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Abstract

Understanding and predicting how species will respond to climate change is crucial

for biodiversity conservation. Here, we assessed future climate change impacts on the

distribution of a rare and endangered plant  species,  Davidia involucrate  in  China,

using the most recent global circulation models developed in the sixth Assessment

Report of the Intergovernmental Panel on Climate Change (IPCC6). We assessed the

potential  range  shifts  in  this  species  by using  an ensemble of  species  distribution

models (SDMs). The ensemble SDMs exhibited high predictive ability and suggested

that the temperature annual range, annual mean temperature, and precipitation of the

driest month are the most influential predictors in shaping distribution patterns of this

species. The projections of the ensemble SDMs also suggested that D. involucrate is

very vulnerable to future climate change, with at least one-third of its suitable range

expected  to  be  lost  in  all  future  climate  change  scenarios  and  will  shift  to  the

northward  of  high-latitude  regions.  These  findings  suggest  that  it  is  of  great

importance to ensure that adaptive conservation management strategies are in place to

mitigate the impacts of climate change on D. involucrate.

Keywords:  D. involucrate, climate change, dove tree, ensemble species distribution

models (SDMs), range shifts, suitable habitats
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Introduction

The recent global warming due to the increase of greenhouse gases caused by human activities is

driving  global  species  redistributions  (Pearson  and  Dawson,  2003;  Hampe  and  Petit,  2005;

Jackson and Sax, 2010). In response to global warming, many species have attempted to keep

pace with climate change by adjusting their phenology and physiology to match new climatic

conditions  (Walther  et  al.,  2002),  or  shifting  their  distributions  towards  higher  altitudes  or

latitudes to track suitable habitats (Chen et al., 2011; Hampe and Petit, 2005; Jump and Penuelas,

2005; Walther et al., 2002). Unfortunately, those species that failed to shift their distribution lost

a  substantial  proportion  of  their  suitable  habitats,  or  have  even  became  extinct  globally

(Flagmeier et al., 2014; Sproull et al., 2015). Furthermore, this situation may worsen under future

climate change (Thomas et al., 2014; Warren et al., 2013). Thus, in order to mitigate the negative

effects of climate change on species, conservation strategies should include modelling species

distributions to identify to what extent they could be influenced by future climate change. 

In the past two decades, species distribution models (SDMs) have been widely used to

assess  the  impacts  of  future  climate  change on species  distributions  and guide  conservation

planning (Kujala et al., 2013; Maggini et al., 2014; Wiens et al., 2009). However, SDMs may

suffer from a lack of precision and portability due to the variation in covariate selections (Zhang

and Zhang, 2012), type of SDM used (Hartley et al., 2006; Pearson et al., 2006; Thuiller et al.,

2009;  Wenger  et  al.,  2013),  and climate projections  arising  from different  global  circulation

models (GCMs) and CO2 emission scenarios (Barry and Elith, 2006; Wenger et al., 2013), which

can yield misleading or inconsistent outcomes, posing challenges for decision making (Elith et‐

al.,  2006). Ensemble modelling approaches,  which combined a series of SDMs, can produce

consensus projections that may outperform single SDMs, and reduce the predictive uncertainty
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of single algorithm by combining their predictions (Thuiller et al., 2014). By using ensemble

modelling approaches, more robust projections can be produced with reasonable interpretation

(Araújo and Guisan, 2006). Consequently, these approaches have been widely used to estimate

the distributions  of species under  future climate change scenarios  for plants (Forester  et  al.,

2013), amphibians (Zhang et al., 2020), insects (Marshall et al., 2018) and mammals (Ahmad et

al., 2020; Yen et al., 2011). 

