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Abstract

We present an alternative perturbational approach free of basis set superposition error

(BSSE) within the framework of the Chemical Hamiltonian Approach (CHA). The new

formulation (CHA-S-MP2) is based on canonic (and orthogonal) CHA orbitals obtained

from a  hermitized  CHA Fock  operator.  The  final  expression  shows  a  considerable

simplification of the method as compared to the previous CHA-MP2 formalism. In the

present  formulation  only  two  four-index  transformations  are  necessary  so  that  the

computational cost of the CHA-S-MP2 calculation is just twice that of a conventional

uncorrected  MP2  calculation.  Also,  contrary  to  the  counterpoise  method,  the

computational cost doesn’t depend on the number of interacting fragments. Numerical

full geometry optimizations of water and hydrogen fluoride dimers and potential energy

surfaces for helium and argon dimers for several basis sets are presented. The present

method is compared to both the counterpoise and previous CHA-MP2 BSSE correction

schemes, showing a remarkable agreement between all  three methods.  However, the

wrong behavior using the aug-cc-pVDZ basis set indicates that the present method is

not as robust as the original non-hermitian CHA-MP2 formulation. 
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1. Introduction

István Mayer’s legacy in the field of quantum chemistry is overwhelming. While being

most known for the general expression of bond order and valences in non-orthogonal

basis, his paper “Towards a Chemical Hamiltonian” published in this journal almost

forty years ago remain in my opinion one of his most memorable achievements.1 In that

study he paves the road for an energy decomposition into genuine chemical terms (i.e.

as  interaction  between  atoms  occurring  within  the  molecule),  which  gained  much

interest many years later, including both its Hilbert-space2 and real-space3 realizations.

That was the main focus of István’s interests, namely extracting chemical information

from well-founded wavefunction analysis techniques. Curiously enough, the so-called

Chemical Hamiltonian Approach (CHA) soon reached particular interest in the field of

intermolecular interactions, as it represented a novel way of dealing with the Basis Set

Superposition  error  (BSSE)4 in  an  a priori fashion.  So,  perhaps  deviating  from the

original purpose, István’s reseach focused for quite a while on developing the CHA-

version of different electronic structure methods to achieve BSSE-free description of

intermolecular  complexes5 (and  even  some  early  incursions  into  the  less  known

intramolecular BSSE problems).6,7 Thus, starting from the CHA-SCF method,8,9 a full-

CI version10 was derived and successfully tested, followed by a delicate perturbational

treatment leading to the CHA-MP2 scheme.11,12

The alternative was, and still is, the so-called Counterpoise (CP) scheme by Boys and

Bernardi.13 In CP, the energy of a complex is corrected from BSSE in an  a posteriori

fashion, by evaluating the energy lowering of the monomers when borrowing the basis

functions of the other moieties (ghost orbitals). At that time, it was shown14,16 that i)

both  CP  and  CHA  o  strategies  lead  to  very  similar  results  in  terms  of  interaction

energies and geometrical parameters and ii) the differences between both approaches

are smaller than the BSSE itself.

A mandatory feature of any BSSE-correction method is that the BSSE correction must

tend asymptotically to zero when appropriately increasing the basis set size, that is, in

the complete basis set limit. It is worth to recall that another a priori BSSE-correction

scheme, the so-called SCF for molecular interactions (SCF-MI),17 failed at this test, as

true charge-transfer effects were also removed from the interaction.  A reformulation

form Nagata et al.18 that included one-electron corrections overcame this pitfall but this
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avenue was not further explored, leaving CHA as the only  a priori alternative to CP

correction.

Both CP and CHA methodologies exhibits correct asymptotics, however, even though it

is  relatively  easy  to  reach  basis  set  converged results  at  Hartree-Fock level  (or  for

single-determinant wavefunctions in general), when including electron correlation the

situation is quite different. The accumulated experience 15,19-22 shows that BSSE tends to

zero asymptotically but slowly, and hence a proper BSSE correction is mandatory even

for very large basis sets. For instance, Wieczorek et al19 showed that a residual BSSE

(CP-corrected) of 0.23kcal/mol is still present in a MP2(FC)/aug-cc-pVQZ calculation

for the water dimer, whereas at the Hartree-Fock level the BSSE is just 0.02 kcal/mol

with the same basis set.

