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Abstract

Natural host populations differ in their susceptibility to infection by parasites, and these intra-

population differences are still an incompletely understood component of host-parasite dynamics. In

this study, we used controlled infection experiments with wild-caught guppies (Poecilia reticulata) 

and their ectoparasite Gyrodactylus turnbulli to investigate the roles of local adaptation and host 

genetic composition (immunogenetic and neutral) in explaining differences in susceptibility to 

infection. We found differences between our four study host populations that were consistent 

between two parasite source populations, with no indication of local adaptation by either host or 

parasite at two tested spatial scales. Greater host population genetic variability metrics broadly 

aligned with lower population mean infection intensity, with the best alignments associated with 

Major Histocompatibility Complex (MHC) ‘supertypes’. Controlling for intra-population differences 

and potential inbreeding variance, we found a significant negative relationship between individual-

level functional MHC variability and infection: fish carrying more MHC supertypes experienced 

infections of lower severity, with limited evidence for supertype-specific effects. We conclude that 

population-level differences in host infection susceptibility likely reflect variation in parasite selective

pressure and/or host evolutionary potential, underpinned by functional immunogenetic variation.

Introduction

While hosts are under selection to combat pathogens, pathogens are under concurrent selection to 

overcome host defences (Woolhouse, Webster, Domingo, Charlesworth, & Levin, 2002; Schmid-

Hempel, 2011). This interaction is ubiquitous (e.g., Poulin, 1999) and has consequences ranging 

across the evolution of host immune systems (Frank, 2002), epidemiology and the emergence of 

new infectious diseases (Ebert, 1994; Lively, 2016), adaptive radiation (Karvonen, 2012), the 

maintenance of sex (Morran, Schmidt, Gelarden, Parrish, & Lively, 2011), and conservation biology 

(Altizer, Harvell, & Friedle, 2003). Hosts within a population typically vary in their susceptibility to 

infection (Woolhouse et al., 2002), and, in spatially heterogeneous host-pathogen systems, host 
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populations often differ in their average observed susceptibility (Lively & Dybdahl, 2000; Eizaguirre &

Lenz, 2010; Brunner, Anaya-Rojas, Matthews, & Eizaguirre, 2017). Integrating these within- and 

between-population interactions is important for understanding the evolutionary and 

epidemiological consequences of these dynamic processes (Hess, 1996; Carlsson-Granér & Thrall, 

2002; Smith, Ericson, & Burdon, 2003; Thompson, 2005; Soubeyrand, Laine, Hanski, & Penttinen, 

2009; El Nagar & MacColl, 2016; Penczykowski, Laine, & Koskella, 2016; Brunner et al., 2017; 

Schneider, Nilsson, Höjesjö, & Martin Österling, 2017). Host adaptation to local parasites, for 

example, may constitute a barrier to gene flow between host populations, facilitating speciation (El 

Nagar & MacColl, 2016), or increase host susceptibility to parasites transmitted from distant 

populations or different species (Daszak, Cunningham, & Hyatt, 2000). 

Less genetically variable host populations are often reported to be more susceptible to 

infection (e.g., Gibson & Nguyen, 2020). Such associations may arise if genetically homogenous hosts

are easier for parasites to adapt to (reviewed in Radwan, Biedrzycka, & Babik, 2010; King & Lively, 

2012) and/or because individuals with higher homozygosity – genome-wide or at immunity genes – 

are more susceptible (e.g., Acevedo-Whitehouse, Gulland, Greig, & Amos, 2003; Ortego, Calabuig, 

Cordero, & Aparicio, 2007; Luikart, Pilgrim, Visty, Ezenwa, & Schwartz, 2008). Differences between 

hosts and parasites in the processes contributing to genetic diversity may thus play a critical role in 

local coevolutionary outcomes. In turn, this may help explain why, while shorter generation times 

and larger populations should give parasites the edge over hosts in local adaptation arms races 

(Price, 1980; Gandon & Michalakis, 2002), the majority of reciprocal infection experiments report no 

significant local adaptation by either parasite or host (approx. 56%; Greischar & Koskella, 2007). 

Complementary tests of local reciprocal adaptation alongside data on immunogenetic markers thus 

offer a potentially useful, but underutilised, approach for understanding patterns of infection within 

and among host populations. 

Here, we performed a controlled infection test for local adaptation using a model fish-

ectoparasite system, complemented with the study of two sets of highly polymorphic genetic 
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markers, one presumed to be neutral and the other known to be under intense selection from 

parasites. For the neutral marker set, we used microsatellites: a well-characterised and well-utilised 

set is available for our host species, and their poly-allelic nature makes them useful in direct 

comparisons with our marker under selection, the Major Histocompatibility Complex (MHC). Genes 

of the MHC encode molecules involved in immune responses in vertebrates (Klein, 1986), and 

decades of research has been devoted to the complex suite of selection pressures that maintain and 

promote the gene family’s extreme polymorphism, which includes parasite-mediated selection 

(Snell, 1968; Spurgin & Richardson, 2010; Radwan, Babik, Kaufman, Lenz, & Winternitz, 2020), sexual

selection (Penn & Potts, 1999; Ejsmond, Radwan, & Wilson, 2014), and selection acting on the MHC-

linked sheltered load (van Oosterhout, 2009). The ecological pertinence of the MHC is well 

established, including numerous studies reporting associations between MHC alleles and resistance/

susceptibility to parasites in wild systems (e.g., Schad, Ganzhorn, & Sommer, 2005; Fraser & Neff, 

2010; Buczek, Okarma, Demiaszkiewicz, & Radwan, 2016; Kaufmann, Lenz, Kalbe, Milinski, & 

Eizaguirre, 2017). The role of MHC genes and MHC variability in causing differences in host 

resistance/susceptibility between populations is less well understood, with the hypothesis that 

populations with more MHC variants have lower parasite burdens supported by observational 

evidence (Meyer-Lucht & Sommer, 2009), mesocosm experiments (e.g., Eizaguirre, Lenz, Kalbe, & 

Milinski, 2012), and wild cage experiments (e.g., Bolnick & Stutz, 2017), but limited exposure-

controlled experimental testing (but see Smallbone, Ellison, Poulton, van Oosterhout, & Cable, 

2021). An important concept in the study of MHC evolution is that of ‘supertypes’ (STs), groups of 

