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Abstract

In this paper, we discuss a hyperbolic-parabolic system modeling biological phe-
nomena evolving on a network. The global existence of the is obtained by using
energy estimates with suitable the transmission conditions at interior. Moreover,
for the case of acyclic network, the existence and uniqueness of stationary solution
to the system is proposed and it is proved that these ones are asymptotic profiles
for a class of global solutions
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1 Introduction

Chemotaxis is a phenomenon of collective movement of microorganisms in the direction of
increasing chemical concentration. The classical PDE model of chemotaxis was introduced
in the 1970 and it was named the Keller-Segel model [22, 23]. A lot of adapted and
expanded versions of the Keller-Segel models [1, 7, 19, 18] in the last decades.

By contrast, different from the classical Keller-Segel model, the evolution of the density
of cells is described by a hyperbolic system coupled with a parabolic equation (or elliptic)
equation for the chemoattractant in [28, 29], which in one dimension reads

u+t + λu+x = µ+(ϕ, ϕx, u
+, u−),

u−t − λu−x = µ−(ϕ, ϕx, u
+, u−), in I × (0,∞),

τϕt = ϕxx + β(u+ + u−)− h(ϕ), τ ≥ 0, D > 0, λ > 0,

(1.1)

where the cells u = u+ + u− has been split into densities for right and left moving cells, λ
represents the turning the cell moving speed, and µ± are turning rates (rates of change of
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direction from + to −), the external chemical signal ϕ is produced or consumed by the cell
species itself. This is modeled by the precise form of the reaction term β(u+ + u−), h(ϕ),
respectively. In fact, hyperbolic models have been recently introduced [9, 10, 21, 20, 12]
since they yield a more realistic finite speed of propagation, in contrast to the parabolic
ones, and allow better observation of the phenomena during the initial phase.

Models like (1.1) on network were proposed in [16], these models originated from tissue
engineering, when human’s tissue is injured, fibroblasts play a very important role in the
process of repair which create a new extracellular matrix, essentially made by collagen,
and move along it to fill the wound driven by chemotaxis. To accelerate this process, tissue
engineers use artificial scaffolds, constituted by a network of crossed polymeric threads,
which are inserted within the wound [8, 24].

In this paper, we mainly consider (1.1) which cast on a network formed by n nodes and
m oriented arcs connecting the nodes. Each arc is characterized by a typical velocity λi,
and then, we consider the triple of unknowns (u+i , u

−
i , ϕi) on each arc Ii. Our mathematical

model on networks reproduce this configuration: the arcs mimic the fibers of the scaffold,
the nodes the contact points between the fibers, and functions u±i , ϕi are the densities
of fibroblasts and chemoattractant on each of them. We should note that the literature
[31] has been experimentally observed that material composition, fiber structure and fiber
diameter of scaffolds and so on affect proliferation, cellular organization, and subsequent
tissue morphogenesis. The aim of this paper is to propose the global existence and the
asymptotic behaviour of solutions to the system (1.1) on the network complemented with
initial, boundary, and transmission conditions at nodes. The direct relation between our
model and existing experiments will be further considered since the experimental setting
was not thought to measure the relevant data needed in our framework.

Before this, let us mention some previous contribution in this direction. The hyperbolic
models on networks which were mentioned above, have been previously researched in
[26, 15, 30, 3, 2], with different kinds of transmission conditions. In [4], the authors
treated the following hyperbolic chemotaxis model on network from a numerical point of
view with suitable transmission conditions,

uit + λivix = 0,

vit + λiuix = uiϕix − βivi, x ∈ Ii, t ≥ 0, i = 1, ...,m, λi > 0,

ϕit = Diϕixx + aiui − biϕi,

(1.2)

where ui stands for the concentration in each arc Ii, vi is average flux and ϕi is the chemat-
tractant concentration in each arc Ii. Inspiration from numerical results, Guarguaglini et
al proved the global existence and the asymptotic behaviour of solutions to the system
(1.2) both for the homogeneous boundary conditions and for nonhomogeneous boundary
conditions in [13, 17, 11]. Moreover, in [14], Guarguaglini et al considered the chemotaxis
model (1.1) with τ = 0 (hyperbolic-elliptic) on network,

u+it + λiu
+
ix = µ+

i (ϕi, ϕix, u
+
i , u

−
i ) in Ii × (0,∞),

u−it − λiu
−
ix = µ−

i (ϕi, ϕix, u
+
i , u

−
i ), in Ii × (0,∞),

−ϕixx + h(ϕi) = β(u+i , u
−
i ), in Ii × (0,∞),

(1.3)

complemented with the suitable transmission conditions, and in case of the function µ±

satisfies some assumed conditions, they proved local and global existence of nonnegative
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solutions with small (in the L1-norm )initial values. Finally, in [5], the authors treated the
same as our model from a numerical point of view with homogeneous Neumann boundary
conditions and non-homogeneous Neumann boundary conditions. But subject to the
homogeneous Neumann boundary conditions, the chemotaxis model (1.1) on network with
τ > 0(hyperbolic-parabolic system) without corresponding theoretical research, hence
motivated by [5, 13, 17, 14], we are concerned with the global existence and the asymptotic
behaviour of solutions to the following hyperbolic-parabolic chemotaxis system on the
oriented graph(network),

u+it + λiu
+
ix = µ+

i (ϕi, ϕix, u
+
i , u

−
i ) in Ii × (0,∞),

u−it − λiu
−
ix = µ−

i (ϕi, ϕix, u
+
i , u

−
i ), in Ii × (0,∞),

ϕit = ϕixx − h(ϕi) + β(u+i , u
−
i ), in Ii × (0,∞),

(1.4)

complemented with the transmission conditions introduced in [14] at each inner node
of the oriented graph G(N ,A), and homogeneous Neumann conditions at the external
node. To go a step further, we introduce symbols and related definitions about our model,
where G(N ,A) is a finite connected graph with vertex set N of n nodes (vertices) and
a set A of m oriented arcs, A = {Ii : i ∈ M = {1, 2, ...,m}}. More precisely, a set A
is divided into Ain = {Ĩi, i = 1, . . . , m̃} with all m̃ oriented arcs connecting two internal
nodes and a set Aex = {Īi, i = 1, . . . , m̄} with all m̄ oriented arcs incoming or outgoing
from the external points, naturally, A = Ain ∪Aex,m = m̃+ m̄. In addition, a vertex set
N = Nin ∪ Nex is divided into the external point set Nex = {N̄j, j = 1, . . . , n̄} and the
internal point set Nin = {Np, p = 1, . . . , ñ}. Moreover, for each (internal or external) node
N we shall denote by IN and ON the sets of the arcs incoming or outing from the node
N , respectively. For every (internal or external) node N we shall also MN = IN ∪ON .

Every arc Ii is considered as a one dimensional interval [0, Li], Li is the abscissa of the
node N if Ii ∈ IN (i ∈ IN) whereas, it is 0 if Ii ∈ ON(i ∈ ON). On the other hand, in this
paper of section 4 and 5, we mainly consider the acyclic graph G(N ,A) which does not
contain cycles. More specifically, for each couple of vertices, there exists a unique path
with no repeated arcs connecting them. On this basis, we define the Banach space and
the Hilbert space on the orient graph,

Lp(A) = {f : fi ∈ Lp(Ii)}, for 1 ≤ p <∞; Hs(A) = {f : fi ∈ Hs(Ii)}, for s = 1, 2

with norm

||f ||Lp(A) =
∑
i∈M

||fi||Lp(Ii), ||f ||∞ =
∑
i∈M

||fi||∞; ||f ||Hs(A) =
∑
i∈M

||fi||Hs(Ii),

and let X = (L2(A))2, Y = (H1(A))2 endowed with the inner products⟨
U, V

⟩
X

=
∑
i∈M

∫
Ii

(u+i v
+
i + u−i v

−
i ), (U = (u+i , u

−
i ), V = (v+i , v

−
i ))

and ⟨
U, V

⟩
Y

=
∑
i∈M

∫
Ii

(
(u+i v

+
i + u−i v

−
i ) + (u+ixv

+
ix + u−ixv

−
ix)

)
, (U, V ∈ Y ).

For the sake of brevity, we shall also use the following notations

µ±(ϕi, ϕix, u
+
i , u

−
i ) = µ±

i (ϕi, ϕix, u
+
i , u

−
i ),
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µ±(ϕ, ϕx, u
+, u−) =

{
µ±
i (ϕ, ϕx, u

+, u−)
}
i∈M

and
h(ϕi) = hi(ϕi), h(ϕ) = {h(ϕi)}i∈M ,

βi(u
+
i , u

−
i ) = β(u+i , u

−
i ), β(u+, u−) =

{
β(u+i , u

−
i )
}
i∈M ,

for all ϕ, ϕx, u
± : A → R and for every i ∈ M. For more detail information on notations,

notions, and conventions, we refer the reader to [14, 13].
Based on the above basic theory, we introduce the following the boundary conditions

and the transmission condition of system (1.4)
(I) for every external node N ∈ Nex

u−i (Li, t) = u+i (Li, t), i ∈ IN , u+i (0, t) = u−i (0, t), i ∈ ON , (1.5)

and
ϕix(Li, t) = 0, i ∈ IN , ϕix(0, t) = 0, i ∈ ON ; (1.6)

(II) for every internal node N ∈ Nin u−i (Li, t) =
∑

j∈IN ξiju
+
j (Lj, t) +

∑
j∈ON

ξiju
−
j (0, t), if i ∈ IN ,

u+i (0, t) =
∑

j∈IN ξiju
+
j (Lj, t) +

∑
j∈ON

ξiju
−
j (0, t), if i ∈ ON ,

(1.7)

where the constant ξij ∈ [0, 1] are the transmission coefficients, they represent the proba-
bility that a cell at a node decide to move from the ith to the jth arc of the network, also
including the turnabout on same arc. Using transmission condition (1.7) and Proposition
2.1 in [4], then ξij satisfies∑

i∈MN

λiξij = λj;
∑

i∈MN

ξij = 1, for every j ∈ MN . (1.8)

Specially, the transmission condition implies the continuity of the fluxes at node, meaning
that we cannot loose nor gain any cells, which yields∑

i∈IN

λi(u
+
i (Li, t)− u−i (Li, t))−

∑
i∈ON

λi(u
+
i (0, t)− u−i (0, t)) = 0,

with correspond to the conservation of the total mass∑
i∈M

∫
Ii

(
u+i (x, t) + u+i (x, t)

)
=

∑
i∈M

∫
Ii

(
u+i0(x) + u−i0(x)

)
. (1.9)

Now let us consider the transmission condition ϕ. Also in this case, we only consider the
continuity of the flux at node N . Using the Kedem-Katchalsky permability conditions
[25], which has been first propose in case of fluxes at membranes.