As far as the computational cost is concerned, a conventional CP-corrected calculation

of  a  molecular  complex  composed  by  N interacting  fragments  involves  2N +  1

calculations, where N + 1 of them involve the whole basis set of the molecular system.

Therefore, for a dimer, the computational cost of a CP calculation is about 3 times that

of the corresponding conventional uncorrected one. The advantage of the CP method is

that  any property expressed from the total  molecular  energy can be potentially  CP-

corrected.  That  means  analytical  gradients  and  harmonic  frequencies  can  be  easily

derived (provided they are available for the given level of theory).23

On the other hand, the CHA-SCF equations can be efficiently implemented so that the

computational  cost  is  virtually  independent  on  the  number  of  monomers  and  their

nature.24 However, the CHA generalization of the MP2 theory (CHA-MP2)11,12 involves

three four-index transformations so that the computational cost represents again roughly

three times  that  of the  conventional  E2 calculation.  Thus,  a  single-point  CHA-MP2

calculation is computationally equivalent to a CP-MP2 one for a dimer and superior for

larger  molecular  aggregates.  However,  the  lack  of  analytical  gradients  and  higher

derivatives still makes the CP method more efficient for PES exploration of molecular

systems with large number of degrees of freedom.

The main feature of the CHA methods is that they use to non-hermitian operators. In

particular,  CHA-SCF  uses  a  non-hermitian  Fock  operator  to  obtain  the  molecular

orbitals and a conventional hermitian Fock operator to obtain the energy (the so-called

CHA with conventional energy (CHA/CE) recipe8). Moreover, the CHA-MP2 method

itself proved to be really challenging.11 Here, a zeroth order Hamiltonian is built up on
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the not orthogonal (and not necessarily real) canonic CHA-SCF orbitals and their orbital

energies.  Then,  biorthogonal  perturbation  theory  is  applied  to  obtain  the  first-order

wave  function  correction,  while  forced  by  the  CHA/CE concept,  the  second  order

energy correction is calculated by using the conventional Hamiltonian, by means of a

generalized Hylleraas functional25 to guarantee the energy to be real even in the case of

complex CHA-SCF orbitals.

István justified this by pointing out that the BSSE itself is a non-physical phenomenon,

hence no hermitian operator is expected to be associated to it. However, two decades

after  his  seminal  CHA  paper,  Mayer  showed  (again  on  this  journal)  that  a  set  of

orthogonal CHA-SCF canonic orbitals can be obtained as eigenvectors of a hermitian

effective Fock matrix.26 The energy obtained with the Slater determinant built out of

those orbitals is  exactly the same one can get by orthogonalizing the occupied space

spawned  by  the  CHA-SCF  non-orthogonal  eigenvectors  of  the  non-hermitian  CHA

Fockian. Both sets of molecular orbitals are related trough a unitary transformation and

provide the same density matrix (P-matrix). The story behind the paper is charming. He

had the opportunity to discuss the CHA-SCF methodology with P. O. Löwdin, while

visiting his group in Florida. Lowdin was not satisfied with the fact the theory used non-

hermitian operators and told to István “I am sure that you will be able to get the same

results also by using a hermitian Fock matrix.” Hence the title of the paper: “ Fulfilling

Lowdin’s prediction”.26 

This  breakthrough allowed a more efficient  determination  of  the total  energy since,

contrary to the earlier formulations, the Fock matrix to be diagonalized in every step of

the self-consistent calculation was now hermitian. But, more important, is the fact that

since the CHA-SCF canonic orbitals are now eigenvectors of a hermitian Fock matrix

(and hence orthogonal),  the electron correlation could be potentially  introduced in a

much simpler way than the quite involved original CHA-MP2 theory.