MHC alleles that encode peptides with similar antigen-binding properties. STs may better capture 

the functional breadth of host defence than alleles or phylogenetic groupings. In ecological MHC 

studies, STs are usually assigned by statistical clustering (see Materials and Methods), but the 

concept is founded in laboratory immunology (Sidney, Grey, Kubo, & Sette, 1996; Sandberg, 

Eriksson, Jonsson, Sjöström, & Wold, 1998; Doytchinova & Flower, 2005).
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Guppies (Poecilia reticulata) are tropical freshwater fish native to northern South America 

and the Caribbean, and have been an important model species in elucidating processes as diverse as 

sexual selection, predator-prey interactions, ecological competition, and, most relevant to the 

present study, host-parasite dynamics. Furthermore, their MHC has been well-characterised and 

well-studied (e.g., Fraser & Neff, 2010; Smallbone et al., 2021). Monogenean ectoparasites in the 

genus Gyrodactylus are widespread across wild guppy populations, but their prevalence varies 

greatly between and within populations, and through time (van Oosterhout, Harris, & Cable, 2003; 

Dargent, Scott, Hendry, & Fussmann, 2013; Stephenson, van Oosterhout, Mohammed, & Cable, 

2015; Stephenson et al., 2017; Mohammed et al., 2020). The known pathogenicity of the parasites, 

coupled with the relative ease with which they can be maintained in a laboratory and used in 

exposure-controlled infection trials, make the guppy-Gyrodactylus system an excellent model for 

studying a wide range of host-parasite interactions, including the effects of parasitism on some of 

the processes described above (e.g., sexual selection, predator-prey; reviewed by Bakke, Cable, & 

Harris, 2007). In the present study, we use this highly tractable system to investigate (i) whether wild

host populations show consistent differences in resistance across parasite strains, (ii) whether 

parasites are adapted to their local hosts and vice versa, (iii) what role inter-population variation in 

MHC traits may play in this dynamic, and (iv) whether MHC genotypes predict infection intensity at 

the individual level and if this varies between host populations/parasite lineages. 

Cross infection methods and results

Methods

Host collection and rearing

We collected (hand seine) juvenile guppies (standard length 5-12 mm) from four wild populations in 

March 2016, two on Trinidad (Lopinot, ‘Lop’; Santa Cruz, ‘SC’) and two on Tobago (Scarborough 

Health Centre, ‘HC’; Roxborough, ‘Rox’; Table S1.1). Previous survey work of ours (unpublished) had 

shown that all sites had populations of gyrodactylids, and previous population genetic analyses have 
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shown significant neutral and MHC differentiation between all host population pairs, with 

differentiation stronger between islands than within islands (Phillips et al., 2018; Herdegen-Radwan, 

Phillips, Babik, Mohammed, & Radwan, 2021). At our field station in Tobago, we treated all fish with 

salt water (15 ppt, 5 min) to kill any gyrodactylids (Schelkle, Doetjes, & Cable, 2011), confirmed by 

briefly anaesthetising all fish (0.02% tricaine methanesulfonate; MS-222) and screening them under 

a dissecting microscope with cold illumination multiple times over several days, according to 

Schelkle et al. (2009). Each population was then reared in a separate aquarium (80 L, 50-100 fish per 

aquarium) and fed daily with live Artemia nauplii and generic, pet-shop fish flakes (Aquarian®). 

Parasite collection and rearing

In June 2016 we returned to each of the four sites and collected 50-60 guppies to act as gyrodactylid 

donors for our experiment. The prevalence and intensity of gyrodactylid infections on these fish 

were too low for our preferred protocol of infecting experimental fish with parasites straight from 

the wild, and from sourcing parasites from all four populations, so we cultured Gyrodactylus 

turnbulli from populations Lop and HC using fish from a gyrodactylid-free captive population. Details 

of gyrodactylid species identification are in Appendix S1; see also (Cable & van Oosterhout, 2007a,b; 

King, van Oosterhout, & Cable, 2009; Xavier et al., 2015). This ‘farm’ host population, maintained in 

an 800L mesocosm, had been founded 18 months earlier by crossing captive-reared virgin females 

from a Tobagonian population with males from a Trinidadian population (Appendix S1), and had 

been verified as gyrodactylid-free at P, F1 and F2 generations. Neither founding population of the 

farm stock features in the present study. Farm gyrodactylid (henceforth ‘gyro’) lineages were 

established by briefly anaesthetising both a wild donor and a recipient fish, and, under a dissecting 

microscope with cold illumination, bringing together their caudal fins (tail) until a single gyro moved 

from the donor to the recipient. Any extra gyros that jumped were removed with watchmaker’s 

forceps. Donor and recipient were then separated and revived, and the recipient was moved to a 

500 ml isolation container. After six days the procedure was repeated, using infected farm hosts to 
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make single-gyro infections on a fresh batch of farm recipients. Gyro cultures were subsequently 

maintained by keeping 1-3 parasite-naïve recipients in an isolation container with an infected donor 

for 3-4 hrs, then moving each new recipient to its own isolation container (after Stewart et al., 2017).

Farm hosts were fed fish flakes daily, with water changed every other day. All gyros used in 

experimental infections could be traced to their original wild founder. 

Experimental design

We performed exposure-controlled gyrodactylid infection trials (Cable & van Oosterhout, 2007a,b) 

on the fish captured as juveniles in March 2016. Experimental infections were established by briefly 

anaesthetising parasite donor (infected farm fish) and recipient and allowing two gyros to move to 

the recipient (any extras were removed – see above). Recipients were measured (standard length) 

before infection. All infected fish were females, with length ≥ 15.0 mm. Each experimental host was 

kept in its own 500 ml isolation container at ambient shade temperature and fed with fish flakes 

every other day. The day after infection (day 1), we anaesthetised each experimental host and 

counted the number of gyros it carried and repeated this every other day thereafter until day 17 or 

until the fish was observed to be gyro-free for five days. Each fish received a water change at the 

time of screening. Every 12 hrs, we checked whether all fish were alive, increasing this to every 4 h if 

a host’s infection intensity rose above 70 gyros. Fish found dead were promptly preserved in 1 ml 

absolute ethanol (changed as in Appendix S1). We preserved a fin clip (caudal fin, 2-4 mm2; 0.3 ml 

absolute ethanol) from all fish that survived the experiment. Any fish that cleared its infection within

the first seven days was re-infected 4-6 days after first being recorded as ‘clear’, as rapid clearance 

may be a stochastic effect of gyro quality (further details below). We initiated experimental 

infections in two blocks four days apart, balanced by fish and gyro population. All reinfections were 

initiated six days after the second block.