(III) for every internal node N ∈ Nin

ϕix(Li, t) =
∑
j∈IN

αij(ϕj(Lj, t)− ϕi(Li, t))

+
∑
j∈ON

αij(ϕj(0, t)− ϕi(Li, t)), if i ∈ IN ,
(1.10)
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−ϕix(0, t) =
∑
j∈IN

αij(ϕj(Lj, t)− ϕi(0, t))

+
∑
j∈ON

αij(ϕj(0, t)− ϕi(0, t)), if i ∈ ON ,
(1.11)

where αij ≥ 0 and the condition αij = αji for every i, j ∈ M yields the conservation of
the fluxes at node N , that is to say∑

i∈IN

ϕix(Li, t)−
∑
i∈ON

ϕix(0, t) = 0.

Besides, the system (1.4) satisfies the initial condition

(u+0 , u
−
0 ) ∈ (H1(A))2, ϕ0 ∈ H2(A) satisfy (1.5)− (1.11). (1.12)

Finally, in order to obtain the global existence and the asymptotic behaviour of solu-
tions to (1.4) − (1.12), we introduce some reasonable basic assumptions, µ±

i : R4 → R,
βi : R2 → R and hi : R2 → R, i ∈ M are summarized below:

(H1) µ
±
i ∈ C2(R4) and µ±

i (ϕi, ϕix, 0, 0) = 0 for all (ϕ, ϕix) ∈ R2 and i ∈ M;
(H2) βi ∈ C2(R2) ∩ Lip(R2) and βi(0, 0) = 0 for all i ∈ M;
(H3) for every i ∈ M, hi ∈ C2(R) ∩ Lip(R), hi(0) = 0 and there ηi,1, ηi,2 ∈ R,

0 < ηi,1 ≤ ηi,2 such that

ηi,1 ≤ h
′

i(s) ≤ ηi,2 for every s ∈ R.

Let us observe that by the substitution ui = u+i + u−i and vi = u+i − u−i , then the
model (1.2) can be turn into a special case of the our chemotaxis model (1.4)(the model
(1.2) is obviously satisfied assumptions (H1)− (H3) of the function µ±, h(ϕ), β(u+, u−)).
However, the methods in the literature [13, 17, 14] are not enough to solve this problems.
In order to deal with our problem, we need some innovation in methods and handling
skills in this paper. To go a step further, we emphasize that the methods of proof in this
paper, and consequently the results obtained, differ from those in [13, 17, 14], particularly
due to the following facts:

(1)The structure of system (1.4) is different from [14], (hyperbolic-parabolic instead
of hyperbolic-elliptic).

(2) The transmission conditions for the hyperbolic part, which are different from those
in [13, 17], and strongly influence the problem.

(3) In particular, the approach in the proof of Proposition 4.2 pointed out in section
4 is deeply different from the one followed in [17]. In fact, in the case of acyclic net-
work, Guarguaglini et al proved the question of existence and uniqueness of stationary
solutions of problem (1.2) with fixed mass Θ =

∑
i∈M

∫
Ii
ui(x)dx using the Banach Fixed

point Theorem in [17]. Obviously, the existence and uniqueness of stationary solutions of
problem (1.2) imply that v is constant on each arcs and has to be null on the external
edges. Moreover, for the case of acyclic graph, the flux vi = 0 for all x ∈ Ii, i ∈ M.
Hence, the first equation of stationary problem to the problem (1.2) is a variables sep-
arated ordinary differential equation, it’s easy to get ui(x) = Ci exp(

ϕi

λi
). In this case,

it is easy to verify that the function ui, ϕi satisfies the transmission condition and the
fix mass Θ =

∑
i∈M

∫
Ii
Ci exp(

ϕi

λi
). Moreover, using the Banach fixed point theorem, it

show that the problem (1.2) has a unique stationary solution (Ci exp(
ϕi

λi
), 0, ϕi(x)), and

if ai
bi

= Q, where Q is a positive constant, then the unique stationary solution to (1.2) is
the constant solution without any restrictions on the structure of the network, and also
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gets the same theoretical result on general network (in details, please refer to Theorem
3.1 and Proposition 3.1 of [17]). In addition, Theorem 4.2 of [17] is devote to study the
unique constant solution to problem (1.2) which are asymptotic profiles for a class of
global solutions. The theoretical results are very beautiful.

Because, for our model has strong nonlinearity and the transmission conditions for
the hyperbolic part, which are different from those in [13], it is very difficult to achieve
such a satisfactory result. In order to prove the existence and unique solution to the
stationary problem of problem (1.4) on the acyclic network by using the contraction
mapping principle and the Banach fixed point theorem (see Theorem 1.3). The key to
transform the first two equation of stationary problem into an integral operator. Moreover,
we show that the operator is contraction mapping, and also verify that the operator
satisfies the transmission condition in each interior vertices which is equivalent to solving
a system of equations consisting of the number of m equations. This is the difficulty
in dealing with this problem (see Proposition 4.2) comparing with the literature [17].
Besides, the stationary solution of our mold is a constant solution, which requires us to
have strict requirements on the function µ±, β(u+, u−), h(ϕ). Hence, for general network,
we only give the decision condition that the unique stationary solution of problem (1.4)
is a constant solution(see Remark 1.1). Our results stated as follows:

Theorem 1.1. (Local existence) Let assumptions (H1)− (H3) hold. Then, there exists
T0 > 0 such that problem (1.4)− (1.12) has unique local solution (u+, u−, ϕ),

(u+, u−) ∈ C1([0, T0];X) ∩ C([0, T0];Y ),

ϕ ∈ C([0, T0];H
2(A)) ∩ C1([0, T0];L

2(A)).

Moreover, ϕ ∈ H1([0, T0];H
1(A)).

Theorem 1.2. (Global existence) Let assumptions (H1) − (H3) hold. There exists a
positive constant ϵ0 such that, if

||u+0 ||H1(A), ||u−0 ||H1(A), ||ϕ0||H2(A) ≤ ϵ0, (1.13)

then there exists a unique global solution (u+, u−, ϕ) to problem (1.4)− (1.12),

(u+, u−) ∈ C1([0,∞);X) ∩ C([0,∞);Y ), (1.14)

ϕ ∈ C([0,∞);H2(A)) ∩ C1([0,∞);L2(A)) ∩H1([0,∞);H1(A)). (1.15)

Next, we restrict our attention to acyclic graphs, and approach the results of existence
of stationary solution of (1.4)− (1.12) with fixed mass

Θ = ||u+(x)||L1(A) + ||u−(x)||L1(A), (1.16)

in the content of the following theorem.

Theorem 1.3. Let G(N ,A) be an acyclic graph and assumptions (H1) − (H3) hold,
there exists ε > 0 such that, if 0 ≤ Θ ≤ ε where Θ is fixed mass which defines in
(1.16), then problem (1.4)−(1.12) has a unique stationary solution (U+(x), U−(x),Ψ(x)) ∈
(H1(A))2 ×H2(A) satisfying (1.16).
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Remark 1.1: Theorem 1.3 ensures the existence and uniqueness stationary solution
to the problem (1.4). At this abasia, we discuss the unique stationary solution of the
problem (1.4) which is the constant solutions (U+

c , U
−
c ,Ψc). To do this, we need to add

conditions for the function µ±,
(H ′

1) µ
±
i ∈ C2(R4) and µ±

i (ϕi, 0, u
+
i , u

−
i ) = 0 for all (ϕ, u+i , u

−
i ) ∈ R3 and i ∈ M.

Notice that, if (Ψc, U
+
c , U

−
c ) satisfies

µ±(Ψc, 0, U
+
c , U

−
c ) = 0 , h(Ψc) = β(U+

c , U
+
c ) and (1.16), (1.17)

then the unique stationary solution to the problem (1.4) is constant solutions (U+
c , U

−
c ,Ψc)

without any restrictions on the structure of the network. Hence, on general network, we
also can obtain the same theoretical results.

Theorem 1.4. (Asymptotic behavior) Let G(N ,A) be an acyclic graph and assump-
tions (H1) − (H3) hold, let (U+(x), U−(x),Ψ(x)) be a stationary solution to problem
(1.4)− (1.12). There exists ϵ0, ϵ1 > 0 such that, if

||U+||H1(A) + ||U−||H1(A), ||Ψ||H2(A) ≤ ϵ0 (1.18)

and
||u+0 − U+||H1(A), ||u−0 − U−||H1(A), ||ϕ0 −Ψ||H2(A) ≤ ϵ1, (1.19)

then the problem (1.4)− (1.12) has a unique global solution (u+, u−, ϕ),

(u+, u−) ∈ C1([0,∞);X) ∩ C([0,∞);Y ),

ϕ ∈ C([0,∞);H2(A)) ∩ C1([0,∞);L2(A)) ∩H1([0,∞);H1(A)).

Moreover

lim
t→+∞

||u+i (, t)−U+
i ||C(Ii), lim

t→+∞
||u−i (, t)−U−

i ||C(Ii), lim
t→+∞

||ϕ−
i (, t)−Ψi||C(Ii) = 0. (1.20)

The paper is organized as follows: In section 2, we establish the existence and unique-
ness of local solution result by the fixed point technique. The section 3 is devoted to the
consequent the proof of global existence of solutions of the problem (1.4)− (1.12) under
small (in a suitable norm) initial data. In section 4 and 5, for the case of acyclic graphs,
we prove that there exist a unique stationary solution of the problem (1.4)− (1.12) under
suitable condition and show that these ones are asymptotic profiles for a class of global
solutions.

2 Local existence

In this section, we prove the existence and uniqueness of the local solution of the system
(1.4)− (1.12). First, we consider the linear operator A1 : D(A1) → L2(A),

D(A1) = {ϕ ∈ H2(A) : (1.6), (1.10)− (1.11) hold},

A1(ϕ) = {ϕixx − h(ϕi)}i∈M,

and the linear operator A2 : D(A2) → L2(A),

D(A2) = {U = (u+, u−) ∈ (H1(A))2 : (1.5), (1.7)− (1.8) hold},
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A2U = {−λiu+ix, λiu−ix}i∈M.