I will now introduce what most probably was the last effort of István devoted to the

BSSE problem. We had worked on this  alternative CHA-MP2 formulation based on

canonic (and orthogonal)  CHA orbitals  back in 2005 but never published it,  for the

reason may be apparent  by the end of this  manuscript.  In the next section the new

method is described in more detail. We will briefly describe the hermitized CHA-SCF

equations and the novel CHA-S-MP2 perturbative extension.  Details  of the previous
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non-hermitian  CHA-SCF  and  CHA-MP2  methods  are  given  elsewhere.9,11 Finally,

numerical full geometry optimizations of prototypical molecular complexes like water

and hydrogen fluoride dimers are presented, where the new scheme is compared to both

the  CP-MP2 and  CHA-MP2 results  for  several  basis  sets.  The  performance  of  the

method is further explored by calculating the potential energy surface for the helium

dimer.

2. Theory

2.1. The hermitized CHA-SCF equations

In the original derivation8,9 of the CHA-SCF equations within the LCAO framework, the

following condition was used to obtain the solutions

cq
+ FCHA c i=0 ;   q ∈ virt .   ,  i ∈ occ . (1)

where  cq and  ci are  the  vectors  of  the  corresponding  i-th occupied  and  q-th virtual

orbitals and FCHA is the non-hermitian CHA Fockian, whose elements can be expressed

as (for a closed-shell case) 

Fμν
CHA={μ|ĥ|ν }+∑

κ , τ
( 2 {μκ|ντ }− {μκ|τν } )P τκ

.
(2)

The quantities  {μ|ĥ|ν }  and  { μκ|ντ }  correspond to the CHA-transformed one-

and  two-electron  integrals  over  the  AO’s.  Due  to  the  particular  form of  the  CHA

transformation, the one and two-electron integrals used to build the CHA Fockian do

not have the usual symmetry properties and hence, FCHA is non-hermitian.

It can be readily seen8,9 that Eq. 1 is equivalent to solve the corresponding eigenvalue

problem in an iterative fashion,

FCHA c i=Sci εi (3)

were the non-orthogonal right eigenvectors must be orthogonalized in order to obtain

the occupied orbitals to build the CHA Fockian for the next iteration, and the virtual

orbitals can be obtained from the set of left eigenvectors, 
~c q , by solving

~c
q+

FCHA=εq
~c

q+
S

. (4)
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However, as pointed out in Ref. 26, eq. 1 refers only to the virtual- occupied block of

the  FCHA matrix  expressed  in  terms  of  the  MO  basis.  Thus,  one  can  construct  the

following effective hermitian Fock matrix, Feff 

Feff=(
Focc .occ . Fvirt .occ .

CHA +

Fvirt .occ .
CHA Fvirt .virt

) (5)

from the corresponding blocks of the conventional,  F, and  FCHA matrices expressed in

the MO basis. In the next step, this hermitian matrix is back-transformed to the AO

basis and diagonalized in order to get the orbital  coefficients to be used in the next

iteration. Upon convergence, the condition in Eq. 1 is fulfilled and the total energy can

be calculated in the usual manner (expectation value of the conventional Hamiltonian)

using the molecular orbitals thus obtained. It is worth to note again that the same total

energy obtained with the previous non-hermitian CHA-SCF method is recovered with

full machine accuracy.26

2.2. The hermitized CHA-MP2 (CHA-S-MP2) formalism

In  the  CHA  theory,  the  energy  must  always  be  calculated  using  the  conventional

Hamiltonian,  whereas  the  CHA  Hamiltonian  is  used  to  provide  the  BSSE-free

wavefunction.  For  that  reason,  in  the  perturbative  formalisms  within  the  CHA

framework, two sets of unperturbed and perturbation operators are introduced, i.e., those

of the conventional Hamiltonian

Ĥ=Ĥ0
+V̂

and those of the CHA Hamiltonian

ĤCHA
=Ĥ 0

+Ŵ

In both cases, the unperturbed Hamiltonian is chosen to be the CHA Fockian, being the

unperturbed  eigenfunctions  the  single-determinant  wavefunctions  built  up  of  the

respective eigenvectors, and the unperturbed eigenvalues the sums of eigenvalues.