Genetic analyses
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We extracted genomic DNA (20-100 ng per sample) from guppy fin clips using MagJET Genomic DNA 

kits (Thermo Scientific). We then PCR amplified a 217 bp fragment of the Major Histocompatibility 

Complex (MHC) class II second exon, which codes for the highly polymorphic β-chain of the MHC 

molecule’s antigen binding groove (primers, reagents, and PCR conditions as in Phillips et al. 2018). 

The PCR included the fusion primers required for DNA sequencing with an IonTorrent Personal 

Genome Machine (PGM; Life Technologies), as well as a unique combination of 6 bp tags (20 tags = 

400 potential F×R combinations) for each amplicon (fish). After amplification, we pooled amplicons 

approximately equimolarly and sequenced the pool (PGM). We then used the adjustable clustering 

method of Biedrzycka et al. (2017), implemented in the software AmpliSAS (Sebastian, Herdegen, 

Migalska, & Radwan, 2016; parameters as Phillips et al., 2018), to turn raw sequence data into 

individual genotypes. We followed this up by allocating MHC alleles to the supertype (ST) groups of 

Herdegen-Radwan et al. (2021), based on physicochemical properties at positively selected sites 

reported by Lighten et al. (2017). 

Copy number variation at the MHC means that the locus affinity (phasing) of alleles is rarely 

known, but an earlier cross-breeding experiment (Phillips et al., 2018) allowed us to phase all of the 

alleles in this study’s focal populations. That earlier experiment reported a single linkage block of 1-3

alleles in a de facto single locus, though only 1-2 alleles per block feature in the present study. We 

use the term ‘superhaplotype’ to refer to haplotypes based on STs rather than alleles.

To provide a proxy for neutral genetic variation, all hosts in the experiment were genotyped 

at 15 microsatellite loci (Becher, Russell, & Magurran, 2002; Watanabe, Yoshida, Nakajima, & 

Taniguchi, 2003; Olendorf, Reudi, & Hughes, 2004; Shen, Yang, & Liao, 2007), of which eight were 

used in the main analyses (Appendix S2). These loci are routinely used in guppy behavioural ecology 

and population genetics, including for comparisons against MHC variability (e.g., Lighten et al., 2017;

Herdegen-Radwan et al., 2021).

Statistical analyses
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To assess how host population and parasite population affected the outcome of infection trials, 

without considering any explicitly genetic predictors, we first tested for biases in host death rate. For

this, we used contingency table-based analyses (χ2 and Fisher’s exact tests), as we considered the 

death rate (5/113 fish, 4.4%) too low for logistic regression. We then tested for effects of host 

population and parasite population on the number of ‘worm-days’ experienced by fish that survived 

the experiment. Worm-days were calculated as the area under a fish’s infection trajectory graph 

(number of gyros against time), and are both ecologically pertinent and statistically tractable – more 

worm-days can reasonably be considered a more intense infection, and the metric avoids needing to

consider time series, temporal autocorrelation, zero inflation, or individual-level random effects 

(Phillips et al., 2018). For fish that were re-infected, we retained the infection that reached the 

highest peak intensity (details in Appendix S3). 

Worm-days were analysed using general linear models (LMs; Gaussian errors) on loge-

transformed worm-days, and multi-model inference implemented in the MuMIn package (Bartoń, 

2016) of the statistical software ‘R’ (R Development Core Team, 2016). We opted for LMs over the 

generalised linear models with negative binomial errors used by Phillips et al. (2018) because the 

interpretation of LMs is usually more intuitive (e.g., use of R2 to quantify the proportion of explained 

variation), their post hoc options are more tractable and more widely known, and because, in the 

present study, LMs tended to produce residuals that slightly better reflected a normal distribution. In

the supplementary material, we show that no interpretive differences would have arisen had we 

used negative binomial models (Appendix S4). We used corrected Akaike Information Criterion (AICC)

to rank models with all combinations of the following parameters: host population (factor, four 

levels); parasite population (factor, two levels); the interaction between host and parasite 

population; temperature (factor, three levels corresponding to date of infection; empirical 

temperature data and rationale for factor in Appendix S5); and fish size (standard length; 

continuous, z-transformed). If the top-ranked model was more than two AICC units clear of the 

second model, we deemed it the nominal best model and examined its coefficients for values 
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significantly different from zero. If more than one model comprised the top two units of AICC, we 

used AICC-weighted model averaging to estimate coefficients and their significance, implemented in 

MuMIn. We inspected LM assumptions for all models by adding five LM diagnostic statistics to the 

summary tables produced by MuMIn: skewness and kurtosis of residuals; Kappa and maximum 

variance inflation factor to assess multicollinearity; and the maximum Cook’s distance value to check

for influential data points. 

As alternatives to using host population and parasite population, we tested two predictors 

based on host-parasite allopatry/sympatry: one in which infections were considered ‘sympatric’ if 

the host and parasite came from the same stream, and the other in which infections were 

considered ‘sympatric’ if the host and parasite came from the same island (i.e. Trinidad or Tobago). 

In exploratory analyses, we did not find a significant effect of parasite lineage within source location 

(Appendix S6). 

As an indicator of possible relationships between population-level genetic variability and 

worm-days, we calculated the rSPc ordered heterogeneity statistic (Rice & Gaines, 1994) for five 

population-level genetic diversity metrics: phased and unphased diversity for MHC alleles and STs, 

and mean microsatellite diversity. Significant rSPc values suggest an effect of a categorical predictor 

that is directional with respect to the ranking of categories by a third variable. Metrics were not 

derived from the present study’s genotyped fish but from the much larger population genetics 

dataset of Herdegen-Radwan et al. (2021). We assess additional population variability metrics in 

Appendix S7. 

Using all host populations and restricting data to amplicons with ≥ 300 MHC sequence reads,

we tested for individual-level effects of number of MHC alleles and STs, and included interactions 

with host and parasite population in the model ranking procedure. As a measure of background 

individual genetic variability, we used 1 - [homozygosity-by-loci] (henceforth ‘HL’). This weights loci 

by their individual expected heterozygosity (HE) when calculating multilocus heterozygosity, which 

may better capture background genetic variability when a microsatellite panel is small (Aparicio, 
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Ortego, & Cordero, 2006) (in Appendix S8 we have repeated the analyses with alternative 

microsatellite metrics that apply different weightings, out of which HL produced the better fits). HL 

was calculated separately for each fish population, using allele frequencies from the experiment’s 

genotyped fish. No population showed significant identity disequilibrium across the eight loci (g2 ≤ 

0.07, P ≥ 0.40; Table S2.3; g2 tests performed in inbreedR (Stoffel et al., 2016), meaning there was 

not significant variance in individual hetero-/homozygosity. Similarly, HL was not a significant 

predictor of MHC heterozygosity, although the relationship was positive (logistic regression: 1.67, SE 

= 1.57, z = 1.07, P = 0.29; note that we refer here to Mendelian heterozygosity of phased haplotypes,

and not, as is often the case in the MHC literature, to the number of MHC variants that an individual 

carries). 