Next, we are going to prove the existence of unique local solution of (1.4)− (1.12) by the
fixed point technique, combining the local solutions of the two disjointed problems

ϕ ∈ C([0, T ];H2(A)) ∩ C1([0, T ];L2(A)) ∩H1([0, T ];H1(A)),

ϕ′(t) = A1ϕ+ g(t), A× [0, T ],

(1.6) and (1.10)− (1.11) hold for every t ∈ [0, T ],

(2.1)

where g ∈ C1([0, T ];L2(A)) ∩ C([0, T ], H1(A)) and
U = (u+, u−) ∈ C1([0, T ];X) ∩ C([0, T ];D(A2)),

U ′(t) = A2U(t) + F (t, U(t)), t ∈ [0, T ],

U(0) = (u+0 , u
−
0 ) ∈ D(A2),

(2.2)

where F (t, U(t)) ∈ C1([0, T ], X).
Before proving the existence of local solution to the problem (1.4) − (1.12), we shall

show the following lemmas.

Lemma 2.1 ([14]). Let ϕ ∈ H2(A) satisfy (1.6) and (1.10) − (1.11). Then, for every
nondecreasing Lipschitz continuous function F : R → R there holds

−
∑
i∈M

∫
Ii

ϕixxF (ϕi)dx ≥
∑
i∈M

∫
Ii

(ϕix)
2F ′(ϕi)dx.

Lemma 2.2 ([14]). Let U = (u+, u−) ∈ Y satisfy (1.5) and (1.7)− (1.8). Then, for every
convex function G ∈ C1(R) there holds∑

i∈M

λi

∫
Ii

{
[G(u+i )]x − [G(u−i )]x

}
≥ 0.

Proposition 2.1. Let assumption (H3) holds and g ∈ C([0, T ];H1(A))∩C1([0, T ], L2(A)),
there exist M,K ≥ 0 such that , if M ≥ sup[0,T ] ||g(t)||H1(A) and K ≥ ||ϕ0||H2(A) + 4M ,
then there exists a unique solution to problem (2.1) with

sup
[0,T ]

||ϕ(t)||H2(A) ≤ K. (2.3)

Moreover, ϕ ∈ H1([0, T ], H1(A)) and∑
i∈M

||ϕit(t)||22 +
∑
i∈M

∫ T

0

||ϕ′
x(t)||22dt ≤ K. (2.4)

Proof. Due to the fact that A1 generates a contraction semigroup in X in [14], we
obtain

ϕ(t) = T1(t)ϕ0 +

∫ t

0

T1(t− s)g(s)ds. (2.5)

Moreover, we set

F1(t) =

∫ t

0

T1(s)g(s)ds, (2.6)
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since F1(t) ∈ C1([0, T ];L2(A)), then we have

F ′
1(t) =

∫ t

0

T1(s)g
′(t− s)ds+ T1g(0). (2.7)

Moreover, F1 ∈ C([0, T ];D(A1)) and A1F1(t) = F ′
1(t)− g(t), hence, we obtain

||ϕ(t)||D(A1) ≤ ||ϕ0||D(A1) + ||F1(t)||X + ||A1F1(t)||X

≤ ||ϕ0||D(A1) +

∫ t

0

||g(s)||Xds+ ||F ′
1(t)||X + ||g(t)||X .

(2.8)

Now, using (2.5) we obtain

||ϕ(t)||D(A1) ≤ ||ϕ0||D(A1) + ||g(0)||X + ||g(t)||X

+ t

(
sup

t∈[0,T ]

||g′(t)||X + sup
t∈[0,T ]

||g(t)||X
)
,

(2.9)

ie supt∈[0,T ] ||ϕ||H2 ≤ K.

To prove the last claim, letting ∆kf = f(x, t + k) − f(x, t), employing the equation
(2.1), for all k ∈ R with |k| ≤ min{δ, T − τ}, we have∫ τ

δ

∫
Ii

(
∆kϕit∆

kϕi −∆kϕixx∆
kϕi +∆kh(ϕi)∆

hϕi +∆kϕi∆
kgi

)
dxdt = 0. (2.10)

Moreover, using the Lemma 2.1 we conclude J1 ≤ 0, then there holds∑
i∈M

{∫
Ii

(∆kϕi)
2dx+ ηi,1

∫ τ

δ

∫
Ii

(∆kϕix)
2dxdt

}
≤

∫ t

δ

∫
Ii

∆kϕixx∆
kϕidxdt︸ ︷︷ ︸

J1

+C
∑
i∈M

(∫
Ii

(∆kϕi(δ))
2dx+

∫ t

δ

∫
Ii

(∆kgi)
2dxdt

)

≤ C
∑
i∈M

(∫
Ii

(∆kϕi(δ))
2dx+

∫ t

δ

∫
Ii

(∆kgi)
2dxdt

)
.

(2.11)

where C > 0 is constant, we divide the equalities (2.11) by k2, and letting h, δ → 0, since
ϕ, g ∈ C1([0, T ];L2(A)), then the inequality (2.11) implies that ϕ ∈ H1([0, T ];H1(A))
and (2.4).

Next, we prove the well-posedness results of problem (2.2), the operator A2 generates
a contraction semigroup in Y in [14, 6], then F (t, U(t)) ∈ C1([0, T ];X), the problem (2.2)
has a unique solution U

U(t) = T2(t)U0 +

∫ t

0

T2(t− s)F (s, U(s))ds, (2.12)

where T2(t) is the contraction semigroup generated by A2.
Let X and Y be the Hilbert spaces defined in the first part of this paper. For T > 0,

we set
Hϕ,T = C([0, T ];H2(A)) ∩ C1([0, T ];L2(A)) ∩H1([0, T ];H1(A))

and
X = C1([0, T ], X), Y = C([0, T ], Y ), HU,T = X ∩ Y,
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with the norm

||U ||Y = sup
t∈[0,T ]

||U(t)||Y , ||U ||X = sup
t∈[0,T ]

(||U(t)||X + ||U ′(t)||X),

||U ||HU,T
= sup

t∈[0,T ]

(||U(t)||Y + ||U ′(t)||X).

We introduce the function F : [0, T ] → X,

F (t, U(t)) =

(
µ+(f(t), fx(t), u

+, u−), µ−(f(t), fx(t), u
+, u−)

)
,

Moreover, given K,Q > 0, for all f ∈ Hϕ,T with sup[0,T ] ||f(t)||H2(A) ≤ K, and U1 =

(u+1 , u
−
1 ), U2 = (u+2 , u

−
2 ) ∈ HU,T with ||U1||HU,T

, ||U2||HU,T
≤ Q, then there exist positive

constants R(K), R(Q), such that

sup
t∈[0,T ]

||f(t)||L∞(A), sup
t∈[0,T ]

||fx(t)||L∞(A) ≤ R(K), (2.13)

sup
t∈[0,T ]

||u±1 (t)||L∞(A) ≤ R(Q), sup
t∈[0,T ]

||u±2 (t)||L∞(A) ≤ R(Q), (2.14)

using the assumption (H1), then the following inequality holds

sup
t∈[0,T ]

||F (t, U1(t))− F (t, U2(t))||X ≤ C1(K,Q) sup
t∈[0,T ]

||U1 − U2||X , (2.15)

where C1(K,Q) is positive constant depending on Dµ, and

Dµ = max
i∈M

{
sup

[−R(K),R(K)]×[−R(Q),R(Q)]

(
|∇µ+

i |+ |∇µ−
i |
)}

. (2.16)

Let ∆hf = f(t+ h)− f(t), |h| ≤ min{δ, T − τ}, using (2.15) we obtain∫ T−τ

δ

∥∥∥∥1h
(
∆hF (t, U1(t))−∆hF (t, U2(t))

)∥∥∥∥
X

dt

≤
∫ T−τ

δ

∥∥∥∥1h
(
∆hU1(t)−∆hU2(t)

)∥∥∥∥
X

dt.

(2.17)

Since F (t) ∈ C1([0, T ];X) and U1, U2 ∈ HU,T , letting h, δ, τ → 0 yields

sup
t∈[0,T ]

||F ′(t, U1(t))− F ′(t, U2(t))||X ≤ C2(K,Q) sup
t∈[0,T ]

||U1(t)− U2(t)||HU,T
, (2.18)

where C2(K,Q) is positive constant depending on Dµ, K,Q.

Proposition 2.2. If assumption (H1) holds. Then for every U0 = (u+0 , u
−
0 ) ∈ D(A2) and

for every T > 0, f ∈ Hϕ,T , v ∈ HU,T , there exists a unique solution U to problem (2.2),
where F (t) is given in (2.12). Moreover, Q1 > 2||U0||D(A2)+ ||F (0)||X and Q,K > 0 there
exists T > 0 such that

||U ||X ≤ Q1 and ||U ||Y ≤ (1 +
1

λ
)Q1 for all T0 ∈ [0, T ), (2.19)

wherever supt∈[0,T ] ||f(t)||H2(A) ≤ K, ||v||HU,T
≤ Q and λ = mini∈M λi.
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Proof. LetQ,K > 0 be fixed arbitrarily and supt∈[0,T ] ||f(t)||H2(A) ≤ K, ||v||HU,T
≤ Q,

using (2.15) and (2.18) with U1(t) = v(t), F (U2(t)) = 0, we derive

sup
t∈[0,T0]

||F (t)||X ≤ C1(K,Q) sup
t∈[0,T0]

||υ(t)||X , sup
t∈[0,T0]

||F ′(t)||X ≤ C2(K,Q)||υ||HU,T0
(2.20)

with C1(K,Q), C2(K,Q) are positive constants. Thanks to (2.12), we see that

||U(t)||X ≤ ||T2(t)U0||+
∫ t

0

||T2(t− s)F (s)||Xds. (2.21)

Since T2(t) is contraction semigroup, then ||T2(t)|| ≤ 1, thus for all t ∈ [0, T0], we obtain

||U(t)||X ≤ ||U0||X +

∫ t

0

||(F (s)||Xds

≤ ||U0||X + tC1(K,Q) sup
t∈[0,T0]

||υ||X .
(2.22)

Moreover, we have

F2(t) =

∫ t

0

T2(t− s)F (s)ds. (2.23)

The regularity of F implies F2 ∈ C1([0, T0];X) ∩ C([0, T0];D(A2)),

A2F2 = F ′

2(t)− F (t) (2.24)

and

F ′

2(t) =

∫ t

0

T (t− s)F ′(s)ds+ T2(t)F (0). (2.25)

Then, using Lemma 2.1 and (2.24), for all t ∈ [0, T0] we have

||U ′(t)||X ≤ ||A2U0||X +

∫ t

0

||(F ′(s)||Xds+ ||F (0)||X

≤ ||A2U0||X + tC2(K,Q)||υ||HU,T0
+ ||F (0)||X .