In the CHA-MP211 formalism, the unperturbed Hamiltonian is the non-hermitian CHA

Fockian,  so  neither  the  unperturbed  nor  the  perturbation  operators  involved  are

hermitian. Consequently, the second-order energy correction is obtained by means of a

generalized  Hylleras  functional25 that  takes  into  account  the  non-hermiticity  of  the

operators involved, yet ensuring the second order energy term to be real. Furthermore,

the  unperturbed  wavefunctions  (Slater  determinants  built  up  of  the  canonic  non-
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orthogonal CHA-SCF orbitals) are non-orthogonal in general, and hence the different

doubly excited determinants overlap with the single-excited and ground state one. 

As  shown  in  Ref.  11 (we  wish  not  enter  into  detail  into  the  previous  CHA-MP2

formalism),  the  final  expression  for  the  second-order  energy  correction  contains

contributions from single-excited and ground-state determinants, apart from the double-

excited ones. Besides, since an auxiliary orthonormal basis is introduced, up to three

four-index transformations are needed to actually compute the energy.

We will show now how the problem is greatly simplified if we make use of the effective

Fock matrix described in eq. 5. In this case, the unperturbed Hamiltonian is constructed

from the eigenvalues and eigenvectors of the effective CHA Fock matrix. Since it is

hermitian,  the  unperturbed  eigenfunctions  (Slater  determinants  built  up  of  the

orthogonal CHA orbitals) are now orthogonal. 

Our aim is  to get perturbational  approximations to the CHA/CE full-CI problem, in

which  the  expectation  value  of  the  conventional  Hamiltonian  is  calculated  over  the

eigenfunction of the CHA Hamiltonian. Hence, the strategy is to calculate the first-order

wave function with the CHA perturbation  operator and then expand the expectation

value of the conventional energy for the sum of the zero- and first-order wave functions

by keeping terms up to second order. It can be easily seen that in this way the energy

can be expressed as the sum of the zero-th and first-order terms

E0=¿Ψ 0|Ĥ 0|Ψ 0> ¿

¿Ψ 0|Ψ 0>¿
E1=¿Ψ 0|V |Ψ 0> ¿

¿Ψ 0|Ψ 0>¿
¿¿¿¿

and a second-order energy contribution, given by the Hylleraas functional27 

J 2 =<ψ1
|Ĥ 0

−E0
|ψ1>+2 Re<ψ1

|V̂ −E1
|ψ0

>¿ ¿ . (6)

Note that the sum of the zero and first order energies is nothing but the CHA/CE SCF

energy so the total CHA-S-MP2 energy will be

ECHA−S−MP2
=E0

+E1
+J 2

=ECHA−SCF
+J 2
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At this point, we just need a first-order correction to the wavefunction. A simple way to

obtain it is to use the expression given by the Rayleigh-Schrödinger perturbation theory,

|ψ1 ⟩=∑
k

⟨ψ0
|Ŵ|ψk

0
⟩

E0
−Ek

0
|ψk

0 ⟩ (7)

with the following perturbation operator

Ŵ=Ĥ CHA−Ĥ0=∑
i< j

{r ij
−1}−∑

i

veff ( i)

In  the  equation  above,  expression  
∑
i< j

{rij
−1 }

 stands  for  the  CHA-transformed  two-

electron  operator,  whereas  
∑

i

veff
( i)

 is  the  Hartree-Fock  coulomb  and  exchange

potential of the effective CHA Fockian. 

The next step is simply to substitute Eq. 7 into the Hylleraas functional of eq. 6

J (2)
=∑

l
∑

k

¿¿¿¿

¿

¿ (8)

where the perturbation operator is

V̂=Ĥ−Ĥ0
=∑

i< j

r ij
−1

−∑
i

veff
( i)

.