Davidia involucrata Baill., commonly known as dove tree or handkerchief tree, is a

rare and endangered species listed in the China Plant Red Data Book under first-grade state

protection (Liu et al., 2019). It is also a Tertiary relict plant endemic to China (Fu and Jin, 1992),

currently restricted to the mountains of southwestern and south-central China (Li, 1954; Liu et

al., 2019; Takhtajan, 1980). Owing to the highly strict ecotope and recruitment limitation (i.e.,

low reproduction rate and dispersal ability), the population age structure of  D. involucrate is

declining (Wang et al., 2019). In addition, the increasing intensity of human activities has led to a

sharp decrease of its remaining habitat. Despite its threatened status, few studies have explored

the vulnerability of D. involucrate to climate change (Tang et al., 2017; Wang et al., 2019). By

using ecological niche models, Tang et al. (2017) projected the potential suitable habitats of this

species under past, current and future climatic conditions. In their work, the obsolete CMIP5

climate models were used to simulate future climate conditions (Tang et al., 2017). However,

many studies  have shown that  the most  recent CMIP6 climate models perform better  in  the

simulation of future climate conditions compared to the CMIP5 climate models (Fan et al., 2020;

Xin et al., 2020). Therefore, a rigorous analysis combined ensemble modelling approaches and

the  CMIP6  climate  models  investigating  potential  impacts  of  future  climate  change  on  the

distribution of D. involucrate is of great urgence and significance. 
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Here, we conducted our study under the hypotheses that (a) future climate change will

severely  reduce  suitable  habitats  of  D. involucrate;  and  (b)  will  push this  species  to  higher

altitudes and/or latitudes. To explore these hypotheses, we complied a large dataset on spatially

explicit species presence records of the  D. involucrate and environmental data covering China

and subsequently use ensemble modelling approaches to projecting the potential suitable habitats

of D. involucrate under current and future climatic conditions. According to our knowledge, our

study is one of the first studies to investigate how D. involucrate will response to future climate

change by using ensemble modelling approaches and the most recent CMIP6 global circulation

models. 

Material and methods

Species occurrence data

We obtained occurrence data for  D. involucrate from multiple data sources, including Chinese

Virtual Herbarium (CVH,  http://www.cvh.ac.cn), National Specimen Information Infrastructure

(NSII, www.nsii.org.cn), Global Biodiversity Information Facility (GBIF, https://www.gbif.org)

and other publications (e.g., Wang et al., 2019). To reduce potential errors in species’ geographic

locations of occurrence data, we only include species occurrence data with geographic locations.

To  ensure  that  all  occurrence  records  were  in  the  species’ native  geographic  locations,  we

exclude the species occurrence data collected in manual intervention areas, such as parks and

experimental forests. From this process, we selected 337 occurrence records to model ecological

niches for D. involucrate (Fig. 1). 

Climate variables

19 bioclimatic variables (BIO1-BIO19; Table S1) for the time period 1979–2013 were obtained
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from CHELSA (http://chelsa-clima te.org; Karger et al., 2017), with a spatial resolution of 30

arc-seconds (~1 km). The future 19 bioclimatic variables with a 2.5 arc-minutes resolution for

three time periods, 2050s (2041-2060), 2070s (2061-2080) and 2090s (2081-2100), under two

representative concentration pathways (RCPs) scenarios, RCP2.6 and RCP8.5, from nine widely

used global  circulation  models  (GCMs):  CNRM-CM6-1,  CNRM-ESM2-1,  CanESM5,  IPSL-

CM6A-LR, MIROC-ES2L and MIROC6, were exacted directly from the WorldClim Version 2.1

dataset (Fick and Hijmans, 2017). For each time period, each GCM and for each RCP scenarios,

we projected all maps of current and future climate variables onto the same 10-km equal area

grid as used for fitting the distribution models, using a bilinear interpolation. 

The 19 climatic variables used in this study are usually strongly correlated (Marshall et

al., 2018). To minimize multicollinearity among variables, we used Pearson's correlations and

variance inflation factors (VIFs) to exclude highly correlated variables. Variables with a Pearson

correlation >0·70 were considered highly correlated (Dormann et al., 2013), and a VIF >5 was

used as a  signal  that  a  model  had collinearity  issues (Rogerson,  2010).  Finally,  six climatic

variables were selected for modelling species distributions, including Annual mean temperature

(BIO1),  Isothermality  (BIO3),  Temperature  annual  range  (BIO7),  Precipitation  of  the  driest

month  (BIO14),  Precipitation  seasonality  (BIO15)  and  Precipitation  of  the  warmest  quarter

(BIO18). 