To test whether any difference in effect size between MHC alleles and STs could be an 

artefact of aggregating a large number of alleles into a smaller number of STs, we compared the 

observed coefficient for number of STs to a simulated distribution derived from repeating the model 

after reallocating alleles to STs at random (adapted from Lighten et al., 2017; Herdegen-Radwan et 

al., 2021). We used the 335 alleles and 15 STs of Herdegen-Radwan et al. (2021), and randomised ST 

membership size from a Dirichlet-multinomial distribution (all α = 1; Appendix S9). To test whether 

the interpretation of HL was disproportionately influenced by any one microsatellite locus, we re-ran

the best model to include HL with jack-knife removal of each locus.

Finally, we tested for effects of specific supertypes on individual infection intensity. If a 

variant had at least three occurrences in more than one host population, we tested for an across-

population general effect, as well as the respective interaction. Population-specific analyses were 

performed for all variants with 3+ instances in a population. If a variant had at least two occurrences 

for each gyro source within a host population, we tested the interaction. We did not analyse death 

rate with respect to individual MHC genotype, as only two dead fish gave MHC amplicons that met 

our genotyping quality criteria (details below).
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Ethics statement

This experiment was conducted in accordance with Cardiff University’s UK Home Office Licence PPL 

303424. Tobago-sourced wild fish were collected under Tobago House of Assembly Permit 

#004/2014. Permission to collect fish in Trinidad was granted by the Fisheries Division of the 

Ministry of Food Production and Fisheries, and fish were collected only from areas where guppies 

were previously identified as abundant. 

Results

We successfully infected 113 guppies with Gyrodactylus turnbulli, with 12-16 fish in each 

experimental block (four fish sources × two gyro sources; Fig. 1). Overall mortality was low (five fish, 

4.4%), and was entirely accounted for by fish from the Tobagonian populations of Scarborough 

Health Centre (‘HC’; 2/32, 6.3%) and Roxborough (‘Rox’; 3/27; 11.1%), with no fish dying from the 

Trinidadian populations Lopinot (‘Lop’; 0/27) and Santa Cruz (‘SC’; 0/27). Mortality was not 

significantly biased by either host population (bootstrap χ2: χ2 = 5.61, reps = 100k, P = 0.13) or host 

island (Fisher’s exact test: P = 0.06). Mortality by parasite source was evenly split (HC = 2/54, 3.7%; 

Lop = 3/59, 5.1%), and did not differ significantly across the two affected host populations (Fisher’s 

Exact test: P = 1). 

The top-ranked of worm-days among the 108 fish that survived the experiment, excluding 

genetic predictors, contained fish source, fish standard length, and an interaction between the two. 

Together, these explained 84% of variance (Tables 1a-c). All pairwise differences between fish 

populations were significant in a post hoc test (P ≤ 0.001; ‘glht’ function of R package multcomp; 

Hothorn, Bretz, & Westfall, 2008), with the rank order, in increasing infection intensity, of SC, Lop, 

HC, Rox (Fig. 2A; Tables 1b-c; infection trajectories in Appendix S11). Larger fish experienced 

significantly more worm-days than smaller fish, though the slope differed significantly between 

populations. Although fish in SC were significantly smaller than the other three populations, 

multicollinearity was not problematic (Appendix S12). The only other model in the top two units of 
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AICC (ΔAICC = +1.85) added parasite source but with a non-significant coefficient (P = 0.47; Fig. 2B; 

Table 1b). There was poor support for any effect of temperature (ΔAICC = +3.59) or for any model 

that might indicate local adaptation by host or parasites (ΔAICC ≥ + 3.37; Table 1a). Restricting local 

adaptation analyses to the two host sources from which parasites were collected (HC and Lop) 

changed the composition of the top set of models but did not produce a qualitative change in 

interpretation (Appendix S13).

All population-level genetic diversity metrics had negative rSPc values against population 

mean worm-days, meaning populations with higher genetic diversity tended to have lower mean 

infection intensity (Table 2). The effect for microsatellite diversity was weaker than for STs (Table 2). 

Tests of additional genetic variability metrics are given in Appendix S7.

For the analysis of the impact of individual-level genetic predictors on infection intensity, we

used the MHC and microsatellite genotypes of 93/108 fish (86.1%) that survived the experiment and 

met our genotype quality criteria. We recognise the theoretical possibility for the untyped fish to be 

a biased subset of genotypes, but the two supplementary analyses in Appendix S14 suggest that if 

such a bias exists, it is not problematic for our interpretation. The number of MHC STs was in all 

three models comprising the new top model set (Table 3a). Its model-averaged coefficient was 

significantly lower than zero (Tables 3a-b), meaning individuals carrying more STs experienced 

infections of lower intensity. Microsatellite HL (our measure for overall genetic variation) was 

present in the second model (ΔAICC = +0.44; Table 3a), with a non-significant negative coefficient 

(Table 3b). Differences between populations in mean infection intensity were consistent with those 

of the non-genetic analysis (Tables 1a-b; see also Appendix S14). Fish length retained its net positive 

relationship with worm-days, but its interaction with fish source was no longer in all top-set models 

(AICC weight = 0.247; Table 3a). Gyro source was not in the top set, i.e. excluding it produced better 

fits. The first model to include number of MHC alleles had ΔAICC = +4.65. 

The stronger effect of number of STs relative to number of alleles was significantly greater 

than expected from randomised grouping of alleles (obs. coef. = -0.36, exp. = -0.15 ± 0.09 [SD], n. 

13

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334



randomisations = 10k, P = 0.011; details in Appendix S9), meaning it is unlikely to be a side-effect of 

aggregating alleles into STs. No microsatellite locus exerted a disproportionate influence on HL in 

jack-knife removal (Appendix S10).