(2.26)

Combining (2.22) and (2.26), by choosing T0 is small enough, we get

sup
t∈[0,T ]

(||U(t)||X + ||U ′(t)||X) ≤ Q1. (2.27)

By direct calculations, for every t ∈ [0, T0], there holds

||A2U(t)||X ≤ ||A2T2(t)U0||X + ||A2F2(t)||X

≤ ||A2U0||X +

∫ t

0

||F ′(s)||Xds+ ||F (t)− T2(t)(F (0)||X

≤ ||A2U0||X +

∫ t

0

||F ′(s)||ds+ ||F (0)− T2(t)F (0)||X

+ ||F (t)− F (0)||X
≤ ||A2U0||X + 2tC2(K,Q)||υ||HU,T0

+ ||F (0)||X .

(2.28)

Taking T0 sufficiently small and setting λ = mini∈M λi. Combining (2.21) and (2.28) give
(2.19).
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Proof of Theorem 1.1.(i)(Uniqueness) Suppose that (U, ϕ) and (Û , ϕ̂) are two
solutions to problem (1.4) − (1.12) in [0, T ] with the same initial date U0 = (u+0 , u

−
0 ) ∈

D(A2), such that
sup

t∈[0,T ]

||u±(t)||L∞(A), sup
t∈[0,T ]

||û±(t)||L∞(A) ≤ R,

sup
t∈[0,T ]

||ϕ(t)||L∞(A), sup
t∈[0,T ]

||ϕ̂(t)||L∞(A); sup
t∈[0,T ]

||ϕx(t)||L∞(A), sup
t∈[0,T ]

||ϕ̂x(t)||L∞(A) ≤ R,

then, arguing as in Lemma 2.2, we obtain

⟨A2(U(s)− Û(s)), U(s)− Û(s)⟩X ≤ 0, for all s ∈ [0, T ], (2.29)

where U = (u+, u−), Û = (û+, û−).
In view of the above inequality, multiplying the first two equations in (1.4) by U − Û

and then integrating in [0, T ], we show

||u+(t)− û+(t)||2L2(A) + ||u−(t)− û−(t)||2L2(A)

≤C1(R)

∫ t

0

(
||ϕ(s)− ϕ̂(s)||2L2(A) + ||u+(s)− û+(s)||2L2(A)

+ ||u−(s)− û−(s)||2L2(A)

)
ds

(2.30)

for some C1(R) > 0 only depending on
∑

i∈M

(
max[−R,R]4 |∇µ+

i | + max[−R,R]4 |∇µ−
i |
)
.

Moreover, from (2.1) it follows that for every t ∈ [0, T ] and i ∈ M there holds

(ϕi(t)− ϕ̂i(t))t =(ϕi(t)− ϕ̂i(t))xx − (h(ϕi)− h(ϕ̂i))

+

(
β(u+i (t), u

−
i (t))− β(û+i (t), û

−
i (t))

)
.

(2.31)

Multiplying the above equation by ϕi − ϕ̂i and then integrating in [0, T ], we obtain

||ϕ(t)− ϕ̂(t)||22 +
∫ t

0

(
||ϕ(t)− ϕ̂(t)||22 + ||ϕx(t)− ϕ̂x(t)||22

)
≤ C2(R)(||u+(t)− û+(t)||2L2(A) + ||u−(t)− û−(t)||2L2(A)),

(2.32)

for some C2(R) > 0 independent on t. Then the uniqueness results follow from (2.30) and
(2.32) by the Gronwall Lemma.

(ii)(Existence) Now we are going to prove existence results. Let U0 = (u+0 , u
−
0 ) ∈

D(A2) and ϕ0 be the solution to problem (2.1) with g(t) = β(u+i0, u
−
i0) and let Q1 be a

quantity such that
Q1 > ||U0||D(A2) + ||µ(ϕ0, ϕ0x, u

+
0 , u

−
0 )||X . (2.33)

Moreover, let T > 0 to be chosen below and let R(Q1) be a quantity such that

sup
[0,T ]

||U ||(L∞(A))2 ≤ R(Q1), for all U ∈ HU,T such that ||U ||Y ≤ (1 +
1

λ
)Q1. (2.34)

By arguing as in Proposition 2.1, we know that there exists a constant K > 0 such that

sup
t∈[0,T ]

||ϕ(t)||H2(A) ≤ K (2.35)
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and ∑
i∈M

||ϕit(t)||22 +
∑
i∈M

∫ T

0

||ϕ′
x(t)||22dt ≤ K, (2.36)

whenever ϕ ∈ Hϕ,T is the solution of problem (2.1) with gi = βi(u
+(t), u−(t)) and U =

(u+, u−) ∈ X satisfying ||U ||X ≤ Q1. Moreover, let R(K) be a quantity such that

sup
[0,T ]

||ϕx(t)||L∞(A) ≤ R(K), sup
[0,T ]

||ϕ(t)||L∞(A) ≤ R(K)

for all ϕ ∈ Hϕ,T such that ||ϕ||Hϕ,T
≤ K. Now, we consider

BQ1K =



(U, ϕ) ∈ HU,T ×Hϕ,T , (U(0), ϕ(0)) = (U0, ϕ0),

||U ||X ≤ Q1, ||U ||Y ≤ (1 +
1

λ
)Q1,

sup
t∈[0,T ]

||ϕ||H2(A),
∑
i∈M

(
||ϕit(t)||22 +

∫ T

0

||ϕixt(t)||22dt
)

≤ K.

We equip BQ1,K with the distance generated by the norms of HU,T and Hϕ,T and define
a map G on BQ1,K in the following way: (V, ψ) = (v+, v−, ψ) ∈ BQ1,K , then (U, ϕ) =
G(V, ψ), such that ϕ is the solution to problem (2.1) where gi = βi(u

+
i , u

−
i ) and U is the

solution to problem (2.2) where F (t, U(t)) =
{
µ+
i (ϕ, ϕx, u

+, u−), µ−
i (ϕ, ϕx+, u

+, u−)
}
i∈M.

Proposition 2.1 and Proposition 2.2 ensure that the map is well defined on BQ1,K .
Moreover, we are going to prove that the operator G is contraction mapping. In view of
(2.12), 2.15) and (2.18), for t ∈ [0, T0], there holds

||U(t)− Û(t)||X ≤
∫ t

0

||T2(t− s)|||F (s)− F̂ (s)||

≤ T0C̄1(K,Q1) sup
[0,T ]

||V − V̂ ||X ,
(2.37)

||U ′(t)− Û ′(t)||X ≤
∫ t

0

|T2(t− s)|||F ′(s)− F̂ ′(s)||ds

≤ T0C̄2(K,Q1) sup
[0,T0]

||V − V̂ ||HU,T0

(2.38)

and

||A2U(t)− A2Û(t)||X ≤ ||Ũ(t)− Û(t)||X + ||F ′(t)− F̂ ′(t)||X
≤ T0C̄3(K,Q1) sup

[0,T0]

||V − V̂ ||HU,T0
, (2.39)

where C̄1(K,Q1), C̄2(K,Q2) are suitable positive constants depending on K, Q1.
Next, by discussing about the previous estimates for ϕ, we have

||g′(t)− ĝ′(t)||L2(A) = ||β′(u+i , u
−
i (t))− β′(û+i (t), û

−
i (t))||L2(A)

≤ D̃Q1

1 ||U(t)− Û(t)||2Y + D̃Q1

2 ||U ′(t)− Û ′(t)||2X
(2.40)

and

sup
[0,T0]

||ϕ(t)− ϕ̂(t)||H2(A) ≤ D1T0(sup
[0,T0]

||U(t)− Û(t)||Y + sup
[0,T0]

||U ′(t)− Û ′(t)||X), (2.41)
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where D̃Q1

1 and D̃Q1

2 are suitable positive constant depending on Q1, D1 only depends
Dβ =

∑
i∈M ||∇β||L∞(R2).

From (2.41) and the above discussion, we obtain

1

2
sup
[0,T0]

||ϕ′(t)− ϕ̃′(t)||22 +
∫ T0

0

||ϕxt(t)− ϕ̃xt(t)||22dt

≤ D2T0

(
sup
[0,T0]

||U(t)− Û(t)||2Y + sup
[0,T0]

||U ′(t)− Û ′(t)||2X
)
,

(2.42)

||Ũ − Û ||HU,T0
≤ T0C̄4(K,Q1)||V − V̂ ||HU,T0

,

for a suitable constant C̄4(K,Q1) independent of T0. If T0 is suitable small, then the
operator G is a contraction mapping on BQ1,K , then the unique fixed point (U, ϕ) ∈ BQ1,K

is the solution to the problem (1.4)− (1.12).

3 Global existence

In this section, we mainly prove the existence of the global solution to the problem (1.4)−
(1.12). The local solution to problem (1.4)− (1.12) is given by Theorem 1.1,

(u+, u−) ∈ C1([0, T ];X) ∩ C([0, T ];Y ),

ϕ ∈ C([0, T ];H2(A)) ∩ C1([0, T ];L2(A)) ∩H1([0, T ];H1(A)),
(3.1)

which can be extended to time interval [0,+∞) by the Continuation Principle [27]. First
we introduce the functional

N2
T (u

+, u−, ϕ)

=
∑
i∈M

(
sup
[0,T ]

||u+i (t)||2H1 + sup
[0,T ]

||u−i (t)||2H1 + sup
[0,T ]

||ϕ−
i (t)||2H2

)
+

∑
i∈M

∫ T

0

(
||u−i (t)||2H1 + ||u+i (t)||2H1 + ||u−it(t)||22 + ||u+it(t)||22

)
+

∑
i∈M

∫ T

0

(
||ϕix(t)||2H1 + ||ϕixt(t)||22

)
.

(3.2)

If we prove that the functional satisfies the following inequality

N2
T (u

+, u+, ϕ) ≤ Ĉ1N
2
0 (u

+, u+, ϕ) + Ĉ2N
3
T (u

+, u+, ϕ), (3.3)

then according to Nishida’s Lemma in [27], this fact proves Theorem 1.2. Hence, in order
to get (3.3), we need some prior estimates.

Proposition 3.1. Let assumption (H1) holds and (u+, u+, ϕ) be a local solution (3.1) to
problem (1.4)− (1.12). Then∑

i∈M

(
sup
[0,T ]

||u+i (t)||22 + sup
[0,T ]

||u+i (t)||22
)

≤C1

∑
i∈M

{
||u+0i||22 + ||u−0i||22 +

∫ T

0

(||u+i ||22 + ||u−i ||22)dt

+sup
[0,T ]

(
||u+i (t)||H1 + ||u−i (t)||H1

)∫ T

0

(
||ϕi(t)||22 + ||ϕix(t)||22

)
dt

}
,

(3.4)

14



for a suitable positive constant C1.

