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Warming climates provide many species the opportunity to colonise newly-suitable regions at

higher  latitudes  and  elevations.  Despite  becoming  warmer,  higher  latitudes  and  elevations

nevertheless  offer  novel  climatic  challenges,  such  as  greater  thermal  variability  and  altered

frequency of weather  events,  and these challenges  exert  selection  on expanding populations.

However, high gene flow and genetic drift during the expansion phase may limit the degree to

which species can adapt to novel climatic conditions at the range front. Here we examine how

landscape  topographic  complexity  influences  the  opportunity  for  local  adaptation  to  novel

conditions during a range shift. Using RAD-seq data, we investigated whether elevation, latitude,

climatic niche differentiation, and gene flow across a complex landscape were associated with

signatures  of adaptation  during recent  range expansion of the damselfly  Ischnura elegans in

Northeast  Scotland.  Our  data  revealed  two  distinct  routes  of  colonisation,  with  admixture

between these routes resulting in increased heterozygosity and population density.  Expansion

rates, assessed as directional rates of gene flow, were greater between more climatically similar

sites than between climatically divergent sites. Significant genetic structure and allelic turnover

was found to emerge near the range front at sites characterised by high elevation, low directional

gene flow, and high spatial differentiation in climate regimes. This predictive combination of

factors suggests that landscape complexity may be a prerequisite for promoting differentiation of

populations,  and  providing  opportunities  for  local  adaptation,  during  rapid  or  contemporary

range shifts.
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Many species are responding to climate change by shifting their ranges to higher latitudes and

elevations  (Parmesan & Yohe, 2003; Hickling et al., 2006; Chen et al., 2011b).  These range

shifts  are often accompanied  by evolutionary changes in expanding lineages,  including local

adaptation, admixture, and drift (Dytham, 2009; Krehenwinkel & Tautz, 2013; Swaegers et al.,

2015a; Dudaniec et al.,  2018). For instance,  a stepping-stone process of colonisation may be

expected to result in increased evolutionary effects of drift and inbreeding at the poleward range

expansion  front  (Henn  &  Feldman,  2012;  Swaegers  et  al.,  2015a).  Alternatively,  range

expansions can increase genetic diversity at the expansion front by promoting the admixture of

previously  isolated  populations  from  different  parts  of  the  core  range,  increasing  genetic

diversity and fodder for future adaptation as the range shift progresses (Krehenwinkel, Rödder &

Tautz, 2015). Furthermore, demographic expansion during range expansions may generate and

propagate neutral or deleterious gene frequencies in the new part of the range  (Peischl et al.,

2013; Stapley, Santure & Dennis, 2015), all of which may influence future adaptive trajectories.

Each  of  these  non-adaptive  evolutionary  processes  accompanying  range  shifts  may  have  an

important  role  in  enabling  or  restricting  the  ability  of  species  to  adapt  and persist  or  thrive

through future anthropogenic environmental changes.

Evidence  is  also  accumulating  that  adaptive  evolution,  and  in  particular,  patterns  of  local

adaptation, can emerge during poleward or elevational range shifts. This occurs when colonising

populations encounter and respond to novel conditions in the new portion of their geographic

range (Krehenwinkel & Tautz, 2013; Lancaster et al., 2015; Swaegers et al., 2015b; Dudaniec et

al.,  2018).  Such novel  selection  pressures  encountered  during  range shifts  may  derive  from

climates not encountered in a species historical range (Krehenwinkel & Tautz, 2013; Lancaster et
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al., 2015; Swaegers et al., 2015b; Dudaniec et al., 2018), novel competitive regimes arisen from

new species interactions (Bocedi et al., 2013; Fitt & Lancaster, 2017), or novel resources (Janz &

Nylin, 2005), which can produce locally-adapted traits in expanding populations  (Swaegers et

al., 2015a; Krehenwinkel, Rödder & Tautz, 2015; Lancaster, 2016). However, fine-scale genetic

evidence  for  adaptive  evolutionary  change  during  climate-induced  range  shifts  is  scant,

particularly at the spatial scales relevant to recent range shift processes. For example, records

indicate that contemporary range shifts have typically moved populations to higher latitudes and

elevations  at  a  rate  of  ca.  10-20 km per  decade  (Chen et  al.,  2011b),  suggesting  that  range

expansions in response to anthropogenic climate change have likely typically taken place across

gradients of 150km or less. In contrast,  most published studies investigating the genomics of

range  shifts  encompass  broader  spatial-temporal  scales,  including  post-glacial  as  well  as

contemporary climate-mediated range shift processes (Wellenreuther et al., 2011; Kremer et al.,

2012), or invasions driven by factors other than climate change, such as introduction of exotic

species  (Colautti & Lau, 2015). Thus little is currently known about how and why patterns of

local adaptation may emerge at the expanding range front, in the face of competing non-adaptive

evolutionary processes that are so prevalent during the expansion phase.