Species distribution modelling 

An ensemble  of  species  distribution  models  (Araújo  and Guisan,  2006)  was  used  to  model

potential suitable habitat for  D. involucrata using the biomod2 package in the R platform (v.

4.0.4; http://cran.r-project.org). We chose the ensemble modelling approach because of its ability

to  create  a  consensus  of  the  predictions  of  multiple  algorithms  and  reduce  the  predictive
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uncertainty of single algorithm (Thuiller et al.,  2014). Ten algorithms were considered in the

ensemble model:  artificial  neural network (ANN), classification tree analysis  (CTA), flexible

discriminant analysis (FDA), generalized additive model (GAM), generalized boosting model

(GBM),  generalized  linear  model  (GLM),  multiple  adaptive  regression  splines  (MARS),

maximum entropy  (MAXENT),  random forest  (RF)  and  surface  range  envelope  (SRE).  For

algorithms requiring species absence records, we generated 10,000 pseudo-absence points with

the equal number as the occupied grids for GAM, GBM, GLM and RF, and 10,000 background

points for MAXENT by randomly sampling without replacement. To avoid model over-fitting,

the selection of pseudo-absence or background points was limited to realm-biome combinations

occupied by the species’ range map. 

To evaluate the accuracy of each algorithm, we performed cross-validation on each

algorithm using bootstrap approach, where random subsets of 80% of each dataset for training

data and the remaining 20% for testing algorithm performance using the area under the receiver

operating characteristics curve (AUC) and true skill statistics (TSS). This procedure was repeated

10 times to create predictions independent of the training data. Algorithms with AUC > 0.90 and

TSS > 0.80 were considered to have good predictive performance (Allouche et al., 2006; Gallien

et al., 2012; Swets, 1988) and were thus kept in the final ensemble model. Based on the final

ensemble model,  we estimated the response curve of each covariate and determined variable

contribution by calculating the change in correlation between the covariates and the response

with and with-out the selected variable (Thuiller et al., 2015). The final ensemble model was

then projected to current and future climatic conditions by using all  occurrence and pseudo-

absence data. Finally, these habitat suitability maps were converted to binary presence absence

maps using a threshold that maximums model sensitivity plus specificity, which has been shown

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146



generally to perform well (Thuiller et al., 2015). 

Statistical analysis

Analyses were conducted on the ensemble model map projections of binary presence absence

maps. To assess potential impacts of climate change on species ranges, following Zhang et al.

(2015), we used two metrics to quantify species’ vulnerability: the relative change in total area of

suitable habitat (CSH) and the loss of current suitable habitat (LSH). The first metric assumes

unlimited dispersal into the projected entire suitable habitats in the future time periods and can

be calculated using the following equation: 

CSH=(AREA future−AREAcurrent) /AREAcurrent×100,

where AREA future and AREAcurrent is the area of current and future suitable habitats. The second

metric  assumes  no  dispersal  into  the  projected  suitable  habitats  out  of  the  current  suitable

habitats and can be calculated using the following equation:

CSH=(1−
Overlap (AREA future , AREAcurrent )

AREAcurrent
)×100.

To detect the direction and distance of species range shifts under future conditions, we

determined  the  centroids  of  current  and  future  binary  presence  absence  maps  using  the  R

package ‘rgeos’ with the ‘gCentroid’ function. 