Proof. Multiplying the first equation and the second equation in (1.4) by u+i , u
−
i ,

respectively, and summing up Ii, i ∈ M; after by (H1) we have estimated

1

2

∑
i∈M

∫ T

0

∫
Ii

d

dt

{
(u+i )

2 + (u−i )
2
}
dxdt+

∑
i∈M

∫ T

0

∫
Ii

{
λiu

+
ixu

+
i − λiu

−
ixu

−
i

}
dxdt︸ ︷︷ ︸

J1

=
∑
i∈M

∫ T

0

∫
Ii

{
µ+(ϕi, ϕix, u

+
i , u

−
i )u

+
i + µ−(ϕi, ϕix, u

+
i , u

−
i )u

−
i

}
dxdt

≤
∑
i∈M

∫ T

0

∫
Ii

Dµ

(∣∣∣∣(ϕi + ϕix + u+i + u−i )u
+
i

∣∣∣∣+ ∣∣∣∣(ϕi + ϕix + u+i + u−i )u
−
i

∣∣∣∣)dxdt
≤

∑
i∈M

∫ T

0

∫
Ii

Dµ

∣∣∣∣ {(ϕi + ϕix)(u
+
i + u−i ) + 2(u+i )

2 + 2(u−i )
2
} ∣∣∣∣dxdt,

≤
∑
i∈M

{
sup
[0,T ]

(
||u+i (t)||H1 + ||u−i (t)||H1

)∫ T

0

(
||ϕi(t)||22 + ||ϕix(t)||22

)
dt

+

∫ T

0

(||u+i ||22 + ||u−i ||22)dt
}
,

(3.5)

where Dµ is the coefficient in (2.16). Due to Lemma 2.2, it implies that J1 ≥ 0. By above
discussion, we obtain (3.4). This completes the proof.

Proposition 3.2. Let assumption (H1) holds and (u+, u+, ϕ) be a local solution (3.1) to
problem (1.4)− (1.12). Then∑

i∈M

sup
[0,T ]

(
||u+it(t)||22 + ||u−it(t)||22

)
≤C2

∑
i∈M

{
||u+i0||2H1 + ||u−i0||2H1 + ||ϕi0||2H2

+

∫ T

0

[
(||u+it(t)||22 + ||u−it(t)||22) + (||ϕit(t)||22 + ||ϕixt(t)||22)

]
dt

}
,

(3.6)

for a suitable positive constant C2.

Proof. Let △hu±i = u±i (x, t+ h)− u±i (x, t), i ∈ M, we have
(
∆hu+it + λi∆

hu+ix

)
∆hu+i = ∆hµ+

i (ϕi, ϕix, u
+
i , u

−
i )∆

hu+i ,(
∆hu−it − λi∆

hu−ix

)
∆hu−i = ∆hµ−

i (ϕi, ϕix, u
+
i , u

−
i )∆

hu−i .
(3.7)

Summing the above two equations and integrating over Ii × (δ, τ), for 0 < τ < T , |h| ≤
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min{δ, T − τ}; after using Lemma 2.2 yields

∑
i∈M

∫ τ

δ

∫
Ii

(
(∆hu+i )

2 + (∆hu−i )
2

2

)
t

dxdt+
∑
i∈M

∫ τ

δ

∫
Ii

λi

(
(∆hu+i )

2 − (∆hu−i )
2

2

)
x

dxdt︸ ︷︷ ︸
J2

=
∑
i∈M

∫ τ

δ

∫
Ii

{
∆hµ+(ϕi, ϕix, u

+
i , u

−
i )∆

hu+i +∆hµ−(ϕi, ϕix, u
+
i , u

−
i )∆

hu−i
}
dxdt

≤
∑
i∈M

∫ τ

δ

∫
Ii

Dµ

{∣∣∣∣(∆hϕ+∆hϕix)(∆
hu+i +∆hu−i )

∣∣∣∣+ 2(∆hu+i )
2 + 2(∆hu−i )

2

}
dxdt.

(3.8)

Now we divide the inequality (3.8) by h2, and letting h and δ go to zero, we obtain the
claim.

Proposition 3.3. Let assumption (H1) holds and (u+, u+, ϕ) be a local solution (3.1) to
problem (1.4)− (1.12). Then

∑
i∈M

∫ T

0

(
||u+ix(t)||22 + ||u−ix(t)||22

)
dt

≤ C3

∑
i∈M

{∫ T

0

(
||u+it(t)||22 + ||u−it(t)||22 + ||u+i (t)||2H1 + ||u−i (t)||2H1

)
dt

+

∫ T

0

(
||ϕix(t)||22 + ||ϕi(t)||22

)
dt

}
,

(3.9)

for a suitable positive constant C3.

Proof. Multiplying the first and the second equation in (1.4) by u+ix, u
−
ix, respectively,

and summing up i ∈ M; after using assumption (H1) we obtain

∑
i∈M

∫
Ii

∫ T

0

(
u+itu

+
ix + u−itu

−
ix

)
dxdt

=
∑
i∈M

∫
Ii

∫ T

0

(
µ+(ϕ, ϕix, u

+
i , u

−
i )u

+
ix + µ−(ϕ, ϕix, u

+
i , u

−
i )u

−
ix

)
dxdt

≤
∑
i∈M

∫
Ii

∫ T

0

Dµ

(∣∣∣∣(ϕ+ ϕix)(u
−
ix + u+ix)

∣∣∣∣+ |u+i u−ix|+ |u−i u−ix|+ |u+i u+ix|+ |u−i u−ix|
)
dxdt

≤ C3

∑
i∈M

{∫ T

0

(
||u+it(t)||22 + ||u−it(t)||22 + ||u+i (t)||2H1 + ||u−i (t)||2H1

)
dt

+

∫ T

0

(
||ϕix(t)||22 + ||ϕi(t)||22

)
dt

}
,

(3.10)

where Dµ is the coefficients in (2.16), we obtain the claim.

Proposition 3.4. Let assumption (H1) holds and (u+, u+, ϕ) be a local solution (3.1) to
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problem (1.4)− (1.12). Then∑
i∈M

sup
[0,T ]

(
||u+ix(t)||22 + ||u−ix(t)||22

)
≤ C4

∑
i∈M

sup
[0,T ]

(
||u+it(t)||22 + ||u−it(t)||22 + ||u+i (t)||2H1 + ||u−i (t)||2H1

)
+ C4

∑
i∈M

sup
[0,T ]

(
||ϕix(t)||22 + ||ϕi(t)||22

)
,

(3.11)

for a suitable positive constant C4.

Proof. Multiplying the first and the second equation in (1.4) by u+ix, u
−
ix, respectively,

and summing up i ∈ M. Moreover, using the Cauchy-Schwarz inequality, we obtain the
claim.

Proposition 3.5. Let assumptions (H2), (H3) hold and (u+, u+, ϕ) be a local solution
(3.1) to problem (1.4)− (1.12). Then∑

i∈M

sup
[0,T ]

||ϕit(t)||22 +
∑
i∈M

∫ T

0

(||ϕit(t)||22 + ||ϕitx(t)||22)dt

≤ C5

(∑
i∈M

||ϕi0||2H2 + ||u+i0||2H1 + ||u−i0||2H1 +

∫ T

0

(||u+it(t)||22 + ||u−it(t)||22)dt
)
,

(3.12)

for a suitable positive constant C5.

Proof. Using the same notation as in the proof of Proposition 3.2, by the third
equation in (1.4) and assumptions (H2), (H3), we get∑

i∈M

∫ τ

δ

∫
Ii

(∆hϕ)2it
2

dxdt

≤
∑
i∈M

∫ τ

δ

∫
Ii

(∆hϕixx)∆
hϕidxdt︸ ︷︷ ︸

J3

−
∑
i∈M

∫ τ

δ

∫
Ii

ηi,1(∆
hϕi)

2dxdt+
∑
i∈M

∫ τ

δ

∫
Ii

Dβ|(∆hu+i +∆hu−i )||∆hϕi|dxdt,

(3.13)

where Dβ = maxi∈M(||∇βi||L∞(R2)).
Using Lemma 2.1, we see that∑

i∈M

∫ τ

δ

∫
Ii

(∆hϕ)2t
2

dxdt+
∑
i∈M

∫ τ

δ

∫
Ii

(∆hϕix)
2dxdt

≤
∑
i∈M

∫ τ

δ

∫
Ii

{
Dβ|(∆hu+i +∆hu−i )∆

hϕi| − ηi,1(∆
hϕi)

2
}
dxdt.

(3.14)

Moreover, we divide the inequality (3.14) by h2, by the Cauchy-Schwarz inequality and
letting h, δ → 0, there holds∑

i∈M

||ϕit(t)||22 +
∑
i∈M

∫ T

0

(
||ϕit(t)||22 + ||ϕitx(t)||22

)
dt

≤ C5

∑
i∈M

{
||ϕit(0)||22 +

∫ t

0

(
||u+it(t)||22 + ||u−it(t)||22

)}
,

(3.15)
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which implies (3.12). This completes the proof of Proposition 3.5.

Proposition 3.6. Let assumptions (H2), (H3) hold and (u+, u+, ϕ) be a local solution
(3.1) to problem (1.4)− (1.12). Then∑
i∈M

sup
[0,T ]

(
||ϕixx(t)||22+||ϕix(t)||22

)
≤ C6

∑
i∈M

sup
[0,T ]

(
||ϕit(t)||22+||u+i (t)||22+||u−i (t)||22

)
, (3.16)

for a suitable positive constant C6.

Proof. Multiplying the third equation in (1.4) by ϕixx, and summing i ∈ M; after,
by Lemma 2.2 and assumptions (H3), (H2) we show that∑

i∈M

∫
Ii

ϕitϕixxdx

=
∑
i∈M

∫
Ii

β(u+i , u
−
i )ϕixxdx+

∑
i∈M

∫
Ii

(ϕixx)
2dx−

∑
i∈M

∫
Ii

h(ϕi)ϕixxdx

≤
∑
i∈M

∫
Ii

Dβ(|(u+i |+ |u−i |)|ϕixx|dx+
∑
i∈M

∫
Ii

ηi,1(ϕix)
2dx+

∑
i∈M

∫
Ii

(ϕixx)
2dx,

(3.17)

where Dβ = maxi∈M(||∇βi||L∞(R2)).
From (3.17) it follows that∑

i∈M

sup
[0,T ]

(
||ϕixx(t)||22 + ||ϕix(t)||22

)
≤ C6

∑
i∈M

sup
[0,T ]

(
||ϕit(t)||22 + ||u+i (t)||22 + ||u−i (t)||22

)
,

(3.18)

we obtain the estimate (3.16).

