

⎜

⎜

⎝

0 1 0
0 0 1
0 0 0

⎞

⎟

⎟

⎠

,

and the unit root "j is defined as

"j = exp
(

2j�i
N + 1

)

, (j = 0, 1,⋯ , N). (37)

Therefore, as a consequence of Eq. (25), the temporal part matrix N0 can be reduced to a nilpotent matrix by Q as well.
Thereby, Eq. (28) will be similar to an upper triangular matrix with polynomial entries:

J = Q−1 exp
(

M0x +N0t
)

Q =
⎛

⎜

⎜

⎝

1 � 1
2
�2 + it

0 1 �
0 0 1

⎞

⎟

⎟

⎠

, (38)

where, � = x − (2a1 + c1 −
√

3ic1)t. Then, the vector eigenfunction (29) with polynomial entries can be obtained:

' = QJ� =

⎛

⎜

⎜

⎜

⎜

⎝

c21 (c1� +
√

3)c1
(

1
2
�2 + it

)

c21 +
√

3c1� + 1

−i�2 c21 −(i�2c1� + 1)c1 −(i�2c1
(

1
2
�2 + it

)

+ �)c1
i�1 c21 (i�1c1� − 1)c1 (i�1c1

(

1
2
�2 + it

)

− �)c1

⎞

⎟

⎟

⎟

⎟

⎠

� . (39)

In the following, let �j → �0 under the critical condition given by Eq. (30), the non-degenerate eigenfunction (29) will tend
to be a vector with polynomial entries without an exponent factor. Using the perturbation method and degenerate DT by setting
�j = �0 + �N+1 and higher-order Taylor expansion of eigenfunction of Eq. (20), the rational solutions of NCNLS will be
constructed in the next sections.

5 NEW RATIONAL SOLUTIONS OFNCNLS

In this section, a set of series multisections, derived from the vector eigenfunction containing exponent factor in a non-degenerate
case, are used as the fundamental generation functions to construct a family of rational solutions.
First of all, we present a specific form of the vector eigenfunction. Setting the constant vector as � = exp (diag

(

s0)
)

, or,

�j = j exp (s0j ) = jexp (�jx
0
j + !jt

0
j ), (j = 1, 2,⋯ , N + 1),

thus, the constants x0j and t
0
j are translational displacements along the x− and t− axes, respectively. In this paper, without loss

of generality, we simply concentrate on the offset x0j , that is to say, let t
0
j = 0 or s

0
j = �jx

0
j only. So, ' can be rewritten as

' = �� exp (diag
(

s0)
)

 = ( 1, 2,⋯ , N+1) ≜ 	, (40)

where, matrix 	 is an equivalent fundamental matrix of which

 j(x, t) = exp (�j(x + x0j ) + !jt)�j ,

and  is a set of combination coefficients of  j(j = 1, 2,⋯ , N + 1).
To obtain the 1st-order rational solutions, the equivalent limit form of �[1], based on the Cramer’s rule and L’Hôpital’s rule,

is required. Let �1 = �0 + �N+1 under the critical condition given by Eq. (30). Since � = T −10 ' is associated with �1 in Eq.
(17), the Taylor expansion of each column vector in the fundamental matrix (40),  j(x, t; �1), is firstly considered:

 j(x, t; �0 + �N+1) =
∞
∑

l=0
ujl�l ,

(

ujl ≜ 1
l!

)
)�l

 j
|

|

|

|�=0

)

. (41)
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Hence, the series multisection of the power series in the above

 jk =
∞
∑

l=0
uj,l(N+1)+k�l(N+1)+k, (k = 0, 1,⋯ , N), (42)

has a closed-form expression[64] (see pages from 131-141 for details):

 jk =
1

N + 1

N
∑

l=0
"−kl1  j(x, t; �0 + ("l1 �)

N+1), (43)

where "1 is the primitive (N + 1)th root of unity, defined by Eq. (37).
Omitting the common factor 1∕(N + 1) in Eq. (43), there exists a set of power series gk (k = 0, 1,⋯ , N) composed of equally

spaced terms, which can be combinated linearly from the original Taylor series of  j(x, t; �0 + �N+1):

gk = 	k, k ≜ (1, "−k1 , "
−2k
1 ,⋯ , "−Nk1 )T . (44)

Formally, the series multisection gk (k = 0, 1,⋯ , N) can be expressed by the power series composed of equally spaced terms:

gk =
∞
∑

l=0
vl(N+1)+k�l(N+1)+k. (45)

Here, the vector coefficient vj =
(

vj1, vj2,⋯ , vj,N+1
)T , on the basis of the exponential threshold k, can be evaluated from Eq.