Results

Model performance and variable contribution

The AUC and TSS measures provided highly consistent estimates of the model performance of

the 10 modelling algorithms (Table 1). As the mean AUC and TSS values of the 10 modelling

algorithms except SRE are all above 0.9 and 0.8, respectively, we removed SRE from the final

ensemble model.  The AUC and TSS value of the final  ensemble model  is  0.975 and 0.898,
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respectively, which is higher than of the individual modelling algorithms. Among the six selected

predictor variables, the temperature annual range is the most influential variable, followed by

annual  mean  temperature,  precipitation  of  the  driest  month,  isothermality,  precipitation

seasonality and precipitation of the warmest quarter (Table 2). 

Species’ range shifts under future climatic conditions 

The projections of future habitat suitability for D. involucrate predicted severe range contraction

under  all  scenarios  (Fig.  2-3).  Specifically,  by  assuming  global  dispersal,  the  proportion  of

current suitable habitats of this species projected to be lost ranged from 28.08% (under IPSL-

CM6A-LR climate model and RCP 2.6 scenario) to 53.08% (under CanESM5 climate model and

RCP 8.5 scenario) by the 2050s, and from 33.27% (under CNRM-ESM2-1 climate model and

RCP 2.6 scenario) to 68.86% (under CNRM-CM6-1 climate model and RCP 8.5 scenario) by the

2070s (Fig. 2, Fig. 3a, b). The loss of potential suitable habitats under zero dispersal is more

severe than those under global dispersal (Fig. 2, Fig. 3c, d), despite having a similar trend in

predicted species range size. 

Under  future  climatic  conditions,  centroids  of  potential  suitable  habitats  of  D.

involucrate under most scenarios were projected to shift north-east (Fig. 4). The exception is that

this species was projected to experience north-west shifts under CanESM5 and IPSL-CM6A-LR

climatic models and RCP 8.5 scenario, respectively (Fig. 4c, d). The magnitude of species’ range

shifts varied greatly under different GCMs, different RCPs and different assumptions of species’

dispersal ability (Fig. 4). The species would need move from 165.01 km (under the MIROC-

ES2L climate model and RCP 8.5 scenario by the 2070s) to 419.10km (under the CanESM5

climate model and RCP 8.5 scenario by the 2070s) under global dispersal, and from 88.83 km

(under the CNRM-ESM2-1 climate model and RCP 8.5 scenario by the 2070s) to 175.07km

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192



(under  the  CNRM-CM6-1  climate  model  and  RCP 8.5  scenario  by  the  2070s)  under  zero

dispersal (Fig. 4). 

Discussion

Understanding and predicting how species will response to future climate change is crucial for

biodiversity  conservation  (Wiens  et  al.,  2009)  and  has  required  novel  approaches  with  high

predictive  performance and low predictive  uncertainty  (Elith  et  al.,  2006;  Thuiller  W et  al.,

2014).  In  this  study,  by  using  ensemble  SDMs  and  the  CMIP6  GCMs,  we  projected  the

distribution of suitable habitats of  D. involucrate under current and future climatic conditions.

The results suggest that around 35% and 50% of its suitable habitats at present will be lost by

2050s and 2070s, respectively, and its range will shift towards higher latitudes but not higher

altitudes. Our findings highlight the high vulnerability of D. involucrate to future climate change

and thus have important implications for guiding future conservation planning. 

Previous studies have reported that potential suitable habitats of  D. involucrate  were

mainly  distributed  in  mountainous  areas  with  narrow  annual  temperature  range  and  high

precipitation (Liu et al., 2019; Su and Zhang, 1999), reflecting this species cold intolerance (Su

and Zhang,  1999).  Consistent  with these  previous  studies,  our  results  show that,  among the

selected  six  climatic  variables,  temperature  annual  range,  annual  mean  temperature  and

precipitation of the driest month were the three most important predictors of the distribution of

D. involucrate. Therefore, broad temperature annual range, extreme high and/or low temperature,

together with low precipitation events, could lead to the loss of suitable habitats for this species. 