Proposition 3.7. Let assumptions (H2), (H3) hold and (u+, u+, ϕ) be a local solution
(3.1) to problem (1.4)− (1.12). Then∑

i∈M

∫ T

0

(
||ϕix(t)||22 + ||ϕixx(t)||22

)
dt

≤ C7

∑
i∈M

∫ T

0

(
||u+i (t)||2H1 + ||u−i (t)||2H1 + ||ϕit(t)||22

)
,

(3.19)

for a suitable positive constant C7.

Proof. Multiplying the third equation in (1.4) by ϕixx, and summing i ∈ M, we
obtain ∑

i∈M

∫ T

0

∫
Ii

ϕitϕixxdxdt

=
∑
i∈M

∫
Ii

∫ T

0

{
β(u+i , u

−
i )ϕixx − h(ϕi)ϕixx + (ϕixx)

2
}
dxdt

=
∑
i∈M

∫ T

0

∫
Ii

(
β(u+i , u

−
i )ϕix

)
x

dxdt︸ ︷︷ ︸
J4

−
∑
i∈M

∫ T

0

∫
Ii

h(ϕi)ϕixxdxdt

−
∑
i∈M

∫ T

0

∫
Ii

(β(u+i , u
−
i ))xϕixdxdt+

∑
i∈M

∫ T

0

∫
Ii

(ϕixx)
2dxdt.

(3.20)
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Dealing with J4 by (1.7) and (1.6), we find

J4 =
∑
i∈M

∫ T

0

∫
Ii

{
β(u+i , u

−
i )ϕix

}
x
dxdt

=
∑
i∈M

∫ T

0

{
β(u+i (Li, t), u

−
i (Li, t))ϕix(Li, t)− β(u+i (0, t), u

−
i (0, t))ϕix(0, t)

}
dt

=
∑
i∈M

∫ T

0

Dβ

{(
|u+i (Li, t)|+ |u−i (Li, t)|

)
|ϕix(Li, t)|

}
+

∑
i∈M

∫ T

0

Dβ

{(
|(u+i (0, t)|+ |u−i (0, t))|

)
|ϕix(0, t)|

}
dt,

≤
∑
i∈M

∫ T

0

(
||u+i (t)||L∞(Ii) + ||u−i (t)||L∞(Ii)

)
||ϕix||L∞(Ii)dt

≤
∑
i∈M

∫ T

0

C7

(
||u+i ||2H1 + ||u−i ||2H1 + ||ϕix||2H1

)
dt,

(3.21)

where Dβ = maxi∈M(||∇βi||L∞(R2)).
Hence, combining (3.20), (3.21) and using Lemma 2.1 entails that

∑
i∈M

∫ T

0

(
||ϕix(t)||22 + ||ϕixx(t)||22

)
dt

≤≤ C7

∑
i∈M

∫ T

0

(
||u+i (t)||2H1 + ||u−i (t)||2H1 + ||ϕit(t)||22

)
,

(3.22)

we obtain the claim.
Proof of Theorem 1.2. Collecting all the energy estimates of Proposition 3.1-

Proposition 3.7, we obtain the inequality (3.3) holding for the functional NT introduced
at the beginning of the section. Applying Lemma 4.4.1 in [16] and [27], then we can
conclude that for suitably small N0, NT remains bounded for all T > 0; this fact proves
Theorem 1.2.

4 Stationary solution on acyclic network

In this section, we restrict our attention to acyclic graphs and research the question of
the existence and uniqueness of stationary solutions to problem (1.4)− (1.12), with fixed
mass (1.16). Let vi = λi(u

+
i − u−i ), then the flux conservation at node N ,∑

i∈IN

v(Li, t)−
∑
i∈ON

v(0, t) = 0, (4.1)

and the existence and uniqueness of stationary solutions of problem (1.4)− (1.12) imply
that v is constant on each arcs and has to be null on the external edges. Moreover, for
the case of the acyclic graph, the above equality reduces to

vi(x) = 0, x ∈ Ii, i ∈ M. (4.2)
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Next, we consider the stationary problem to problem (1.4)− (1.12)
λiu

+
ix = µ+

i (ϕi, ϕix, u
+
i , u

−
i ), x ∈ Ii, i ∈ M,

−λiu−ix = µ−
i (ϕi, ϕix, u

+
i , u

−
i ), x ∈ Ii, i ∈ M,

−ϕixx + h(ϕi) = β(u+i , u
−
i ), x ∈ Ii, i ∈ M,

(4.3)

with the boundary conditions and the transmission conditions:
(I) for every external node N ∈ Nex

ϕix(Li) = 0, if i ∈ IN ; ϕix(0) = 0, if i ∈ ON (4.4)

and
u−i (Li) = u+i (Li), if i ∈ IN , u+i (0) = u−i (0), if i ∈ ON ; (4.5)

(II) for every internal node N ∈ Nin u−i (Li) =
∑

j∈IN ξiju
+
j (Lj) +

∑
j∈ON

ξiju
−
j (0), if i ∈ IN ,

u+i (0) =
∑

j∈IN ξiju
+
j (Lj) +

∑
j∈ON

ξiju
−
j (0), if i ∈ ON ,

(4.6)

where ξij are the coefficients in (1.8);
(III) for every internal node N ∈ Nin

ϕix(Li) =
∑
j∈IN

αij(ϕj(Lj)− ϕi(Li))

+
∑
j∈ON

αij(ϕj(0)− ϕi(Li), if i ∈ IN ,
(4.7)

−ϕix(0) =
∑
j∈IN

αij(ϕj(Lj)− ϕi(0))

+
∑
j∈ON

αij(ϕj(0)− ϕi(0), if i ∈ ON ,
(4.8)

where αij ≥ 0 and αij = αji for every i, j ∈ M. Then again, by the definition of vi and
(4.2), we obtain

µ+(ϕi(x), ϕix(x), u
+
i (x), u

−
i (x)) = −µ−(ϕi(x), ϕix(x), u

+
i (x), u

−
i (x)) (4.9)

and 
∑

j∈IN ξiju
+
j (Lj) +

∑
j∈ON

ξiju
−
j (0)− u+i (Li) = 0, if i ∈ IN ,∑

j∈IN ξiju
+
j (Lj) +

∑
j∈ON

ξiju
−
j (0)− u−i (0) = 0, if i ∈ ON .

(4.10)

Moreover, by (4.6), (4.10) and (1.8), which imply that

u+i (Li) + u−i (Li) = u−j (0) + u+j (0), i ∈ IN , j ∈ ON . (4.11)

Now, we consider the linear operator L : D(L) → L2(A),

D(L) = {U = (u+i (x), u
−
i (x)) ∈ (H1(A))2 : (4.5), (4.6) hold},
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LU = {λiu+ix,−λiu−ix}i∈M.

In order to obtain the existence of solutions to problem (4.3) by the fixed point technique,
combining the solutions of two disjoint problems LU(x) = F1(x, U(x)), x ∈ Ii, i ∈ M,

(4.5) and (4.6) hold for every x ∈ Ii,
(4.12)

where F (x) ∈ (H1(A))2, and −ϕixx + h(ϕi) = gi(x), x ∈ Ii, i ∈ M,

(4.4) and (4.7)− (4.8) hold.
(4.13)

where g(x) ∈ L2(A).

Proposition 4.1. Let G be an acyclic graph and assumption (H3) holds, let g(x) ∈ L2(A)
there exists a unique solution ϕ ∈ H2(A) which solves problem (4.13). Moreover, there
exists a constant D1 > 0 such that

||ϕ||H2 ≤ D1||g(x)||L2(A). (4.14)

Proof. Notice that, the existence and uniqueness of the solution ϕ ∈ H2(A) to the
problem (4.13) (for a general g(x) ∈ L2(A) and a general network ) is showed by the
Lax-Milgram theorem in [14].

Finally, we only need to prove last claim. Multiplying the equation in (4.13) by ϕi

and applying Lemma 2.1, we obtain∑
i∈M

∫
Ii

{
ϕ2
ix + ηi,1ϕ

2
i

}
dx ≤

∑
i∈M

||gi||L2(Ii)||ϕ||L2(Ii), (4.15)

whence ∑
i∈M

∫
Ii

ϕ2
i + ϕ2

ix ≤ C1||g(x)||L2(A)||ϕ||H1(A), (4.16)

ie
||ϕ||H1(A) ≤ C2||g(x)||L2(A), (4.17)

where C1, C2 are positive constants.
Using (4.13), for every i ∈ M, there also holds

[ϕixx]
2 ≤ 2[h(ϕ)]2 + 2[gi]

2 ≤ C3||g(x)||L2(A). (4.18)

Hence there exists C4 > 0 such

||ϕxx||L2(A) ≤ C4||g(x)||L2(A). (4.19)

This completes the proof of Proposition 4.1.
Next, we prove the well-posedness results of problem (4.12). To do this, we define the

following the Banach space and the operator T

M0 =
{
U = (u+, u−) ∈ (H1(A))2 with ||U ||(H1(A))2 ≤M

}
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and

(TU)(x) = U0 +

∫
A
F (x, U(x))dx, (4.20)

where F (x, U(x)) =

(
µ+(f, fx, u

+, u−), µ−(f, fx, u
+, u−)

)
.

Moreover, given K,M > 0, for f ∈ H2(A) with ||f ||H2(A) ≤ K and V1 = (v+1 , v
−
1 ), V2 =

(v+2 , v
−
2 ) ∈ (H1(A))2 with

||V1||(H1(A))2 , ||V2||(H1(A),)2 ≤M.

using assumption (H1), we know that the Lipschitz continuity of F ∈ (H1(A))2, then there
exists a positive constant C(K,M) depending also on K,M , and C(K,M) non-decreasing
with K,M such that

||F1(x, V1(x)− F1(x, V2(x))||(H1(A))2 ≤ C(K,M)||V1(x)− V2(x)||(H1(A))2 . (4.21)

Proposition 4.2. Let G be a acyclic graph and assumption (H1), for f ∈ H2(A), there
exists K > 0 such that, if ||f ||H2(A) ≤ K, then there exists a unique solution U to problem
(4.12) and

||U ||(H1(A))2 ≤MΘ, (4.22)

where MΘ is constant depending on Θ and Θ gives in (1.16).

Proof. Firstly, we prove the existence a unique solution to problem (4.12). This is
divided into two steps.