(44).
Thus, matrix G,

G = (g0, g1,⋯ , gN ) = 	�, � ≜ (0, 1,⋯ , N ), (46)

is an equivalent fundamental matrix, since gk (k = 0, 1,⋯ , N) are linearly independent. In this paper, {gk|k = 0, 1,⋯ , N} are
regarded as a family of fundamental eigenfunctions to generate the rational solutions by the degenerate DT. For instance, in the
case ofN = 2, a new fundamental matrix G =

(

g0, g1, g2
)

can be acquired by 3 specific constant vectors 0, 1, 2:

G = 	
⎛

⎜

⎜

⎝

1 1 1
1 "1 "2
1 "2 "1

⎞

⎟

⎟

⎠

, or,
⎧

⎪

⎨

⎪

⎩

g0 =  10 +  20 +  30,
g1 =  11 + "1 21 + "2 31,
g2 =  12 + "2 22 + "1 32.

(47)

Applying the Cramer’s rule to get the determinant form of DT as the simplest case, a series of elementary row operations
[46] can be performed on the augmented matrix �[1]. Then, the one-fold degenerate DT, namely using the simplified matrix B′0
instead of B0, yields the 1st-order RW solution as below.

Theorem 3. Let q[1] be a solution to Eq. (16) with the seed solution given by Eq. (9) and �1 = �0 + �N+1 under the critical
condition defined by Eq. (30), then the 1st-order RW solution q[1]rw generated by the one-fold degenerate DT is expressed as

q[1]rw =
(

c − 2iB′0
)

E, (48)

where, (A′0,B
′
0)
T is the solution of the system of linear equations contained in the following augmented matrix �[1]rw:

�[1]rw =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

vk1 vk2 vk3 ⋯ vk,N+1 �0vk1
−v∗k2 v∗k1 0 ⋯ 0 −�∗0v

∗
k2

−v∗k3 0 v∗k1 ⋯ 0 −�∗0v
∗
k3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
−v∗k,N+1 0 0 ⋯ v∗k1 −�∗0v

∗
k,N+1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (49)

of which (vk1, vk2, vk3,⋯ , vk,N+1)T = vk, (k = 1, 2,⋯ , N) is defined by Eq. (45).

In general, the augmented matrix �[1]rw can be rewritten as �[1]rw = (Δ
[1,0]
rw ∣ � [1,1]rw ), where �[j,l]rw = Δ[j,l]rw (gk) is defined by

Δ[j,l]rw ≜
(

1
nj!

dnj
d�nj

Δ[j,l](gk, �0 + �N+1;l)
)

|

|

|

|

|�=0

, (50)

nj = (j − 1)(N + 1) + k, and vector � [j,l]rw is the first column of Δ[j,l]rw . Here, gk = (gk1, gk2,⋯ , gk,N+1)T is defined by Eq. (45).
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It should note that the one-fold DT solution is still a plane wave solution in the case of k = 0. In addition, using the phase
parameters x0j (j = 1, 2,⋯ , N + 1) of the constant vector � , the 1st-order RW solution q[1]rw reads as

q[1]rw = q
[1]
rw (x, t; a1, c1; x

0
1, x

0
2,⋯ , x0N+1), (51)

which can repsent a variety of the collision models corresponding to the different patterns of the 1st-order RWs. In general, free
parameters x0j are mutually independent. For example, let x01 = −"2x

0
2 − "1x

0
3, and x

0
2 = 0 in a 2CNLS system. Then, set phase

parameter x03 as 20,
25
3
, 0,−15 in sequence, then the twin peaks patterns are shown in Fig. 1, which are analogue and very close

to the Figs. 1-3 in Refs. [57, 58].

(a) (b)

(c) (d)

FIGURE 1 The |q2|2 profiles of the rational solutions of 2CNLS.