Taking into account that the CHA-SCF equations fulfil the Brillouin theorem, and hence

the  first-order  correction  to  the  wavefunction  contains  only  doubly  excited

determinants, we obtain after some manipulations 
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J (2)
=−∑

k

¿¿¿¿¿ (9)

The integrals  involved in  the  previous  equations  can  be  expressed,  similarly  to  the

Møller-Plesset theory, in terms of the CHA transformed 

¿ψ0|Ŵ|ψab
rs >=<ψ 0|∑

i< j
{r ij

−1}|ψab
rs >− <ψ0|∑

i

veff|ψab
rs >={ab||rs} (10)

and conventional

¿ψ0
|V̂ |ψab

rs
> =<ψ0

|∑
i< j

rij
−1

|ψab
rs

>−<ψ0
|∑

i

veff
|ψ ab

rs
>= [ab||rs ] (11)

two-electron integrals over the molecular spinorbitals.

Substituting eqs 10-11 into eq. 9 we obtain the final expression for the second-order

correction to the energy 

¿ r<s ∈ virt ¿¿¿¿ (12)

and, in the case of a closed-shell system

¿ r , s ¿¿¿ ¿¿ (13)

where the summation runs over spatial molecular orbitals.

It can be easily seen that Eq 12 reduces to the conventional Møller-Plesset second-order

correction  when  the  BSSE  perturbation  is  switched  off  (i.e.  {ab||rs }≡ [ab||rs ] ).

Furthermore,  eq  12  implies  only  two  four-index  transformations  so  that  the

computational cost of the CHA-S-MP2 calculation is just twice that of a conventional
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uncorrected MP2 calculation. It should be stressed that, contrary to the CP method, the

computational cost doesn’t depend on the number of interacting fragments.

3. Computational Details

The hermitized CHA-SCF and CHA-S-MP2 methods were implemented as independent

FORTRAN-77  code  interfaced  with  a  slightly  modified  version  of  the  HONDO8

package28 from which  proper  one and two-electron  integrals  are  obtained.  We were

limited to up to 255 basis functions and up to 9 primitives per basis function.

Concerning the PT correction term, two four index transformations must be computed,

namely,  a  conventional  and  a  CHA-modified  one.  The  key  point  for  an  efficient

implementation of the method is to compute on the fly the contribution of each four-

center integral of the AO basis to the CHA-transformed integrals over the MO. That is,

the CHA-modified integrals  over the AO-s are never computed explicitly.  One only

must  distinguish  between  intermolecular  and  intramolecular  contributions  and,

obviously, the transformation should be carried out in four consecutive steps to achieve

N5 scaling 

Since the CHA-S-MP2 is  a  simplification  of  the more involved original  CHA-MP2

method,  the  actual  implementation  of  our  code  can  compute  either  of  the  two  PT

methods  simply  by  selecting  the  proper  zeroth-order  Hamiltonian  (canonic  non-

orthogonal orbitals eigenvectors of the CHA Fockian or the canonic eigenvectors of the

effective hermitian Fockian). 

4. Illustrative calculations

We  present  full  numerical  geometry  optimizations  at  the  CHA-S-MP2  level  (all

electrons were correlated) of two prototype hydrogen-bonded complexes, namely water

and hydrogen fluoride dimers. The interaction energies and geometrical parameters (see

Figure 1) are gathered in Tables I and II, respectively. The geometrical parameters and

interaction energies are compared with previous CHA-MP2 (numerically) optimized24

and both CP-MP2 and MP2 (analytically) optimized14,24 structures.
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TABLE I 

Interaction  energies  (in  kcal/mol)  and  geometrical  parameters  (Å  and  degrees,  see
Figure 1) of the (H2O)2 complex with several basis sets at the MP2, CP-MP2, CHA-MP2
and CHA-S-MP2 levels of theory