Step 1. We show that operator T maps M0 into M0. By (4.20) and (4.21), there
holds

||(TU)(x)− U0||(H1(A)2)

≤ C1(K,M)||U(x)||(H1(A))2 .
(4.23)

Thus, the operator T is continuous for any x ∈ Ii, i ∈ M.
Moreover, for x ∈ Ii, U(x), V (x) ∈ M0, we have

||TU − TV ||H1(A)

≤ ||F1(x, U(x)− F1(x, V (x))||(H1(A))2

≤ C2(K,M)||U(x)− V (x)||(H1(A))2 .

(4.24)

Letting C1(K,M), C2(K,M) ≤ 1
2
, then the nonlinear operator T is a strict contraction in

M0. We conclude that there exists a unique U(x) ∈ M0 such that TU(x) = U(x).
Step 2. We need to verify the operator T satisfying the transmission condition (4.6)

and the boundary condition (4.5), for every Ii = [0, Li] ∈ A, i ∈ M,

 u+ix = 1
λi
µ+
i (fi(x), fix(x), u

+
i (x), u

−
i (x)),

u+i (0) = u+i0,
(4.25)

and  u−ix = − 1
λi
µ−
i (fi(x), fix(x), u

+
i (x), u

−
i (x)),

u−i (0) = u−i0.
(4.26)
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Moreover, we obtain

u+i (Li) = u+0i +
1

λi

∫
Ii

µ+(fi, fix, u
+
i , u

−
i )dx (4.27)

and

u−i (Li) = u−0i −
1

λi

∫
Ii

µ−(fi, fix, u
+
i , u

−
i )dx. (4.28)

To this purpose, fix any edge Ii = [0, Li] connecting two (internal or external)nodes N1

and N2, we obtain
Ii ∈ ON1 , and Ii ∈ IN2 . (4.29)

We distinguish three cases:
case(i) N1, N2 ∈ Nin are internal vertices of the graph. Since i ∈ ON1 , we impose that

u+i (0) =
∑

j∈ON1

ξiju
−
j (0) +

∑
j∈IN1

ξij

(
u+j (0) +

1

λj

∫
Ij

µ+(fj, fjx, u
+
j , u

−
j )dx

)
︸ ︷︷ ︸

u+
j (Lj)

. (4.30)

Rewriting the equation (4.30), we get

u+i (0)−
∑

j∈ON1

ξiju
−
j (0)−

∑
j∈IN1

ξiju
+
j (0) = B+

i,in, (i ∈ ON1 , N1 ∈ Nin), (4.31)

where B+
i,in =

∑
j∈IN1

1
λj
ξij

∫
Ij
µ+(fj, fjx, u

+
j , u

−
j )dx.

Similarity, we obtain(
u−i (0)−

1

λi

∫
Ii

µ−(fi, fix, u
+
i , u

−
i )dx

)
︸ ︷︷ ︸

u−
i (Li)

=
∑

j∈ON2

ξiju
−
j (0) +

∑
j∈IN2

ξij

(
u+j (0) +

1

λj

∫
Ij

µ+(fj, fjx, u
+
j , u

−
j )dx

)
︸ ︷︷ ︸

u+
j (Lj)

,

(4.32)

consequently

u−i (0)−
∑

j∈ON2

ξiju
−
j (0)−

∑
j∈IN2

ξiju
+
j (0) = B−

i,in, (i ∈ IN2 , N2 ∈ Nin), (4.33)

where

B−
i,in =

∑
j∈IN2

1

λj
ξij

∫
Ij

µ+(fj, fix, u
+
j , u

−
j )dx+

1

λi

∫
Ii

µ−(fi, fix, u
+
i , u

−
i )dx. (4.34)

Case(ii) Let N2 ∈ Nex, Ii ∈ IN2 , by the boundary condition (4.5), we have(
u+i (0) +

1

λi

∫
Ii

µ+(fi, fix, u
+
i , u

−
i )dx

)
︸ ︷︷ ︸

u+
i (Li)

=

(
u−i (0)−

1

λi

∫
Ii

µ−(fi, fix, u
+
i , u

−
i )dx

)
︸ ︷︷ ︸

u−
i (Li)

.

(4.35)
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Moreover, we get
u−i (0)− u+i (0) = B−

i,ex, (4.36)

using (4.9) yields B−
i,ex = 0.

Case(iii) Let N1 ∈ Nex, Ii ∈ ON1 , by the boundary condition, we get

u+i (0) = u−i (0), IN1 ∈ ON1 . (4.37)

Moreover, by u+i (Li)− u−i (Li) = u+j (0)− u−j (0), i ∈ IN , j ∈ ON and (4.11), we obtain u+i (Li) + u−i (Li) = u−j (0) + u+j (0), i ∈ IN , j ∈ ON ,

u+i (Li)− u−i (Li) = u+j (0)− u−j (0), i ∈ IN , j ∈ ON .
(4.38)

Consequently,

1

λi

∫
Ii

µ+(fi, fix, u
+
i , u

−
i )dx = u+j (0)− u+i (0), i ∈ IN , j ∈ ON (4.39)

and
1

λi

∫
Ii

µ−(fi, fix, u
+
i , u

−
i )dx = u−i (0)− u−j (0), i ∈ IN , j ∈ ON . (4.40)

Using (4.39) and (4.40), one has

B+
i,in =

∑
j∈IN1

ξij

(
u+i (0)− u+j (0)

)
, i ∈ ON1 . (4.41)

Hence, we see that

(1− (
∑
j∈IN1

ξij))u
+
i (0)−

∑
j∈ON1

uj(0) = 0, (i ∈ ON1 , N1 ∈ Nin). (4.42)

Similarity, we have

B−
i,in =

∑
j∈IN2

1

λj
ξij

∫
Ij

µ+(fi, fix, u
+
j , u

−
j )dx

+
1

λi

∫
Ii

µ−(fi, fix, u
+
i , u

−
i )dx

=
∑
j∈IN2

ξij(u
+
j∗(0)− u+j (0)) + u−i (0)− u−j∗(0), j

∗ ∈ ON2 .

(4.43)

By (4.43), we write

(1− ξij∗)u
−
j∗(0)−

∑
j ̸=j∗∈ON2

ξiju
−
j (0)− (

∑
j∈IN2

ξij)u
+
j∗(0) = 0, (4.44)

where i ∈ IN2 , j∗ ∈ ON2 , N2 ∈ Nin.
Therefore, we derive

(1− (
∑

j∈IN1
ξij))u

+
i (0)−

∑
j∈ON1

ξiju
−
j (0) = 0, i ∈ ON1 , N1 ∈ Nin,

(1− ξij∗)u
−
j∗(0)−

∑
j ̸=j∗∈ON2

ξiju
−
j (0)− (

∑
j∈IN2

ξij)u
+
j∗(0) = 0,

i ∈ IN2 , j∗ ∈ ON2 , N2 ∈ Nin,

u−i (0)− u+i (0) = 0, if i ∈ IN2 , N2 ∈ Nex,

u−i (0)− u+i (0) = 0, if i ∈ ON1 , N1 ∈ Nex.

(4.45)
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The rest of the proof is devote to show that (4.45) is uniquely solvable. In the literature
[14] of Lemma 5.3, authors proved that the operator A2 is m-dissipative operator, it
has involved the proof that the similarity equation system (4.45) has a unique solution.
Consequently, we omit this proof here.

Now, we only need to prove last claim. Multiplying the first and the second equation
in (4.12) by u+ix, u

−
ix, respectively, and summing up Ii, i ∈ M, we have∑

i∈M

∫
Ii

(
[u+ix]

2 + [u−ix]
2

)
dx

=
∑
i∈M

1

λi

∫
Ii

(
µ+(fi, fix, u

+
i , u

−
i )u

+
ix − µ−(fi, fix, u

+
i , u

−
i )u

−
ix

)
dx

≤ Dµ

mini∈M(λi)

∑
i∈M

∫
Ii

(
|u+i |+ |u−i |+ |fix|+ |fi|

)
|u+ix|dx

+
Dµ

mini∈M(λi)

∑
i∈M

∫
Ii

(
|u+i |+ |u−i |+ |fix|+ |fi|

)
|u−ix|dx

≤ 2Dµ

mini∈M(λi)

∑
i∈M

{(
||fix||22 + ||fi||22

)
+

(
||u+i ||22 + ||u−i ||22

)}
,

(4.46)

where Dµ gives in (2.16).
In addition, by the first two equation (4.3) and assumption (H1), there holds∑

i∈M

∫
Ii

(
u+ix + u−ix

)
dx

=
∑
i∈M

∫
Ii

1

λi

(
µ+
i (fi, fix, u

+
i , u

−
i )− µ+

i (fi, fix, u
+
i , u

−
i ))dx

≤
∑
i∈M

∫
Ii

1

mini∈M(λi)
2Dµ

(
|u+i |+ |u−i |+ |fi|+ |fix|

)
dx

≤ 1

mini∈M(λi)

(
2DµΘ+ 2|A|Dµ(||f ||L∞(A) + ||fx||L∞(A))

)
≤ 2Dµ

mini∈M(λi)
Θ +

2|A|Dµ

mini∈M(λi)

(
max
i∈M

(Si,1)||f ||H1(A) + ||fx||L∞(A)

)
≤ 2Dµ

mini∈M(λi)
Θ +

4|A|Dµ maxi∈M(Si,1)K

mini∈M(λi)

(4.47)

and

||u+||W 1,1(A) + ||u−||W 1,1(A)

≤ (
2Dµ

mini∈M(λi)
+ 1)Θ +

4|A|Dµ maxi∈M(Si,1)K

mini∈M(λi)
,

≤ C5Θ+ C6,

(4.48)

where C5 =
2Dµ

mini∈M(λi)
+ 1 and C6 =

4|A|Dµ maxi∈M(Si,1)K

mini∈M(λi)
.

Using (4.48), we obtain∑
i∈M

∫
Ii

{
(u+i )

2 + (u−i )
2
}
dx ≤ 2|A|[max

i∈M
(Si,2)]

2(C5Θ+ C6)
2. (4.49)
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Moreover, ∑
i∈M

∫
Ii

(
[u+ix]

2 + [u−ix]
2

)
dx

≤ 2Dµ

mini∈M(λi)
K2 +

4|A|Dµ[maxi∈M(Si,1)]
2

mini∈M(λi)
(C5Θ+ C6)

2,

(4.50)

where C7 =
2Dµ

mini∈M(λi)
K2 and C8 =

4|A|Dµ[maxi∈M(Si,2)]
2

mini∈M(λi)

and

||u+i ||H1(A) + ||u+i ||H1(A)

≤ 2
√
C7 + C8(C5Θ+ C6)2 =MΘ.