In particular, when x01 = x02 = ⋯ = x0N+1 ≜ x0, as a result, x0 denotes the translation of RWs on the x-axis. Hereby, the
subscript j of x0j can be omitted. Thus, the 1st-order RWs, q[1]rw , can be rewritten as

q[1]rw = q
[1]
rw (x, t; a1, c1; x0). (52)

In the case ofN = 2, the fundamental patterns of the 1st-order RWs can be achieved and the profiles of RWs are shown in Fig. 2.
Since x0 is a translation parameter, all the figures in Fig. 2 are fundamental patterns generated by the fundamental eigenfunctions
gk with k = 1 and k = 2. The profiles in the case of k = 1 have only one peak, while two peaks in the case of k = 2. It is
important to note that Fig. 2(d) is the same as Fig. 1(c), since they are the same figures but with a different angle of view.
To obtain higher order RW solutions, the simplifed form of the augmented matrix �[n] needs constructed. Let �j = �0 +

�N+1 (j = 1, 2,⋯ , n) in sequence, using the Taylor coefficients of power series (45), a simplified augmented matrix �[n]rw for the
nth-order RW solutions can be constructed as

�[n]rw = �
[n]
rw(gk) ≜

⎛

⎜

⎜

⎜

⎜

⎝

Δ[1,0]rw Δ[1,1]rw ⋯ Δ[1,n−1]rw � [1,n]rw
Δ[2,0]rw Δ[2,1]rw ⋯ Δ[2,n−1]rw � [2,n]rw
⋮ ⋮ ⋱ ⋮ ⋮

Δ[n,0]rw Δ[n,1]rw ⋯ Δ[n,n−1]rw � [n,n]rw

⎞

⎟

⎟

⎟

⎟

⎠

. (53)
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(a) k = 1 (b) k = 1

(c) k = 2 (d) k = 2

FIGURE 2 The fundamental pattern of 1st-order RWs of 2CNLS.

The higher-order Taylor expansion comes from the indeterminate form 0
0
in Eq. (20) due to the limit of �j = �0 + �N+1 (i.e.,

the degenerate DT). Then, n-fold degenerate DT yields nth-order RW solutions as below.

Theorem 4. Let q[n] be a solution to Eq. (20) with the seed solution given by Eq. (9) and �j = �0 + �N+1 (j = 1, 2,⋯ , n)
under the critical condition defined by Eq. (30), then the nth-order RW solution q[n]rw generated by the n-fold degenerate DT is
expressed as

q[n]rw =
(

c − 2iB′n−1
)

E, (54)
where, (A′0,B

′
0,⋯ , A′n−1,B

′
n−1)

T is the solution of the system of linear equations contained in the augmented matrix�[n]rw defined
by Eq. (53).

According to Theorem 4, for the high-order RWs, namely n ⩾ 2, each element in the jth (N + 1)-rows-block of �[n]rw is
the ((j − 1)(N + 1) + k)th Taylor coefficient of the corresponding element in the �[n]. For instance, the 2nd-order RWs with
fundamental pattern of 2CNLS can be achieved by Eq. (53) and the corresponding profiles are shown in Fig. 3 with k = 1, 2.
Note that the numerator and denominator of B′1 are shown in Appendix A. In addition, the figures with k = 0 are omitted due
to their similarity on Figs. 2(c) and 2(d), because they only differ by the constant factors "1 and "2, respectively.
For high-order RW solutions, let x0 = s0 +

∑n−1
j=1 sj�

j(N+1) in the perturbation expansion of x0. Thus, the nth-order RWs of
NCNLS can be written as

q[n]rw = q
[n]
rw (x, t; a1, c1; s0, s1,⋯ , sn−1), (55)

and the phase parameters sj determine the patterns of RWs. By default, all sj = 0 (j = 0, 1, 2,⋯ , n − 1), corresponding to the
fundamental pattern, are denoted as x0 = 0 or s0 = 0 at this point. In the decomposed patterns, only the non-zero parameters sj
will be listed for convenience.

6 CHARACTERISTICS OF RWS TONCNLS

In this section, the degree of polynomial in the denominator of the RW solutions, which is referred briefly as the degree of RWs,
will be summed up. The degree is an essential characteristic of RWs, which determines the number of 1st-order RW peaks in a
completely decomposed pattern of a high-order RW.
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(a) k = 1 (b) k = 1

(c) k = 2 (d) k = 2

FIGURE 3 The fundamental pattern of the 2nd-order RWs of 2CNLS.

Conveniently, let us use the function deg (k, n,N) to denote the degree of the nth-order RW solutions of NCNLS, i.e., the
degree of the polynomial in denominator of RW, generated by gk via the n-fold degenerate DT. Thus, by a lengthy and compli-
cated calculation, it is found that the rational solutions of 2CNLS possess the following results for any parameters sj , which are
confirmed by explicit forms of these solutions up to 5th order.