It is often assumed that more complex and more up-to-date models will perform better

and/or  produce  more  robust  projections  than  previous-generation  models  (USGCRP,  2017).
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Consistent with previous studies (Elith et al., 2006; Thuiller W et al., 2014), our results showed

that  the  ensemble  SDMs have higher  predictive  ability  than  individual  SDMs.  Furthermore,

numerous studies have concluded that the CMIP6 GCMs perform better than CMIP5 GCMs in

simulating the future climatic conditions (Fan et al., 2020; Xin et al., 2020). In the present study,

by using CMIP6 GCMs, our future projection suggested that D. involucrate will shifts towards

higher  latitudes,  and a large proportion of suitable habitats  will  be lost  under future climate

change. These findings support the hypothesis for northward shifts in response to climate change

(Chen et al., 2011; Poloczanska et al., 2013), implying the usefulness of CMIP6 GCMs. 

Despite  the  predictive  power  of  the  ensemble  modelling  of  D.  involucrate,  an

important limitation in the present study is that we assessed future habitat suitability under two

extreme dispersal  assumptions  (i.e.,  no dispersal  and unlimited dispersal),  which ignores the

realistic rates and modes of dispersal of this species (Saupe et al., 2012). These assumptions are

likely inaccurate,  which could lead to  overestimation of suitable  habitat  under  the unlimited

dispersal  assumption  or  underestimation  under  the  zero-dispersal  assumption  (Engler  and

Guisan, 2009; Viana, 2017; Zanatta et al., 2020). For instance, Engler et al. (2009) assessed the

potential  impacts of climate change on habitat  suitability of 287 mountain plants under four

dispersal scenarios (unlimited dispersal, zero dispersal, realistic dispersal and realistic dispersal

with long-distance dispersal events). Their result showed that the projected future distributions

under  realistic  dispersal  were  significantly  different  from those  of  other  dispersal  scenarios.

However,  regardless  of  dispersal  scenario,  our  results  highlight  the  high  vulnerability  of  D.

involucrate to climate change, and provide the bounds to the magnitude of the change.

Overall, our research provides fundamental knowledge for understanding the potential

impacts of climate change on the distribution of D. involucrate. This study also provides useful
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information  for  comprehending  vegetation  changes  at  global  scales  under  climate  change,

especially  for  the  climate-related  range  shifts  of  Tertiary  relict  plants  (Tang  et  al.,  2017).

However,  to  effectively  improve  the  predictive  power  of  SDM projections,  we  recommend

incorporating  diverse  ecological  processes,  such  as  dispersal  mechanisms,  into  the  future

projections.
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Tables and Figures

Table 1. Performance of 10 modelling algorithms used to predict habitat suitability of Davidia

involucrate.  Results  are  shown  as  mean  ±  SE.  AUC:  area  under  the  receiver  operating

characteristic curve; TSS: true skill statistics. 

Modelling algorithms AUC TSS

Artificial neural network* 0.944 ± 0.006 0.841 ± 0.020

Classification tree analysis* 0.926 ± 0.015 0.840 ± 0.026

Flexible discriminant analysis* 0.945 ± 0.005 0.822 ± 0.017

Generalised additive model* 0.958 ± 0.005 0.858 ± 0.016

Generalised boosting model* 0.961 ± 0.007 0.849 ± 0.021

Generalised linear model* 0.952 ± 0.003 0.847 ± 0.013

Multiple adaptive regression splines* 0.954 ± 0.006 0.846 ± 0.012

MAXENT.Phillips* 0.964 ± 0.005 0.851 ± 0.020

Random forest* 0.966 ± 0.005 0.870 ± 0.016

Surface range envelope 0.849 ± 0.011 0.697 ± 0.023

*: models were selected to develop the ensemble model. 
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Table 2. Relative contributions of the nine selected predictor variables in the ensemble model of

habitat suitability for Davidia involucrate Ball. 