Basis set Method Eint rO-O  

6-31G**

MP2 -7.12 2.910 9.1 100.2
CP-MP2 -5.07 2.990 1.4 134.6
CHA-MP2 -5.34 2.959 4.4 123.6
CHA-S-MP2 -5.26 2.962 3.1 129.3

6-31++G**

MP2 -6.47 2.907 3.5 133.1
CP-MP2 -4.87 3.013 2.3 136.3
CHA-MP2 -4.82 3.029 2.2 135.4
CHA-S-MP2 -5.01 2.981 1.8 140.3

6-311G**

MP2 -7.00 2.903 4.6 116.0
CP-MP2 -4.59 3.038 2.4 135.1
CHA-MP2 -5.02 2.983 0.8 134.5
CHA-S-MP2 -5.12 2.976 0.5 134.9

6-311++G**

MP2 -6.07 2.916 2.0 136.0
CP-MP2 -4.56 3.018 3.1 136.4
CHA-MP2 -4.65 2.999 1.6 138.1
CHA-S-MP2 -4.96 2.979 1.9 138.0

6-311++G(2df,2p)

MP2 -5.49 2.914 3.6 127.1
CP-MP2 -4.55 2.960 2.2 133.4
CHA-MP2 -4.63 2.958 5.4 123.8
CHA-S-MP2 -4.71 2.945 5.2 124.3

cc-pvdz

MP2 -7.53 2.907 5.4 105.0
CP-MP2 -4.21 3.047 0.1 138.2
CHA-MP2 -4.70 2.956 2.2 128.4
CHA-S-MP2 -4.65 2.956 1.6 130.2

aug-cc-pvdz

MP2 -5.50 2.903 6.3 120.7
CP-MP2 -4.45 2.977 5.7 122.8
CHA-MP2 -4.48 2.970 3.9 126.1
CHA-S-MP2 -3.55 3.017 4.1 130.0
MP2 limit a -4.98 2.925 4.3 128.2

a Ref. 22
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TABLE II 
Interaction  energies  (in  kcal/mol)  and  geometrical  parameters  (Å  and  degrees,  see
Figure 1) of the (HF)2 complex with several basis sets at the MP2, CP-MP2, CHA-MP2
and CHA-S-MP2 levels of theory

Basis set Method Eint rF-F  

6-31G**

MP2 -7.80 2.540 46.9 49.5
CP-MP2 -4.72 2.799 6.9 114.8

CHA-MP2 -4.85 2.734 7.8 113.1
CHA-S-MP2 -4.57 2.741 10.1 111.7

6-31++G**

MP2 -5.02 2.772 7.5 115.4
CP-MP2 -4.25 2.838 7.0 115.9

CHA-MP2 -4.06 2.847 7.1 117.1
CHA-S-MP2 -3.98 2.843 7.8 116.2

6-311G**

MP2 -6.16 2.708 17.5 95.2
CP-MP2 -4.21 2.849 5.9 122.5

CHA-MP2 -4.54 2.791 8.2 116.9
CHA-S-MP2 -4.61 2.781 8.0 116.6

6-311++G**

MP2 -4.69 2.788 6.5 121.0
CP-MP2 -3.86 2.877 8.6 118.7

CHA-MP2 -3.92 2.865 8.1 118.4
CHA-S-MP2 -4.06 2.844 7.9 118.2

6-311++G(2df,2p)

MP2 -4.92 2.758 7.3 111.1
CP-MP2 -3.99 2.817 7.2 114.5

CHA-MP2 -4.03 2.805 6.9 114.3
CHA-S-MP2 -4.07 2.787 7.6 111.8

cc-pvdz

MP2 -7.06 2.589 47.2 49.9
CP-MP2 -4.17 2.834 5.7 119.7

CHA-MP2 -4.61 2.746 7.6 114.9
CHA-S-MP2 -4.50 2.746 6.6 116.4

aug-cc-pvdz

MP2 -4.91 2.741 5.5 111.5
CP-MP2 -4.04 2.810 6.9 111.6

CHA-MP2 -3.91 2.832 5.4 116.4
CHA-S-MP2 -3.04 2.885 7.4 113.3

MP2 limit -4.37 a 2.72 b 6.7b 111.7 b

a Ref. 32   b Ref. 15
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Figure 1: Geometrical parameters of the water and hydrogen fluoride dimers.