The potential for adaptive evolution to occur over such short spatial distances and time scales,

such as involved in contemporary range shifts, may be strongly influenced by associated patterns

of  gene  flow  (Hill  et  al.,  2001).   When  gene  flow  is  high  between  core  and  expanding

populations, the potential for local adaptation to conditions at the leading edge of the range is

limited by the input of maladapted genes from the range core (gene swamping;  Lenormand,

2002a). Alternatively,  when gene flow is restricted towards the range margin, for example if
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colonisation fronts are highly fragmented, range limit populations may have insufficient genetic

diversity for local adaption to occur  (Whitlock, 2000). Thus we anticipate that the opportunity

for gene flow during expansion will have strong influences on the capacity for adaptation to

novel conditions in the new part of the range; moreover we anticipate that the topography over

which  an  expansion  occurs  will  to  a  large  part  dictate  patterns  of  gene  flow  and  thus

opportunities for selection (Möbius, Murray & Nelson, 2015).

Complex landscapes such as mountainous regions may increase landscape resistance, and thus

act  to  restrict  gene  flow  between  core  and  range  front  populations.  Therefore,  when

contemporary range shifts take place over fragmented or topographically complex habitats, local

adaptation may be less likely to be opposed by gene swamping during the expansion phase than

when gene flow is less impeded by terrain  (Keyghobadi, Roland & Strobeck, 2005; Herrera &

Bazaga, 2008; Perez-Espona et al., 2008). Furthermore, topographically complex environments

often provide a wider variety of niches to which populations can adapt, and such variety in niche

opportunity may favourably impact the likelihood that adaptive evolution will occur (Guarnizo &

Cannatella,  2013).  Alternatively,  it  has  been suggested  that  topographically,  and particularly

elevationally,  complex  habitats  may limit  the  opportunity  for  adaptation  at  expanding  range

limits, as the distances required to track suitable climates in an upslope direction are often shorter

and thus insufficient  to limit  gene flow between populations  experiencing differing selection

regimes  (Hill,  Griffiths & Thomas, 2011).  Moreover,  drift  and inbreeding may oppose local

adaptation  in  overly-fragmented  expansion  fronts  (Lenormand,  2002b;  Grueber,  Wallis  &

Jamieson, 2013).
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To evaluate the influence of landscape complexity on the capacity for local adaptation during

contemporary  range  shifts,  we  implement  a  population-genomic  study  of  the  blue  tailed

damselfly,  Ischnura  elegans  (Vander  Linden  1820), a  small  species  of  dispersal  limited

coenagrionid  damselfly  which  has  recently  expanded  its  range  dramatically  to  both  higher

latitudes  and elevations  in the topographically  rugged,  high-latitude Cairngorm mountains  of

North East Scotland. This species has moved northward by 143 km in the past 20 years within

this  region  and  is  also  reported  to  have  recently  colonised  higher  elevation  sites  near  the

latitudinal range front (Hickling et al., 2005; Maclean, 2010). Using high-density RAD-seq SNP

data,  we inferred  patterns  of  local  adaption,  population  structure,  and routes  of  colonisation

across this complex landscape, comprising a 400m elevational gradient and a 130km latitudinal

gradient.  We  specifically  asked  whether  topographically  complex  landscapes  enhanced  or

diminished genetic diversity and differentiation,  or the potential for local adaptation during a

range expansion, via the effects of gene flow, fragmentation, and steep environmental gradients

in this landscape type. When compared to similar studies undertaken over less complex terrain

(e.g.,  Dudaniec  et  al.,  2018),  the  results  of  this  study can  contribute  to  understanding  how

features  of  the  landscape  contribute  to  evolutionary  change  during  contemporary  range

expansions.