Predictor variables Relative importance

Annual mean temperature (BIO1) 0.344 ± 0.009

Isothermality (BIO3) 0.091 ± 0.003

Temperature annual range (BIO7) 0.834 ± 0.017

Precipitation of the driest month (BIO14) 0.138 ± 0.002

Precipitation seasonality (BIO15) 0.013 ± 0.001

Precipitation of the warmest quarter (BIO18) 0.006 ± 0.001
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Figure 1. Potential suitable (blue) and unsuitable (grey) habitats suitability of Davidia

involucrata  Baill. under current climatic conditions in China. Red points represent

occurrence records of D. involucrata.
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Figure  2. Changes  in  suitable  ranges  of  Davidia  involucrata  Baill. projected  by

ensemble SMDs under each  GCMs and RCP scenario in: (a) 2050s and (b) 2070s.

Four  trajectories  were  assigned  to  each  grid  cell  by  comparing  habitat  suitability

under current and future climatic conditions: ‘absence’, a grid that is unsuitable for

this species under current climatic conditions remain unsuitable under future climatic
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conditions;  ‘gain’,  a  grid that  is  unsuitable  for  this  species  under current  climatic

conditions  become suitable  under  future  climatic  conditions;  ‘lost’,  a  grid  that  is

suitable for this species under current climatic conditions become unsuitable under

future climatic conditions; ‘persistence’, a grid that is suitable for this species under

current climatic conditions remain suitable under future climatic conditions. 
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Figure 3. The projected range size changes of Davidia involucrate Ball. in 2050s and

2070s. The range size changes (%) are relative to the predicted suitable areas of  D.

involucrate under the current climate conditions. (a) – (d), Projections of range size

changes of  Davidia involucrate were obtained from the ensemble models under the

unlimited dispersal ((a), (b)) and no dispersal ((c), (d)) scenarios using multiple future

climate projections for two time periods from the selected nine GCMs, and under the

representative  concentration  pathway  RCP2.6  ((a),  (c))  and  RCP8.5  ((c),  (d)).  48

ensemble models were built for D. involucrate. The bars indicate the median value.

465

466

467

468

469

470

471

472

473



Figure 4. Centroid changes between current distributions of Davidia involucrate Ball.

and  projected  distributions  by  ensemble  species  distribution  model  under  future

changing climate conditions: (a) under RCP 2.6 scenario in 2050s, (b) under RCP 8.5

scenario  in  2050s,  (c)  under  RCP 2.6  scenario  in  2070s,  and (d)  under  RCP 8.5

scenario  in  2070s.  The arrow in  each map shows direction  and distance  between

present  and future distribution centroids.  The start  of arrow represents centroid of

projected suitable area of D. involucrate under present climate conditions, while the

end coincides with the position of the centroid under future climate scenarios. The

real and dashed lines represent global dispersal and no dispersal, respectively. 
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Table S1. Definition and description of climate variables in our datasets.

Variables Variable description and description Units

BIO1 Mean annual temperature in each grid cell ℃

BIO2
Mean diurnal range (mean of maximal temperature - minimal temperature) in

each grid cell
℃

BIO3  Isothermality (Bio2/Bio7) (* 100) in each grid cell

BIO4 Temperature seasonality (standard deviation *100) in each grid cell ℃

BIO5 Maximal temperature of the warmest month in each grid cell ℃

BIO6 Minimal temperature of coldest month in each grid cell ℃

BIO7 Temperature annual range (Bio5-Bio6) in each grid cell ℃

BIO8 Mean temperature of the wettest quarter in each grid cell ℃

BIO9 Mean temperature of the driest quarter in each grid cell ℃

BIO10 Mean temperature of the warmest quarter in each grid cell ℃

BIO11 Mean temperature of the coldest quarter in each grid cell ℃

BIO12 Total annual precipitation in each grid cell mm

BIO13 Precipitation of the wettest month in each grid cell mm

BIO14 Precipitation of the driest month in each grid cell mm

BIO15 Precipitation seasonality (coefficient of variation) in each grid cell

BIO16 Precipitation of the wettest quarter in each grid cell mm

BIO17 Precipitation of the driest quarter in each grid cell mm

BIO18 Precipitation of the warmest quarter in each grid cell mm

BIO19 Precipitation of the coldest quarter in each grid cell mm
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