Five supertypes were carried by 3+ fish in at least two populations (Tables 4-5) and were 

thus available for cross-population testing for effects of specific STs on infection intensity. Three of 

these STs were in their respective top model set and two were in their top-ranked model, but none 

were present in all top-set models or had a significant coefficient in their best model (Table 5; see 

also Appendix S15). There is thus no strong support for any particular ST having a general 

resistant/susceptible effect.

For population-specific tests for effects of particular supertypes, there were 17 testable 

instances (3+ carriers in a population; 2-6 STs per population; Table 5). Of these, six were in their 

population’s top model set (Table 6), of which only one was present in all models of a top set or had 

a significant coefficient. Lop hosts carrying ST12 experienced significantly fewer worm-days, but only

when infected with Lop (i.e., local) gyros. However, this result should be treated with caution, as the 

interaction is based on the minimum allowable sample size of two carriers per gyro source. 

Discussion

In our controlled parasite infection trials, we found no evidence for local host or parasite adaptation.

This contrasts with evidence for local adaptation to parasites in other fish systems (El Nagar & 

MacColl, 2016; Bolnick & Stutz, 2017), but is not out of keeping with the multi-taxa meta-analysis of 

Greischar & Koskella (2007) in which studies reporting no significant overall local adaptation slightly 

outnumber (56%) those that do. However, host population, but not parasite population, was a 

strong, significant predictor of the intensity of infection experienced by hosts. Comparable results of 

consistent differences between host populations have been reported in other fish species (e.g. 

Konijnendijk, Raeymaekers, Vandeuren, Jacquemin, & Volckaert, 2013; Pérez-Jvostov, Hendry, 

Fussmann, & Scott, 2015; Weber et al., 2017), as well as in laboratory guppies infected with the 
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same parasite species (Smallbone et al., 2021). The precise reasons for such differences are usually 

unclear, though populations of stickleback (Gasterosteus aculeatus) have been shown to differ in 

gene expression profiles in response to Gyrodactylus spp. infection (Brunner et al., 2017; Robertson, 

Bradley, & MacColl, 2017). In our study, infection intensity was associated with both population- and

individual-level genetic variability of hosts. Contrasts between the effects of MHC physicochemical 

supertypes (STs), MHC alleles, and microsatellites indicate a functional role of the MHC in explaining 

these patterns, whilst also suggesting the MHC is not the whole story.

Higher host population genetic diversity was associated with lower population mean 

infection intensity. These associations were significant for MHC STs and microsatellites, but not for 

MHC alleles. Several previous studies have reported evidence for positive correlations between 

pathogen diversity and MHC polymorphism and/or positive selection in cyprinids (Šimková, Ottová, 

& Morand, 2006), birds (Minias, Pikus, Whittingham, & Dunn, 2018), rodents (de Bellocq, 

Charbonnel, & Morand, 2008), and primates (Garamszegi & Nunn, 2011). Intraspecies, inter-

population examples include MHC polymorphism correlating positively with pathogen vector and 

ectoparasite abundance in the lizard Ctenophorus ornatus (see Radwan, Kuduk, Levy, LeBas, & Babik,

2014), and with length of time in which rabies has been present in racoon populations (Procyon 

lotor) (see Kyle et al., 2014). However, these examples should be compared to our study with 

caution, as all are observational/ecological rather than exposure-controlled experiments, and all 

focus on MHC alleles without a parallel assessment of STs. The significant relationship for MHC STs, 

which agrees with another recent guppy-gyrodactylid-MHC study (Smallbone et al., 2021), suggests a

history of stronger selection on functional MHC. Our observed relationship could also result from 

population demographic histories affecting diversity by drift, with which the significant alignment 

with microsatellite diversity would be consistent. Drift and selection, though, are not mutually 

exclusive (e.g., C. ornatus ; see Radwan et al., 2014), and the much wider range of ST diversity 

relative to microsatellite diversity (0.14-0.84 v. 0.47-0.53 respectively) is hard to reconcile with drift 

being dominant over selection on MHC functionality. Moreover, MHC allele diversity (range 0.74-
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0.91), which is known to be sensitive to drift (Radwan et al., 2010; McMullan & van Oosterhout, 

2012; Lighten et al., 2017; Herdegen-Radwan et al., 2021), was not significantly aligned with 

infection load.

Further evidence supporting the role of functional MHC diversity comes from our analyses of

individual infection intensities. Stronger selection by parasites should not only maintain more 

variants in a population, but should also select for more variants expressed by an individual. The 

latter will be determined by both zygosity and the number of MHC genes in haplotypes (Minias, 

Wojczulanis-Jakubas, Rutkowski, & Kaczmarek, 2015; Bentkowski & Radwan, 2019), as more variants

should widen the range of antigens that can be detected and responded to. Such effects have been 

reported in numerous other studies (Carrington et al., 1999; Penn, Damjanovich, & Potts, 2002; 

Oliver, Telfer, & Piertney, 2009; Radwan et al., 2012; Pierini & Lenz, 2018), but others have found no 

such effect (Phillips et al., 2018), some have found the reverse (Ilmonen et al., 2007; Schwensow, 

Fietz, Dausmann, & Sommer, 2007; Sepil, Lachish, Hinks, & Sheldon, 2013), and, in species with high 

numbers of duplicated MHC loci, some have found intermediate numbers of MHC alleles to be 

associated with the lowest infection burdens (Wegner, Kalbe, Kurtz, Reusch, & Milinski, 2003; 

Wegner, Reusch, & Kalbe, 2003; Madsen & Ujvari, 2006; Wegner, Kalbe, Milinski, & Reusch, 2008; 

Kloch, Babik, Bajer, Sinski, & Radwan, 2010). In our experiment, individuals carrying more MHC STs 

experienced significantly fewer worm-days: back-transformed from the loge scale (Table 3b), one 

extra ST predicts a reduction in worm-days over the study period by 29.6%. This effect was not 

confounded by differences in ST diversity between host populations – it applied within each 

population, and without a significant interaction. Moreover, it did not interact with parasite 

population, and, importantly, was independent of multilocus neutral (microsatellite) heterozygosity. 

In contrast, the effect of number of MHC alleles was relatively weak (19.0% worm-day reduction, 

and non-significant), producing a poorer fit than a model with no genetic predictors. The ST effect is 

unlikely to be a consequence of aggregating alleles into STs, as the coefficient is significantly more 

negative than expected if alleles are clustered into STs at random. Collectively, this suggests that the 
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relationship between the number of STs and infection intensity may be causal rather than 

correlational. If gyrodactylid infections select for individual-level functional MHC variability in 

guppies, our analysis of individual-level predictors supports a role for differences in past selection by 

parasites in causing differences between host populations in susceptibility to infection.