TABLE 1 deg (k, n,N) of RWs of 2CNLS

k
n 1 2 3 4 5

0 0 4 12 24 40
1 2 8 18 32 50
2 4 12 24 40 60

Half value of deg (k, n,N) determines the maximum number of 1st-order RW peaks in any decomposed RW patterns. In order
to illustrate the point with some simple graphs, a couple of parameters values are chosen. For example, let k = 1, 2; n = 2, 3,
and different values of phase parameters sj to verify the results of deg (k, n, 2) for 2CNLS in the following three figures.
The decomposed patterns of the 2nd-order RWs of 2CNLS with a1 = 0, c1 = 1, s1 = 103 are shown in Fig. 4. The figures are

all components’ profiles generated by the fundamental eigenfunctions gk with k = 1, 2. There is one 4-peak ring outside in both
cases of k = 1 and 2, while there are 2 peaks inside in the case of k = 2 that are similar to Figs. 2(c) and 2(d). Note that there
are three peaks for 2nd-order RWs of single component NLS, which are different from the same order RWs for 2CNLS.
The decomposed patterns of the 3rd-order RWs of 2CNLS, generated by fundamental eigenfunction g1 with a1 = 0, c1 = 1,

are shown in Fig. 5. There are 9 peaks in each figure. The figures in the top row have two 4-peak rings outside and a 1-peak
inside pattern with s1 = 103. The figures in the bottom row have one 7-peak ring outside and another 2-peak inside pattern with
s2 = 105. The 2 peaks inside are similar to that of Figs. 2(c) and 2(d).
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(a) k = 1 (b) k = 1

(c) k = 2 (d) k = 2

FIGURE 4 The decomposed patterns of the 2nd-order RWs of 2CNLS.

The circular patterns of the 3rd-order RWs of 2CNLS, generated by fundamental eigenfunction g2 with a1 = 0, c1 = 1, are
shown in Fig. 6. There is a 7-peak circumjacent ring in each figure. The central areas in the top row are fundamental patterns
with s1 = 0, s2 = 105, and the bottom row are completely decomposed pattern (7-peak ring outside and 5-peak inside) with
s1 = 104, s2 = 108.
Figs. 4-6 shown above and other higher-order RW solutions we have calculated indicate the following observation about the

distribution of peaks in a decomposed pattern of nth-order RWs: by setting parameter sn−1 to be a sufficiently large value and
the other parameters si to be zeroes, there is a single ring outside consisted by ((N + 1)(n − 1) + 1) peaks. Note, by setting
parameter sn−2 to be a sufficiently large value and the other parameters si to be zeroes, there also exist double rings outside, each
ring consisting of ((N + 1)(n − 2) + 1) peaks in a pattern such as Figs. 5(a) and 5(b).

Case of N = 3
To go a step further, in the case ofN = 3[61], let all the coefficients �j , (j = 0, 1, 2, 3) of the characteristic polynomial (26) and
Trace (N0) be vanishing, consequently, one of the critical conditions of rational solutions could be

⎧

⎪

⎨

⎪

⎩

a2 = a1 − c1,
a3 = a1 + c1,
c2 = c3 =

√

2c1,
and,

⎧

⎪

⎨

⎪

⎩

�0 = −
1
2
a1 + 2ic1,

m0 = −
1
2
a1 − ic1,

n0 = −
1
2
a1(a21 − 18c

2
1) − ic1(3a

2
1 − 16c

2
1 ).

(56)

Let � = �0 + �4, the fundamental matrix G =
(

g0, g1, g2, g3
)

of (28) can then be obtained

G = 	

⎛

⎜

⎜

⎜

⎜

⎝

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎞

⎟

⎟

⎟

⎟

⎠

, or,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

g0 =  10 +  20 +  30 +  40,
g1 =  11 − i 21 −  31 + i 41,
g2 =  12 −  22 +  32 −  42,
g3 =  13 + i 23 −  33 − i 43.

(57)

Using the fundamental eigenfunctions gk in Eq. (57) to generate the augmented matrix�[n]rw in Eq. (53), it exports the following
result in the case ofN = 3 up to 5th order.
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(a) (b)

(c) (d)

FIGURE 5 The decomposed patterns of the 3rd-order RWs of 2CNLS.

TABLE 2 deg (k, n,N) of RWs of 3CNLS

k
n 1 2 3 4 5

0 0 6 18 36 60
1 2 10 24 44 70
2 4 14 30 52 80
3 6 18 36 60 90

On the bases of Tables 1 and 2, we claim a conjecture of deg (k, n,N) forNCNLS as stated below.