Materials & Methods

The study area

The Cairngorm mountains are situated in the middle of I. elegans’ current colonisation activity,

and  are  among  the  most  remote,  climatically  variable,  and  rugged environments  in  the  UK

(Scottish Natural Heritage). The Cairngorms represent a massif with several peaks exceeding
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1200m, connected by cliffed troughs and corries shaped first by glacial erosion 10,000 – 18,000

years ago, and subsequently reworked by rivers and storms  (Brazier et al., 1996). This rugged

landscape is likely to invoke unique patterns of colonisation as species shift their ranges along

both elevational and latitudinal gradients. At present, populations of I. elegans are observed on

all sides and into the lower interiors of the Cairngorms, and many of these sites reflect very

recent colonisation events (Fitt & Lancaster; Maclean, 2010). We sampled n = 12 sites (hereafter

“populations”) at a variety of latitudinal and elevational positions in this study region. Each site

consisted of well-vegetated, shallow ponds representing the most suitable habitat for I. elegans

(Cham et al., 2014). 

   

Genetic material collection and sequencing

Each of our 12 study sites site was visited 3 times during the summer adult flying season in

2014, when damselflies were captured from pond edges using butterfly nets in timed catching

bouts during periods of good weather. Population densities of adult I. elegans at each site were

roughly estimated as the total number of damselflies captured divided by total catching time,

averaged over the number of visits. From each population, where possible, 5 male and 5 females

were collected and individually stored whole at 4° C in 1.5ml of 100% etOH. However, due to

limited numbers of damselflies at population 12, equal numbers of male and females were not

possible  and  4  males  were  substituted  for  females.  In  preparation  for  DNA  extraction,

individuals were manually pulverised using disposable micropestles. DNA was extracted from

the resulting tissue using the Qiagen DNeasy blood & tissue kit,  following the spin-column

protocol (Qiagen DNeasy Blood & Tissue Handbook 2006). Extracted DNA was measured for

quantity and quality using a Qubit fluorimeter and nanodrop (Thermofisher). Following quality
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assessment,  the 118 individuals  with the highest  quality  DNA were selected for sequencing,

leaving  10 individuals  from all  populations,  except  populations  12  and 4,  which  were  each

represented by 9 individuals.  RAD sequencing was conducted by NBAF Edinburgh,  using 5

multiplexed libraries and the Pstl enzyme to generate high density RAD markers. Sequencing

was performed on an Illumina HiSeq v3, producing 300+300 million of 100 bp paired-end reads.

NBAF returned quality-controlled, base-called reads to us in fastq format.

Bioinformatics

Raw RAD-seq reads  were analysed using STACKs v 1.07  (Catchen et  al.,  2013).  Data was

demultiplexed and the raw data was coarsely cleaned to remove low quality reads using process

radtags in Stacks.  Consistent with the recommended implementation of STACKs, a PHRED

score cut off of 10 was used in the initial  quality control cutoff  (Catchen et al.,  2011), with

further filtering of RAD loci implemented later in the STACKs work flow using the populations

function (see below). This approach minimises the inclusion of SNP’s which have arisen due to

erroneous base calls,  as allelic  polymorphisms must  be consistently  observed multiple  times

across  populations  to  remain  in  the  data  set.  This  approach  prevents  the  over-conservative

discard of high quality data caused by setting more stringent PHRED thresholds. One individual

had  consistently  low  quality  reads  and  was  dropped  from  further  analysis.  Following  this,

Ustacks was used to align reads with a minimum depth of coverage of 5 reads and maximum

distance between stacks of 5 reads. Catalogues of loci were assembled using Cstacks, with the

number of mismatches allowed between sample tags when generating the catalogue set to 2.

Samples were matched against the catalogue using Sstacks with default settings. Variant sites
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(i.e., specific SNPs) that were successfully reconstructed from at least 75% of the individuals

under study and present in a minimum of 6 populations were selected using the Populations

module of Stacks, leaving 117 individuals from 12 populations, with 16982 SNPs over 8491 loci.

PLINK format data and pairwise Fst values were then exported using Populations.  Data was

reformatted for Bayescan  (Foll & Gaggiotti, 2008) and Genepop  (Raymond & Rousset, 1995)

format using PGDspider v2.0.9.2 (Lischer & Excoffier, 2012). 

Environmental variables 

Climatic variables were extracted for each population’s location from the Bioclim climate layers

with  a  resolution  of  30  arcsecond  (Hijmans  et  al.,  2005) and elevation  from OS terrain  50

(Ordinance Survey, 2017). Climatic values at each site were checked for collinearity, using cor()

function  in  base  R  (R Core  development  Team,  2012) with  a  cutoff  of  0.8.  After  omitting

collinear  variables,  elevation,  latitude,  temperature  annual  range (bio7),  mean temperature of

wettest quarter (bio 8), mean temperature of driest quarter (bio 9), mean temperature of warmest

quarter  (bio10),  annual  precipitation (bio12) and precipitation of wettest  month (bio13) were

selected for further analysis based on their biological relevance. Geographical variables retained

were chosen to represent the dual axes over which  I. elegans are range shifting (elevation and

latitude),  and we retained climatic  variables  which summarise both temperature and rainfall.