Interestingly, microsatellite variability itself also showed a negative effect, which, though 

weak, produced an improvement of fit when added to a model that already included number of STs. 

Moreover, the addition of microsatellite variability neither weakened the effect of number of STs 

nor produced problematic multicollinearity. As with number of STs, the effect was not confounded 

by between-population differences in variability. This suggests a general heterozygosity-fitness 

correlation (HFC), of which there are numerous examples relating to infection susceptibility in both 

genome-wide terms (e.g., Acevedo-Whitehouse et al., 2003; Luikart et al., 2008; Eastwood et al., 

2017) and with respect to other families of immune system genes (e.g. Hellgren, Sheldon, & 

Buckling, 2010; Lara et al., 2020; Levy et al., 2020). The relative weakness of this effect (an entirely 

heterozygous individual would experience 1.7% fewer worm-days than an entirely homozygous 

individual) may be due to limited within-population variance in genome-wide heterozygosity (non-

significant identity disequilibrium; David, Pujol, Viard, Castella, & Goudet, 2007) coupled with a small

number of loci. However, neither of these caveats justifies outright dismissal of our observed effect: 

although g2 correlates with HFC effect size (e.g., Miller & Coltman, 2014), HFCs can reach significance

before g2 does (Szulkin, Bierne, & David, 2010), and weak microsatellite HFCs can hint at effects that 

become much stronger when large panels of neutral SNPs are available (e.g., Hoffman et al., 2014).

That we found a strong effect of the number of MHC STs but only weak evidence for effects 

of particular STs is likely a result of our limited power to detect the latter. Few MHC variants were 

shared among populations at high enough frequency to carry out meaningful analyses against the 

relatively small sample sizes (n = 12-16) of each host × parasite treatment block. Previous work has 

shown that the guppy-gyrodactylid system is capable of producing such effects, but also that those 

effects are context-dependent (Smallbone et al., 2021). The nominal best evidence in our study is 

17

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438



also context-dependent – ST12 (which was not one of those with a significant effect in Smallbone et 

al. 2021) conferred resistance to Lopinot parasites, but in Lopinot hosts and not Santa Cruz hosts. 

The lack of a significant effect of parasite source population, or of any interaction with host 

population, appears inconsistent with previous work on this study system showing that MHC 

variants that were novel to a given host population conferred a significant advantage in resisting 

local parasites (Phillips et al., 2018). That finding, which used replicated population crosses to 

control for non-MHC genetic background, and which did not find significant interactions associated 

with those crosses, hinges on parasites being adapted to their local host’s MHC composition. Host 

populations likely segregate at other gene families reported to be involved in fish immune responses

to ectoparasites (Lindenstrøm, Secombes, & Buchmann, 2004; Skugor, Glover, Nilsen, & Krasnov, 

2008; Zhou, Lin, Pang, Shan, & Wang, 2018; Konczal et al., 2020), and effects of these loci may mask 

any effect of MHC novelty in the present study. The results of a recent translocation study on 

sticklebacks imply such background effects (Bolnick & Stutz, 2017). While MHC alleles that were 

common in a local host population were more susceptible to local parasites (consistent with an 

advantage from introgressing MHC alleles), immigrant fish experienced higher parasite loads when 

MHC genotype was controlled for (Bolnick & Stutz, 2017). The lack of signal of local adaptation in our

study may thus result from opposing signals of MHC and other genomic regions affecting resistance 

to gyrodactylids.  

An alternative explanation for the lack of a significant effect of parasite source population in 

our study is the culturing of parasites (‘gyro farming’). HC and Lop gyrodactylids were both cultured 

on a single, separate lineage of hosts for 18 days (3-4 farm cycles; potentially 9+ parasite 

generations) in order to obtain sufficient numbers for the experimental infections. This may have 

caused artificial selection, either on ability to infect novel hosts or to a specific set of host immune 

genotypes. However, we think this explanation is unlikely, as it would require the effective erasure 

of many generations of local adaptation in two large, natural populations of parasites, and it would 
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require that this be achieved in a short time, with limited starting genetic variance (each culture 

lineage was founded from a single animal), on parasite-naïve hosts. 

Host mortality in the experiment was low and restricted to the two Tobago fish populations, 

and was not significantly biased by gyro origin. Low host mortality likely reflects our experiment’s 

relatively benign conditions. In the wild, gyrodactylid infections expose guppies to a suite of 

additional selection pressures, including other infections, anything requiring efficient swimming 

(e.g., escape from predators and surviving flood events; van Oosterhout et al., 2007; Stephenson, 

Kinsella, Cable, & van Oosterhout, 2016), and reduced reproductive opportunities (Kennedy, Endler, 

Poynton, & McMinn, 1987). 

Overall, our results suggest that pathogens may select for higher numbers of MHC 

supertypes at an individual level, and previous work implies that it can also promote MHC 

polymorphism within populations, independently of benefits derived from simply carrying more 

variants (Phillips et al., 2018). Both of these effects will lead to differences between populations in 

functional immunogenetic diversity. The wider genomic implications of such selection (e.g., 

interactions with other immunity genes, effects on neutral genetic variability, and the shaping of 

MHC phylogenetics) requires further investigation. While this is a considerable effort, our results 

highlight that our understanding of infection dynamics will remain incomplete unless we appreciate 

the differences in the history of selection imposed by pathogens. A lack of such understanding may 

limit our ability to predict consequences of emergent diseased threatening humans and wildlife 

(Altizer et al., 2003; Penczykowski et al., 2016; Stephenson et al., 2017; Chabas et al., 2018; Ekroth, 

Rafaluk-Mohr, & King, 2019), and further research in this area should underpin the One Health 

approach (Daszak et al., 2000) in the coming decades. 
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Table 1a. Selected models of the number of ‘worm-days’ experienced by guppies infected with Gyrodactylus turnbulli during our experiment, ranked by corrected Akaike
Information Criterion (AICC). Model ranking was conducted without genetic predictors and includes four fish source populations (see Table S13.1a for version restricting 
analysis to the two fish sources from which the experiment’s gyros came). Selected models are: anything in the top two units of AIC C (lowest AICC); the first model 
outside of this top set; the best model to include an interaction between fish source and gyro source; the best model not to include length; and the best model not to 
include fish source. Models are general linear models (Gaussian error distribution) of loge-transformed worm-days. For continuous predictors, we give the regression 
slope when the parameter is present without an interaction, and ‘+’ when it is part of an interaction; for categorical predictors and interactions, we indicate inclusion 
with ‘+’. Coefficients for fish length are for z-transformed data. Importance is by Akaike weight and applies only to models in the top two units of AIC C. ‘Res. skew.’ and 
‘Res. kurt.’ are skewness and kurtosis of model residuals (Gaussian distribution has 0 and 3 respectively); ‘Max. Cook’ is the maximum Cook’s distance value, an indicator 
of over-influential data points; ‘Max. VIF’ (maximum variance inflation factor) and ‘Kappa’ are multicollinearity diagnostics. Model-averaged coefficients are in Table 1b. 
Post hoc pairwise comparisons between all levels of fish source in the top-ranked model are in Table 1c.