The effect of BSSE correction on interaction energies and intermolecular distances is

well-known14 and  will  not  be  addressed  here  in  detail.  Our  aim  is  to  explore  the

capabilities of the proposed BSSE-correction method at the correlated level. Hence, we

present results carried out with rather small basis sets, too. 

First of all, we will focus on differences between the three BSSE-correction schemes.

Except for the 6-31++G** basis set, the CHA-MP2 interaction energies lie between the

uncorrected and CP-corrected one. The largest difference between both BSSE-corrected

energies is less than 0.5kcal/mol (water dimer, MP2/6-311G**). In this particular case,

the difference with respect to the uncorrected energy is about 2 kcal/mol, that is 40% of

the overall value.

Concerning the CHA-S-MP2 results, they are very close to the CHA-MP2 ones. The

largest discrepancy is about 0.3kcal/mol,  except for the aug-cc-pVDZ basis set (this

case is discussed in more detail below). Also, the effect on the intermolecular RO-O and

RF-F distances matches that of the interaction energy. 

Interestingly,  the  inclusion  of  diffuse  functions  in  the  basis  sets  drives  to  a  larger

difference between both CHA methods, whereas with the basis sets that do not include

such special functions the results almost coincide. In our opinion, this effect is due to

the fact that these diffuse functions are too spread over the molecule and it is rather

questionable  to  assign  them  only  to  a  given  monomer.  It  is  also  known  that  the

conventional CHA method exhibits difficulties when the fragments strongly overlap, as

it is the case of intramolecular interactions6 or strong ionic molecular complexes.29 
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Figure 2: Potential energy surfaces of the helium dimer at the MP2/cc-pVXZ, (X = D,T,

Q) levels of theory.
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MP2/aug-cc-pVDZ (uncontracted)

-30

-20

-10

0

10

20

30

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

R (Å)

D
E

 (
m

H
)

CHA-MP2
CHA-S-MP2
MP2
CP-MP2

MP2/aug-cc-pVTZ

-25

-20

-15

-10

-5

0

5

10

15

20

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

R (Å)

D
E

 (
m

H
)

CHA-MP2

CHAS-MP2

MP2

CP-MP2

MP2/aug-cc-pVQZ

-25

-20

-15

-10

-5

0

5

10

15

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

R (Å)

D
E

 (
m

H
)

CHA-MP2

CHAS-MP2

MP2

CP-MP2

Figure 3: Potential energy surfaces of the helium dimer at the MP2/aug-cc-pVXZ, (X =
D,T, Q) levels of theory
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A much weaker intermolecular interaction such as He2 has also been considered. The

potential energy surfaces of the He...He interaction in the range of 2.5 – 5 Å for the cc-

pVXZ and aug-cc-pVXZ ,(X= D,T,Q) basis set families are depicted in Figure 2 and

Figure 3, respectively. In a previous study, Lee et al.30 have estimated a MP2 limit value

for  the  interaction  energy  of  this  system  of  –21.4H,  still  far  from  the  –31.4H

experimental value.31 Our results are in excellent agreement with those of Lee et al. The

curves corresponding to the cc-pVXZ family show that  the BSSE is  responsible for

most of the binding energy, specially for the cc-pVDZ basis set. In this case, BSSE

correction  lead  to  unbound curves  in  all  cases.  The differences  between both CHA

approaches  is  negligible,  whereas  the  CP-MP2  curve  lies  always  above  the  rest,

showing a larger BSSE correction.

The inclusion of diffuse function (see Figure 3) is essential for the correct description of

the interaction. In this case, the CHA-MP2 curves lie above the CP-MP2 ones, but the

difference is smaller than the BSSE itself. By increasing the basis set to triple zeta this

effect is diminished whereas the aug-cc-pVQZ curves are practically coincident. Note,

however,  that  the  results  corresponding  to  the  aug-cc-pVDZ  basis  set  have  been

obtained after uncontracting the 1s orbital of this basis.