Conjecture 1. The degree of an nth-order rational solution ofNCNLS is

deg (k, n,N) = n(n − 1)N + 2nk, (k = 0, 1, 2, 3,⋯ , N), (58)

and the profiles of RWs can be completely decomposed into individual 1st-order RW peaks with the following number

Peak (k, n,N) = 1
2
deg (k, n,N) =

n(n − 1)
2

N + nk. (59)

Obviously, Eq. (59) in Conjecture 1 has been revalidated in the case of 2nd-order rational solutions of 3CNLS[60]. Further-
more, the nth-order rational solutions generated by gN have the equal degree of the (n+ 1)th-order rational solutions generated
by g0. Since Eq. (58), it meets,

deg (N, n,N) = n(n − 1)N + 2nN = n(n + 1)N = deg (0, n + 1, N). (60)

It is important to note that (n+1)th-order RWwith k = 0 can usually be omitted and replaced by the nth-order RWwith k = N .
Actually, in recent years, many researchers studied the degree of the polynomial in the rational solutions of the AKNS system.

Table 1 in Refs. [41, 43], especially, provided the degree formula of RWs of NLS, which shows deg (1, n, 1) = n(n + 1). To
complete the tabulation in the case of k = 0 for NLS, this can be achieved easily:
Perceptibly, Table 3, is the special case of Eq. (58) atN = 1.
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(a) (b)

(c) (d)

FIGURE 6 The doubly decomposed patterns of 3rd-order RWs of 2CNLS.

TABLE 3 deg (k, n,N) of RWs of NLS

k
n 1 2 3 4 5 n

0 0 2 6 12 20 n(n − 1)
1 2 6 12 20 30 n(n + 1)

In addition, for the circular pattern of the nth-order RW of NLS (viz.N = 1 and k = 1), it has a circumjacent ring with 2n−1
peaks and a (n − 2)th-order RW inside[34, 48, 49]. However, the order of inside RW of the circular pattern is no longer true
whenN ⩾ 2. Since the central peak number Δ1(k, n,N), except a single outmost ring of the circular pattern, satisfies

Δ1(k, n,N) = Peak (k, n,N) −
(

(N + 1)(n − 1) + 1
)

=
(n − 1)(n − 2)

2
N + (n − 1)k + (k − n), (1 ⩽ k ⩽ N)

(61)

which is the peak number of the completely decomposed pattern of inside RWof the circular pattern. Indeed, for NLS[34, 48, 49],
Δ1(1, n, 1) = Peak (1, n − 2, 1), while for k = n, Δ1(n, n,N) = Peak (n, n − 1, N), which is different to the so-called “(n− 2)th-
order” decomposition law of NLS, e.g. Fig. 4(c) and 4(d). In fact, in Figs. 5(c) and 5(d), it shows Δ1(1, 3, 2) = Peak (2, 1, 2) for
the decomposed case and in Fig. 6 there is even no low order RW of 2CNLS corresponding to the inside pattern.

7 CHARACTERISTICS OF RWS TONCMKDV

In this section, high-order flow of multi-component AKNS hierarchy will be introduced and the characteristics of its RWs will
be discussed in brief.
In accordance with the compatibility condition, Eq. (58) is also suitable for the rational solutions of the high-order flow of

multi-component AKNS hierarchy with the complementary restriction of Eq. (6). A similar analysis would be the 3rd-order
flow of a multi-component AKNS system, also known as the N-component complex modified Korteweg-de Vries equation
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(NCmKdV), which means m = 3 in Eq. (3) and that the matrixN in Eq. (3) evolves into

N = 4�3A + 4�2B + 2�A(B2 − Bx) + 2B3 − Bxx + [Bx,B], (62)

whilstM is not changed as the matrix given in Eq. (4) forNCNLS. Thus,NCmKdV evolves into

qj,t + qj,xxx − 3(qjq)xr = 0, (j = 1, 2,⋯ , N), (63)

and bj of Eq. (10) in “seed” solution (9) also evolves into

bj = a3j − 3ajc
2 − 3akc2k,

where, akc2k ≜
∑N
k=1 akc

2
k, and c

2 = ckck ≜
∑N
k=1 c

2
k.