Intercept
Fish

source Length Gyro source Fish × length Fish × gyro R2

Res.
skew. Res. kurt.

Max.
Cook Max. VIF Kappa df AICC Weight

2.47 + + - + - 0.835 -0.19 2.81 0.24 5.45 13.64 9 230.47 0.716

2.43 + + + + - 0.834 -0.20 2.82 0.23 5.51 13.26
1
0 +1.85 0.284

2.75 + 0.34 - - - 0.825 -0.16 2.90 0.14 1.41 9.31 6 +2.14 -

2.59 + 0.35 + - + 0.832 -0.13 2.96 0.12 19.41 20.53
1
0 +3.37 -

2.46 + - - - - 0.796 0.24 3.77 0.10 - 5.05 5 +17.90 -
4.34 - 0.60 - - - 0.127 0.45 2.41 0.06 - 1.00 3 +172.50 -

Sum of weights 1.00 1.00 0.28 1.00 -

Table 1b. Model-averaged coefficients for models comprising the top two units of AICC model ranking of predictors of the number of worm-days experienced by guppies 
infected with Gyrodactylus turnbulli during our experiment, in models without genetic predictors and including four fish source populations (Table 1a). Fish source 
coefficients are given in reference to Santa Cruz. The interaction between fish length (z-transformed) and fish source was present in all models contributing to the model 
averaging, and is also given with Santa Cruz as the reference level. The gyro source coefficient is given with reference to Lopinot. Sum of weights (a.k.a. ‘importance’) is 
sum of Akaike weight. All P-values are two-tailed. Post hoc pairwise comparisons between all levels of fish source are in Table 1c.

Term Slope SE z P Sum of weights

Intercept 2.46 0.18
13.3

7 <0.001 -

Fish source

Lopinot 1.06 0.24 4.51 <0.001 1
HealthCentre 2.22 0.23 9.79 <0.001 1

Roxborough 4.08 0.23
17.9

0 <0.001 1

Fish length (× fish source)
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Fish length (SantaCruz) 0.01 0.15 0.04 0.969 1
× Lopinot 0.26 0.24 1.07 0.286 1

× HealthCentre 0.53 0.19 2.77 0.006 1
× Roxborough 0.49 0.24 2.09 0.037 1

Gyro source

HealthCentre 0.10 0.13 0.72 0.469 0.284

Table 1c. Post hoc pairwise comparisons of number of worm-days (loge-transformed) between all levels of fish source in the top-ranked model of Table 1a.
Term Mean diff. SE t P

Lopinot - SantaCruz 1.06
0.2

3 4.58 <0.001

HealthCentre - SantaCruz 2.22
0.2

2 9.93 <0.001

Roxborough - SantaCruz 4.08
0.2

2 18.13 <0.001

HealthCentre - Lopinot 1.16
0.2

0 5.75 <0.001

Roxborough - Lopinot 3.01
0.2

0 14.85 <0.001

Roxborough - HealthCentre 1.85
0.1

9 9.56 <0.001

Table 2. Ordered heterogeneity testing by rSPc (Rice & Gaines, 1994) of host population-level genetic diversity metrics against population mean number of worm-days. 
rSPc is calculated as the Spearman correlation coefficient (rS) multiplied by 1 - (P-value for the overall effect of host population). P-values for rSPc are for a four-level factor.
The host population columns (SantaCruz-Roxborough) are ordered to that mean worm-days increases reading left to right (see also Tables 1a, 1c). Additional metrics are 
tested in Appendix S7. All P-values are two-tailed.

Metric Marker class MHC phasing SantaCruz Lopinot HealthCentre Roxborough rSPc P

ST div. MHC ST Unphased 0.84 0.83 0.72 0.14 -1.00 <0.001
Msat div.(8) Microsat. - 0.53 0.52 0.51 0.47 -1.00 <0.001

S.hap. div. MHC ST Phased 0.84 0.84 0.72 0.14 -0.95 0.005
Haplo. div. MHC allele Phased 0.88 0.90 0.74 0.79 -0.60 0.098
Allele div. MHC allele Unphased 0.89 0.91 0.74 0.79 -0.60 0.098

Table 3a. Models comprising the top two units of corrected Akaike Information Criterion (AICC) model ranking of predictors of the number of ‘worm-days’ experienced 
by guppies infected with Gyrodactylus turnbulli during our experiment, assessing models that were allowed to include an MHC and a microsatellite individual-level 
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genetic variability metric in addition to fish source (four-level factor). To provide additional context, we include: the first model outside the top set; the first model to 
include each genetic predictor not present in the top set; and the first model to include no genetic predictors. Models are general linear models (Gaussian errors) of log e-
transformed data. For continuous predictors, we give the regression slope when the parameter is present; for categorical predictors, we indicate presence with ‘+’. The 
coefficient for fish length is for z-transformed data. Sum of weights (a.k.a. ‘importance’) is by Akaike weight and applies only to models in the top two units of AIC C. 
Model-averaged coefficients are in Table 3b.

Intercept
Fish

source Length N MHC STs N MHC als Msat HL
Gyro

source
Fish ×

length R2

Res.
skew. Res. kurt.