As mentioned above, the CHA-S-MP2/aug-cc-pVDZ results strongly deviate from the

respective CHA-MP2 and CP-MP2 values for the two hydrogen-bonded systems. In

fact, the difference between the CHA-S-MP2 and CHA-MP2 interaction energies are of

the  same  order  of  the  BSSE  itself,  ca.  1kcal/mol.  Accordingly,  the  O-O  and  F-F

distances  are  also  overestimated.  It  is  to  be  mentioned  that  others  have  also  found

problems associated  with this  particular  basis  set.32 We repeated the calculations  by

uncontracting the basis set and the problem disappeared. 

In the case of He2 and Ar2 the results are particularly odd, as illustrated in Figure 4. The

CHA-S-MP2 interaction energies converge to the dissociation limit from above, as an

unphysical shoulder (much significant in the case of He2) is observed. The limitation of

this basis set is confirmed by the fact that the uncorrected SCF curve exhibits a rather

deep minimum. The CHA-SCF method properly corrects for this situation, however, the

further inclusion of electron correlation though CHA-S-MP2 can not lead to a proper

description of the weak interaction. Again, if more flexibility is given to the basis set

just by uncontracting the 1s orbital, the problem is solved, as shown in Figure 3 in the

case of He2. 
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Figure 4: MP2/aug-cc-pVDZ potential energy surfaces of the Helium dimer (top) and
Argon dimer (bottom).. 

A careful  analysis  of  the  situation  seems to indicate  that  the  CHA-S-MP2 scheme,

though much more efficient computationally than the more involved CHA-MP2, is not

as robust as the latter when dealing with strong overlap. The origin of the difference is

on the definition of the zero-th order Hamiltonian. In fact, in the case of the CHA-MP2

method, some of the effects due to the BSSE are already included in the zero-th order

Hamiltonian, since it is chosen to be non-hermitian. On the contrary, when using the

17



effective Fockian as zero-th order Hamiltonian in the CHA-S-MP2, the non-hermiticity

is necessarily contained into the perturbation operator. In other words, the eigenvectors

of the effective Fockian are such that the virtual-occupied block of the CHA Fockian

vanishes, but this is not true in general for the occupied-virtual one, for instance. This

non-hermiticity might be at the heart of the failure of the CHA-S-MP2 method, albeit

only observed for the problematic aug-cc-pVDZ basis set. Yet, similar problems might

also  appear  for  strongly  bound  complexes  described  with  diffuse  functions,  where

overlap effects are larger.

A good compromise  might  be  to  include  the  non-hermiticity  into  the  zero-th  order

Hamiltonian, yet keeping the benefits of the occupied and virtual orthogonal molecular

orbitals. This will lead to a non-diagonal zero-th order Hamiltonian, similarly to other

MP2 formulations  with non-canonic orbitals.34,35 It  would be important  to  determine

whether such a formulation could be implemented efficiently enough to compete with

the non-hermitian CHA-MP2 method.

5. Conclusions

We describe an alternative perturbational approach free of BSSE within the framework

of the Chemical Hamiltonian Approach. The new formulation is based on the canonic

and  orthogonal  CHA  orbitals  obtained  from  a  hermitized  CHA  Fock  operator.

Significant  simplification  of  the  method  as  compared  to  the  previous  CHA-MP2

formalism is achieved in the present formulation, so that the computational burden of

the  CHA-S-MP2  calculation  is  just  twice  that  of  a  conventional  uncorrected  MP2

calculation. Also, the computational cost is independent of the number of interacting

fragments. The results obtained are in excellent agreement with both the CHA-MP2 and

CP-MP2 methods for both hydrogen bonded and weak molecular interactions with one

exception.  The  difficulties  arisen  with  the  aug-cc-pVDZ basis  set  indicate  that  the

present method is not as robust as the original non-hermitian CHA-MP2 formulation. 
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