Under the gauge transformation (23), the matrix (25) evolves into

N0 = −M̃3
0 + 3i�M̃

2
0 + 3

(

�2 − c2
)

M̃0 + i
(

3
(

�3 + c2� − akc2k
)

+ n0
)

IN . (64)

and, the eigenvalue of matrix (64) evolves into

!j = −�̃3j + 3i��̃j
2 + 3

(

�2 − c2
)

�̃j + i
(

3
(

�3 + c2� − akc2k
)

+ n0
)

. (65)

Then, using (65) instead of (27) to update the diagonal matrix � in the vector eigenfunction (29), the nth-order solutions to
NCmKdV can be obtained by (20).
Next, according to the Eqs. (31)-(34), and the other rest conditions �j = 0, the critical conditions for rational solutions of

NCmKdV can also be achieved, such as Eq. (35), (36) for N = 2, and Eq. (56) for N = 3. Finally, using fundamental vector
functions, e.g. Eq. (47) for N = 2 and Eq. (57) for N = 3, the rational solutions of NCmKdV can be acquired by Eq. (54),
which leads identically to the results as Table 1 and Table 2 in the cases of N = 2 and N = 3, respectively. There are several
representative samples shown in Figs. 7 and 8 forN = 3.
The circular patterns of the 2nd-order RWs of 3CmKdV with a1 = 3∕2, c1 = 1∕2, s1 = 104 are shown in Fig. 7. The figures

in each row are all component profiles generated by the fundamental eigenfunctions gk with k = 1, 2, 3 from top to bottom. The
circular patterns have one 5-peak ring outside while 2 peaks inside in the case of k = 2 and 4 peaks inside in the case of k = 3.
The decomposed patterns of the 3rd-order RWs of 3CmKdV generated by fundamental eigenfunction g1 with a1 = 3∕2, c1 =

1∕2 are shown in Fig. 8. There are two 5-peak rings outside and 2 peaks inside patterns with s1 = 105 in the top row, while one
9-peak ring outside and 3 peaks inside patterns with s2 = 108 in the bottom row.
As Figs. 7 and 8 shown above, even forNCmKdV, one ((N+1)(n−1)+1)-peak ring outside and two ((N+1)(n−2)+1)-peak

rings outside can also be found. This distribution is same as the Figs. 4 - 6 for theNCNLS.

8 DISCUSSION

In this paper, we only focus on the rational solution of multi-component AKNS with reduction condition (6), which meet the
one and only null eigenvalue with multiplicity N + 1. In this case, all eigenvalues approach to one critical value �0, i.e., �j →
�0 (j = 1, 2,⋯ , n), which is called the full degeneration of n-fold DT. However, we can consider another possibility to obtain
semi-rational solutions[35] including combinations of RWs, breathers and solitons. The combinations of RWs and breathers can
be generated by partial degenration of n-fold DT from a plane wave “seed" solution q[0], i.e., �j → �0 (j = 1, 2,⋯ , k; k < n),
which can yield kth-order RWs and (n − k)th-order breathers. In particular, set cj = 0 (j = k + 1, k + 2,⋯ , n), then the above
partial degeneration n-fold DT can generate a semi-rational solution including kth-order RWs and (n − k)th-order solitons. In
other words, the distinct eigenvalues of Eq. (26) have strong independence in the partial degeneration DT: null eigenvalues lead
to the rational solutions parts while non-zero eigenvalues lead to the solitons or breathers parts in a solution. This also means
that RWs and solitons or breathers can coexist or be superposed in a semi-rational solution (see the three examples illustrated
in Appendix B).
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(a) k = 1 (b) k = 1 (c) k = 1

(d) k = 2 (e) k = 2 (f) k = 2

(g) k = 3 (h) k = 3 (i) k = 3

FIGURE 7 The circular patterns of the 2nd-order RWs of 3CmKdV.

(a) (b) (c)

(d) (e) (f)

FIGURE 8 The decomposed pattern of the 3rd-order RWs of 3CmKdV.
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9 CONCLUSIONS

Themulti-component AKNS hierarchy with the complementary restriction (6) leads to an important class of nonlinear integrable
equations, for instanceNCNLS andNCmKdV, which are used as governing equations in e.g. fluids, Bose-Einstein condensates,
plasmas and optics to explain the RWphenomena by the rational solutions [5–14]. This generalization has been revisited recently
by e.g. Refs. [30, 50] and further studies about the generating mechanism are discussed in e.g. Refs. [34, 35, 59].
In this paper, we constructed a degenerate n-fold DT to obtain the rational solutions of the two- and three-component NLS

equation, respectively, which also hold for the two- and three-component mKdV equation.
To construct the rational solutions, the following specific scheme is proposed.

• First, based on the “seed” solution of Eq. (9), an invertible transformation matrix T0 in Eq. (23) is introduced with two
parameters m0, n0 to translate the eigenvalues to naught. The associated Lax matrices M0 and N0 become nilpotent
matrices corresponding to the proper values of m0 and n0, that is a crucial step to determine polynomial eigenfunctions.

• Second, critical condition for rational solutions is proposed by Eq. (30). From there, the critical value �0 of the non-real
spectrum parameter � is acquired and a vector eigenfunction with polynomial entries can be constructed.