Max.
Cook Max. VIF

Kapp
a df AICC Weight

2.82 + 0.42 -0.36 - - - - 0.810 -0.23 2.91 0.12 1.66 9.07 7 202.85 0.417
2.85 + 0.44 -0.37 - -0.10 - - 0.812 -0.17 2.93 0.11 1.71 10.76 8 +0.44 0.336
2.56 + + -0.32 - - - + 0.816 -0.22 2.77 0.22 5.55 14.11 10 +1.05 0.247
2.60 + + -0.33 - -0.08 - + 0.817 -0.19 2.82 0.21 5.60 14.99 11 +2.14 -
2.82 + 0.42 -0.36 - - + - 0.808 -0.23 2.91 0.11 1.70 8.63 8 +2.40 -
2.48 + + - - - - + 0.808 -0.16 2.73 0.25 5.24 12.84 9 +3.65 -
2.76 + 0.39 - -0.21 - - - 0.800 -0.17 2.90 0.11 1.51 8.74 7 +4.65 -

Sum of weights 1.00 1.00 1.00 - 0.34 - 0.25

Table 3b. Model-averaged coefficients for models comprising the top two units of AICC model ranking of predictors of the number of worm-days experienced by guppies 
infected with Gyrodactylus turnbulli during our experiment, in models that were allowed to include an MHC and a microsatellite individual-level genetic variability metric
in addition to fish source (Table 3a). Models are general linear models (Gaussian error distribution) of loge-transformed worm-days. Fish source coefficients are given in 
reference to Santa Cruz. Fish length (z-transformed) was present in all models in the top set but interacted with fish source in 1/3 models, and we present this in the 
table as if length-without-interaction and length-with-interaction (the latter with Santa Cruz as the reference level) were two different predictors. Sum of weights (a.k.a. 
‘importance’) is sum of Akaike weight. The coefficient for fish length is for z-transformed data. All P-values are two-tailed.

Term Slope SE z P Sum of weights

Intercept 2.77 0.21 13.44 <0.001 -

Fish source

Lopinot 0.81 0.26 3.13 0.002 1
HealthCentre 2.01 0.25 8.15 <0.001 1

Roxborough 3.51 0.29 12.18 <0.001 1

Microsats

Msat HL -0.10 0.07 1.33 0.182 0.336

MHC STs

N MHC STs -0.35 0.15 2.39 0.017 1

Fish length (× fish source)

Fish length (no interaction) 0.43 0.09 4.90 <0.001 0.753
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Fish length (SantaCruz) 0.10 0.16 0.62 0.537 0.247
× Lopinot 0.27 0.25 1.05 0.297 0.247

× HealthCentre 0.45 0.20 2.22 0.029 0.247
× Roxborough 0.49 0.26 1.92 0.059 0.247

Table 4. Per-population counts of carriers of each MHC supertype (ST) among genotyped fish in our experiment. ST groupings are those of Herdegen-Radwan et al. 
(2020), and STs 4, 8, and 9 were not detected in the present experiment’s sample. Instances of STs with 3+ carriers in a given population were tested for within-
population resistance/susceptibility effects: † = ST with an effect present in the top two units of its population’s AICC-ranked general linear models of worm-days (see 
Table 6 for details of such instances); ‡ = ST not present in its population’s top model set; § = ST carried by every genotyped individual in a population. Tests of 
supertypes with 3+ carriers in 2+ populations are in Table 5.
MHC ST Santa Cruz Lopinot Health Centre Roxborough

ST01 2 5‡ 0 0
ST02 1 10‡ 9† 0
ST03 1 13‡ 0 0
ST05 0 0 21‡ 0
ST06 6‡ 2 0 0
ST07 18‡ 6‡ 5† 0
ST10 3† 12‡ 0 4†
ST11 1 1 0 0
ST12 10‡ 4† 0 0
ST13 2 0 0 0
ST14 3† 0 0 0
ST15 0 2 21‡ 30§

Table 5. Descriptions of effects associated with single MHC supertypes (STs) in multiple populations (3+ carriers in 2+ populations) in AICC-ranked general linear models 
of worm-days. Res./susc. = whether carrying the ST is associated with reduced or increased infection intensities (‘resistant’ or ‘susceptible’) among the top two AICC units
of a focal ST’s ranked models. Numerical values in ‘First model’ are ΔAICC values relative to the top-ranked model. Sum of weights = sum of Akaike weights of models 
containing the ST within the focal top model set (a.k.a. ‘importance’). Min. P = lowest P-value for the ST’s effect among the top model set. ‘Interactions’ indicates 
whether there are interactions between the ST and fish/gyro source. See Table S15.2 for remarks on each test.
MHC ST Populations Res./susc. First model Sum of weights Min. P Interactions See also

ST02 Lop, HC Res. Top-ranked model 0.394 0.132 None Table S15.4

ST07 SC, Lop, HC Susc. +0.24 0.588 0.153 Some Table S15.5

ST10 SC, Lop, Rox - +2.32 - - - -

ST10 SC, Lop - +2.04 - - - -

ST12 SC, Lop Res. Top-ranked model 0.487 0.058 None Table S15.6
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ST15 HC, Rox - - - - - -

al387 HC, Rox - +2.30 - - - -

Table 6. Descriptions of single MHC supertypes (STs) with effects present in the top two units of a single population’s AICC-ranked general linear models of worm-days. 
An ST required 3+ carriers to be tested. Res./susc. = whether carrying the ST is associated with reduced or increased infection intensities (‘resistant’ or ‘susceptible’). 
Numerical values in ‘First model’ are ΔAICC values relative to the top-ranked model. Sum of weights = sum of Akaike weights of models containing the ST within the focal 
top model set (a.k.a. ‘importance’). Min. P = lowest P-value for the ST’s effect among the top model set. ‘Interaction’ indicates whether the ST interacts with gyro source.
See Table 4 for other tested STs, and Table S15.3 for remarks on each test.

MHC ST Populations Res./susc. First model Sum of weights
Min.
P Interaction See also

ST02 HC Resistant +1.61 0.174 0.320 No Table S15.7

ST07 HC Susceptible +1.12 0.221 0.234 No Table S15.7

ST10 SC Resistant +1.16 0.111 0.143 No Table S15.8

ST10 Rox Resistant +0.07 0.388 0.099 No -

ST12 Lop Interaction Top-ranked model 1.000 0.037 Yes Table S15.9

ST14 SC Resistant Top-ranked model 0.470 0.070 No Table S15.8
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Figure 1. Design of cross-infection experiment, with four host (guppy) populations and two parasite 
(gyrodactylid) populations sourced from two different islands (Trinidad vs Tobago). Sample sizes 
refer to numbers of infected hosts per treatment block, with each host receiving two gyrodactylid 
worms.
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Figure 2. Differences in worm-days (loge) between (A) hosts (fish) from four populations, and (B) 
parasites (gyros) from two populations. Points are fitted means, errors bars are SEs for the means, 
and violins show partial residuals from the top-ranked model to include the focal predictor. See 
Appendix S11 for average expected infection trajectories.
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