(4.51)

Proof of Theorem 1.3. (i) (Uniqueness) It’s easy to prove a uniqueness results for
solution to the problem (4.3) − (4.8) by similar method of the proof of Theorem 1.1.
Hence, we omit the proof here.
(ii)(Existence) By arguing as in Proposition 4.1 and 4.2, we known that exists K0 > 0,
such that

||ϕ||H2(A) ≤ D1||β(u+, u−)||L2(A)

≤ D1Dβ

(
||u+||L2(A) + ||u−||L2(A)

)
≤ K0MΘ = KΘ,

(4.52)

whenever ϕ ∈ H2(A) is the solution of problem (4.13) with gi(u
+
i , u

−
i ) and U = (u+, u−) ∈

(H1(A))2 satisfying ||U ||H1(A) ≤MΘ and where Dβ =
∑

i∈M ||∇βi||L∞(R2). Based on the
above discussion, we consider following the set

BMΘ,KΘ
=

{
U(x) = (u+(x), u−(x)) ∈ (H1(A))2, ϕ(x) ∈ H2(A),

||U ||(H1(A))2 ≤MΘ, ||ϕ||H2(A) ≤ KΘ,

equipped with the distance generated by the norms of (H1(A))2 and H2(A). We de-
fine a map G on BMΘ,KΘ

as follow: (V (x), φ(x)) = (v+(x), v−(x), φ(x)) ∈ BMΘ,KΘ
,

then (U, ϕ) = G(V, ψ) is such that U(x) is the solution to problem (4.13) where F =
(µ+(ψ, ψx, v

+, v−), µ−(ψ, ψx, v
+, v−)) and ϕ(x) is the solution to problem (4.12) where

gi = β(u+i , u
−
i ).

Proposition 4.1 and Proposition 4.2 ensure that the map G is well defined on BMΘ,KΘ
.

Next, we are going to prove that G is contraction BMΘ,KΘ
, then

(V (x), ψ(x)), (Ṽ (x), ψ̃(x)) ∈ BMΘ,KΘ
,

(U(x), ϕ(x)) = G(V (x), ψ(x)), (Ũ(x), ϕ̃(x)) = G(Ṽ (x), ψ̃(x)). (4.53)

By (4.21) and (4.14), we have

||U(x)− Ũ(x)||(H1(A))2 ≤ ||F − F̃ ||(H1(A))2

≤ C(MΘ, KΘ)||V − Ṽ ||(H1(A))2
(4.54)

and

||ϕ(x)− ϕ̃(x)||H2(A) ≤ ||β(u+i (x), u+i (x))− β(ũ+i (x), ũ
+
i (x)))||X

≤ Dβ||U(x)− Ũ(x)||X
≤ C(MΘ, KΘ)||V − Ṽ ||(H1(A))2 ,

(4.55)
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where C(MΘ, KΘ) is positive constants depending on Θ, and C(MΘ, KΘ) increases with
Θ. If C(MΘ, KΘ) is suitable small, then the map G is a contraction mapping on BMΘ,KΘ

,
then there exists unique fixed point (U(x), ϕ(x)) ∈ BMΘ,KΘ

which is the solution to the
problem (4.3)− (4.8).

5 Asymptotic behaviour

In this section, in case of acyclic oriented graphs, we are going to show that the stationary
solution previous introduced, provide the asymptotic profiles for a class of solution to
problem (1.4)− (1.12).

If (u+, u−, ϕ) is the solution to problem (1.4) − (1.12) with initial data (u+i0, u
−
i0, ϕi0)

and the (U+(x), U−(x),Ψ(x)) is the stationary solution to the problem (1.4) − (1.12).
Then we set following the triple

(ũ+(x, t), ũ−(x, t), ϕ̃(x, t)) = (u+(x, t)− U+(x), u−(x, t)− U−(x), ϕ(x, t)−Ψ(x)), (5.1)

which is the local solution of the following problem

ũ+it + λiũ
+
ix = µ+

i (ϕ̃i +Ψi, (ϕ̃+Ψ)ix, ũ
+
i + U+

i , ũ
−
i + U−

i )− λiU
+
ix,

ũ−it − λiũ
−
ix = µ+

i (ϕ̃i +Ψi, (ϕ̃+Ψ)ix, ũ
+
i + U+

i , ũ
−
i + U−

i ) + λiU
−
ix,

ϕ̃it = ϕ̃ixx − h(ϕ̃+Ψi) + βi(ũ
+
i + U+

i , ũ
−
i + U−

i ) + Ψixx,

ũ+i (x, 0) = ũ+i0 = u+i (x, 0)− U+
i (x), ũ

−
i (x, 0) = ũ−i0 = u+i (x, 0)− U−

i (x),

ϕ̃i(x, 0) = ϕ̃i0 = ϕi(x, 0)−Ψi(x),

x ∈ Ii, t ≥ 0, i ∈ M,

(5.2)

complemented with the condition (1.5)− (1.11) and (ũ+i0, ũ
−
i0, ϕ̃i0) defined above.

The existence and uniqueness of local solution to problem (5.2) can be achieved by
means of semigroup theory, following the similar method used in the section 2, with a
little modifications.

Proposition 5.1. Let G(N ,A) be an acyclic graph and assumptions (H1) − (H3) hold,
let (U+(x), U−(x),Ψ(x)) be a stationary solution to problem (1.4)− (1.12) and (ũ+, ũ−, ϕ̃)
be the local solution to (5.2), (1.5)− (1.11),

(ũ+, ũ−) ∈ C([0, T ];H1(A)) ∩ C1([0, T ];L2(A)), (5.3)

ϕ̃ ∈ C([0, T ];H2(A)) ∩ C1([0, T ];L2(A)) ∩H1([0, T ];H1(A)). (5.4)

There exists ε > 0 such that, if ||U+||H1(A) + ||U−||H1(A), ||Ψ||H2(A) ≤ ε, then
(a) ∑

i∈M

(
sup
[0,T ]

||ũ+i (t)||22 + sup
[0,T ]

||ũ−i (t)||22
)

≤C̃1

∑
i∈M

{
||ũ+0i||22 + ||ũ−0i||22 +

∫ T

0

(||ũ+i (t)||22 + ||ũ−i (t)||22)dt

+sup
[0,T ]

(
||ũ+i (t)||H1 + ||ũ−i (t)||H1

)∫ T

0

(
||ϕ̃i(t)||22 + ||ϕ̃ix(t)||22

)
dt

}
,

(5.5)
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(b) ∑
i∈M

sup
[0,T ]

(
||ũ+it(t)||22 + ||ũ−it(t)||22

)
≤C̃2

∑
i∈M

{
||ϕ̃i0||2H2 + ||ũ+i0||2H1 + ||ũ−i0||2H1

+

∫ T

0

[
(||ũ+it(t)||22 + ||ũ−it(t)||22) + (||ϕ̃it(t)||22 + ||ϕ̃ixt(t)||22)

]
dt

}
,

(5.6)

(c) ∑
i∈M

{∫ T

0

(
||ũ+ix(t)||22 + ||ũ−ix(t)||22

)
dt

}
≤ C̃3

∑
i∈M

{∫ T

0

(
||ũ+it(t)||22 + ||ũ−it(t)||22 + ||ũ+i (t)||2H1 + ||ũ−i (t)||2H1

)
dt

+

∫ T

0

[(
||ϕ̃ix(t)||22 + ||ϕ̃i(t)||22

)]
dt

}
,

(5.7)

(d) ∑
i∈M

sup
[0,T ]

(
||ũ+ix(t)||22 + ||ũ−ix(t)||22

)

≤ C̃4

∑
i∈M

{
sup
[0,T ]

(
||ũ+it(t)||22 + ||ũ−it(t)||22 + ||ũ+i (t)||2H1 + ||ũ−i (t)||2H1

)

+sup
[0,T ]

(
||ϕ̃ix(t)||22 + ||ϕ̃i(t)||22

)}
,

(5.8)

(e) ∑
i∈M

sup
[0,T ]

||ϕ̃it(t)||22 +
∑
i∈M

∫ T

0

(
||ϕ̃it(t)||22 + ||ϕ̃itx(t)||22

)
dt

≤ C̃5

∑
i∈M

(
||ϕ̃i0||2H2 + ||u+i0||2H1 + ||u−i0||2H1 +

∫ T

0

(||ũ+it(t)||22 + ||ũ−it(t)||22)dt
)
,

(5.9)

(f) ∑
i∈M

sup
[0,T ]

(
||ϕ̃ixx(t)||22 + ||ϕ̃ix(t)||22

)
≤ C̃6

∑
i∈M

sup
[0,T ]

(
||ϕ̃it(t)||22 + ||ũ+i (t)||22 + ||ũ−i (t)||22

)
,

(5.10)

(g) ∑
i∈M

∫ T

0

(
||ϕ̃ix(t)||22 + ||ϕ̃ixx(t)||22

)
dt

≤ C̃7

∑
i∈M

∫ T

0

(
||ũ+i (t)||2H1 + ||ũ−i (t)||2H1 + ||ϕ̃it(t)||22

)
dt,

(5.11)

where C̃1, C̃2, C̃3, C̃4, C̃5, C̃6, C̃7 are positive constants.
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Proposition 5.2. Let G(N ,A) be an acyclic graph and assumptions (H1) − (H3) hold,
let (U+(x), U−(x),Ψ(x)) be a stationary solution to problem (1.4) − (1.12). There exist
positive constants ϵ0, ϵ1 such that, if

||U+||H1(A)+ ||U−||H1(A), ||Ψ||H2(A) ≤ ϵ0, ||ũ+0 ||H1(A), ||ũ−0 ||H1(A), ||ϕ̃0||H2(A) ≤ ϵ1, (5.12)

then there exists a unique global solution (ũ+, ũ−, ϕ̃) to problem (5.2), (1.5)− (1.11),

(ũ+, ũ−) ∈ C([0,∞);H1(A)) ∩ C1([0,∞);L2(A)), (5.13)

ϕ̃ ∈ C([0,∞);H2(A)) ∩ C1([0,∞);L2(A)) ∩H1([0,∞);H1(A)). (5.14)

Moreover, NT (ũ
+, ũ−, ϕ̃) is bounded, uniformly in T .

Proof. This proof is similar with Theorem 1.2. Hence, we omit the proof here.

Proof of Theorem 1.4. Combining Proposition 5.1 and Proposition 5.2, we easily
prove Theorem 1.4. This proof is similar with [17] of Theorem 4.2, we omit the proof
here.
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