• Third, based on the perturbation method, a family of the series multisections {g0, g1,⋯ , gN} of vector eigenfunctions are
obtained in Eq. (44) as the fundamental eigenfunctions to generate the nth-order rational solutions.

• Finally, the degenerate n-fold DT is constructed by Eq. (54). Using the fundamental eigenfunctions, a complete
classification of rational solutions is acquired depending on the exponential threshold k (see Tables 1 and 2).

Consequently, a conjecture about the degree of the nth-order RW in each classification generated by gk via the n-fold
degenerate DT is summed up:

deg (k, n,N) = n(n − 1)N + 2nk, (k = 0, 1, 2, 3,⋯ , N).

This formula has generalized the result in previous works, e.g. Ref. [43], which shows that deg (1, n, 1) = n(n + 1) for rational
solutions of NLS, and implies that RWs with completely decomposed patterns possess (n(n − 1)N∕2 + nk) 1st-order RW peaks
in a local space-time. Furthermore, the circular patterns with one ((N + 1)(n − 1) + 1)-peak ring outside and with two ((N +
1)(n − 2) + 1)-peak rings outside are both presented for the NCNLS and NCmKdV cases. Several new patterns of RWs and
semi-rational solutions are given in Figs. 5-8 and B1-B3 by multi-fold degenerate DT.
In summary, these results imply that multi-component AKNS hierarchy possesses more abundant dynamical behaviors than

the scalar case, which further help us to explore different dynamics in diverse fields such as Bose-Einstein condensates, optical
fibers and super-fluids, etc.
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APPENDIX

A NUMERATOR AND DENOMINATOR OF B′
1

In this appendix, the denominator of B′1 is shown for the 2nd-order RWs of NCNLS. further, two numerators in B′1 for the
2nd-order RWs of 2CNLS are also listed below.
Based on Eq. (54), the denominator of B′1 for the 2nd-order RWs ofNCNLS can be obtained by the Cramer’s rule:

(

v∗1,k
)2
c1

(

(

N+1
∑

j=1
|vj,k|

2
)2
c21 − (�

∗
0 − �0)
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of which k = 0, 1,⋯ , N , and
−(�∗0 − �0)

2 = 4 Im
(

�0
)2 > 0.

Two numerators in B′1 for the 2nd-order RWs of 2CNLS are expressed by the Taylor coefficients vk and vk+N+1 of gk in Eq.
(45). The expression of the numerators are listed below.
The numerator of the 1st component of q[2]rw to 2CNLS reads as
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of which

F1 = (v∗2,k)
2(v1,kv2,k+3 − v2,kv1,k+3) + v∗2,kv

∗
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and
F2 = (v1,kv3,k+3 − v3,kv1,k+3)(v2,kv3,k+3 − v3,kv2,k+3)∗.

The numerator of the the 2nd component is
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of which

G1 = (v∗3,k)
2(v1,kv3,k+3 − v3,kv1,k+3) + v∗2,kv

∗
3,k(v1,kv2,k+3 − v2,kv1,k+3) +
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∗ + v1,kv2,k(v2,kv3,k+3 − v3,kv2,k+3)∗,

and
G2 = (v1,kv2,k+3 − v2,kv1,k+3)(v2,kv3,k+3 − v3,kv2,k+3)∗.
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B SEMI-RATIONAL SOLUTION

In 2CNLS, i.e. the simplest example of the multi-component NLS, semi-rational solutions have be derived in Ref. [35] with
the superposition of the same order soliton (breather) and RW. In this paper, the semi-rational solutions of 2CNLS with the
coexistence patterns of different order soliton (breather) and RW will be shown in Figs. B1-B3. The semi-rational solution
construction method is described briefly in Appendix C.

(a) (b)

(c) (d)

FIGURE B1 Profile of |q1|2 of semi-rational solution with one- soliton/breather mixed with a 2nd-order RW patterns. There
are one-soliton and 2nd-order RWsmixed in the top row, while one-breaher and 2nd-order RWs are mixed in the bottom row. The
2nd-order RWs in the left column are visualising the fundamental patterns, while on the right there are the triangle patterns. The
corresponding parameters are a1 = 0, c1 = 1, u0 = 0, �1 = 1, v = −10 in all figures and (a) u1 = 0, c2 = 0, (b) u1 = 100, c2 = 0,
(c) u1 = 0, c2 = 1, (d) u1 = 100, c2 = 1, respectively.

In Fig. B1, the coexistence patterns of 2nd-order RWs mixed with one-soliton or one-breather are shown to illustrate that
the nonzero eigenvalue of Eq. (26) can lead to a soliton and a breather. In Fig. B2, the coexistence patterns of 3rd-order RWs
mixed with one- or two- soliton are shown to illustrate the 3rd-order RWs can possess independently all patterns (fundamental
and decomposed) whatever the order of the mixed solitons. In Fig. B3, the coexistence patterns of 4th-order RWs mixed with
one-soliton are shown to illustrate the completely decomposed patterns are also valid in the semi-rational solution.
Based on Figs. B1-B3 illustrated above, the RW and soliton (breather) can be separated from each other, while the RW and

soliton (breather) are far enough away. Thus, we focus merely on the case with less components for rational solutions instead
of semi-rational solutions in this paper. Another aspect is that, the more components the more combinations. In fact, when the
number of componentsN ⩾ 4, this will give rise to the problem of the expression of the root formulas of a quintic characteristic
polynomial or higher degree polynomial which will be discussed in a further paper.



LIHONG WANG ET AL 25

(a) (b) (c)

(d) (e) (f)

FIGURE B2 Profile of |q1|2 of semi-rational solution with one- and two- soliton mixed with 3rd-order RW patterns. There are
one-soliton shown in the top row and two-soliton shown in the bottom row. The 3rd-order RWs are fundamental, triangle and
circular patterns, respectively, from left to right. The corresponding parameters are a1 = a2 = 0, c1 = 1, c2 = 0, u0 = 0, v = −10
and the others are (a) u1 = 0, u2 = 0, �2 = 1, (b) u1 = 100, u2 = 0, �2 = 1, (c) u1 = 0, u2 = 1000, �2 = 1, (d) u1 = 0, u2 = 0, �1 =
1, (e) u1 = 20, u2 = 0, �1 = 1, (f) u1 = 0, u2 = 100, �1 = 1, respectively.

(a) (b) (c)

FIGURE B3 Profile of |q1|2 of semi-rational solution with one-soliton mixed with the 4th-order RW pattern. The 4th-order
RWs are fundamental, circular (7-peak ring outside and a 2nd-oder fundamental pattern inside), and completely decomposed
pattern (7-peak ring outside and a 2nd-order triangle pattern inside) from left to right. The corresponding parameters are a1 =
a2 = 0, c1 = 1, c2 = 0, u0 = 0, u2 = 0, �3 = 1, v = −10 in all figures and (a) u1 = 0, u3 = 0, (b) u1 = 0, u3 = 105, (c)
u1 = 10, u3 = 105, respectively.
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C SOLUTION OF 2CNLS

In this appendix, the semi-rational solution of 2CNLS, namely Manakov system, will be derived in brief.
First, let �0 = �1 = 0 in Eq. (26), and the pseudo-remainder �̃0 of polynomials �0 and �1 in � satisfies �̃0 ≡ 0 for any complex

� (or let the discriminant of Eq. (26) and its leading coefficient in � vanish ) to obtain a double null eigenvalue, it yields
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2
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2
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the same way.
Furthermore, the eigenvalues ofM0 can be simplified under the conditions (C1),
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u = u0 +
N
∑

k=1
uk�

2k, v = v0 +
N
∑

k=1
vk�

2k, � = �0 +
N
∑

k=1
�k�

2k,

a vector eigenfunction of system (22) can be obtained

' = ��
⎛

⎜

⎜

⎜

⎝

exp (iℎu)
− exp (−iℎu)

� exp
(

−i(� + a1
2
)v
)

�

⎞

⎟

⎟

⎟

⎠

, (C5)

where,

� = (�1, �2, �3) =
⎛

⎜

⎜

⎝

i(� + a1
2
− ℎ) i(� + a1

2
+ ℎ) 0

c1 c1 −c2
c2 c2 c1

⎞

⎟

⎟

⎠

, (C6)

and
� = diag

(

exp (#1), exp (#2), exp
(

#3
))

.

Here, #1 = iℎ(x + (2� − a1)t), #2 = −#1, and #3 =
1
2
i
(

(2� + a1)x + (4�2 + b1)t
)

.
When � = 0, the non-symmetric RWs are discussed in detail in Ref. [56] (namely the case of � = (K1, K2, K3)T = (1,−1, 0)T

in Ref. [56]), it will not be repeated in this paper.
When � ≠ 0, let � = �0 + �2, using ' in Eq. (C5) instead of (f, g, ℎ)T in Ref. [56], then the semi-rational solutions can be

obtained by Eq. (3.5) in Ref. [56].
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