Elevation  was  strongly  negatively  correlated  with  mean  annual  temperature  (r  =  0.93),  and

latitude was positively correlated with mean diurnal temperature range (r = 0.85) across our sites,

so  in  analyses  of  latitudinal  and elevational  effects  on  population  genetic  parameters,  mean

annual  temperature  and  diurnal  temperature  range  were  omitted  from those  models.  Spatial
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distances between sites was calculated using distGeo(), which accounts for the curvature of the

earth  and projection  of  latitude  and longitude,  using  the  geosphere  package  in  R  (Hijmans,

2017),  and correlated  against  pairwise  Fst  using  Mantel  tests  in  the  ade4 package  (Dray &

Dufour, 2007) to generate estimates of isolation by distance. 

Colonisation dynamics and population genomics

Routes of colonisation were estimated using methods presented in (Peter & Slatkin, 2013) using

the R package rangeExpansion (Peter), which was used to generate pairwise ᵠFst (the directional

measure of geneflow between populations).  Pairwise ᵠFst was compared with distance between

sites and the pairwise difference in environmental variables (described above) using Mantel tests

and, in the case of environmental variables, partial Mantel tests which account for geographic

distance, using the ecodist package for R (Goslee & Urban, 2007). 

Population structure was assessed using detrended correspondence analysis (DAPC) from the

Adegenet package in R (Jombart, 2008). This was conducted using the dapc() function, with 11

principal components and 5 discriminant functions retained for analysis. Dapc was optimised by

running multiple models with varying principal components and discriminant functions, with the

best model chosen using the a-score() function. The first two principal components, representing

how genetically similar individuals are by population, were extracted from the DAPC analysis to

reduce the dimensionality  of the data.  PC1 accounted for 18.23% of the variation in genetic

structure,  and PC1 and 2 combined accounted for 27.81% of the total  variation.  These were

plotted to identify how populations varied in genetic structure across the major axes of variation
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(Fig.  2  &  3).  We  also  assessed  correlations  between  PC1  or  PC2  and  site  and  population

characteristics  to  explore  how genetic  structure  might  orient  to  underlying  environmental  or

population processes (Table 2).

Population  heterozygosity  was  calculated  using  the  BasicStats()  function  in  the  r  package

DiveRsity  (Keenan et al., 2013). To identify genes under selection, four SNP outlier methods

were  applied:  OutFLANK  (Whitlock  &  Lotterhos,  2015b),  Latent  Factor  Mixed  Models

(LFMM)  (Frichot et  al.,  2013), pcadapt  (Luu, Bazin & Blum, 2017) and Bayescan  (Foll  &

Gaggiotti,  2008).  OutFLANK  was  preformed  using  the  R  package  outflank  (Whitlock  &

Lotterhos, 2015a), using a q threshold of 0.1 and a left and right trim fraction set to 0.15. Pcadapt

was performed in R with a K value set to 20. The LEA package (Frichot & Franc, 2015) in R

was  used  to  run  LFMM analysis,  with  models  including  environmental  variables  described

above, a K value of 1, and 5 repeats. Bayescan was run in the stand-alone platform, with 1000

iterations and thinning set to 10. These models each generated very few significant SNP outliers

or SNP-environment correlations, with no agreement among methods regarding loci putatively

under selection.  Therefore,  we did not run further outlier-based tests for local adaptation.  To

further  to  test  for  patterns  of  genetic  variation  corresponding  to  environmental  gradients  or

population densities, random forests analysis was using the gradientForest package in R (Ellis,

Smith & Pitcher, 2012). Gradient forests were conducted using 500 trees, with 201 bins and a

correlation threshold 0.5, with response variables set to population density of I. elegans, latitude,

elevation, temperature annual range (bio7), mean temperature of wettest quarter (bio 8), mean

temperature  of  driest  quarter  (bio  9),  mean  temperature  of  warmest  quarter  (bio10),  annual

precipitation (bio12) and precipitation of wettest month (bio13). 
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Results

Our routes of colonisation analysis indicated that directional gene flow was generally strongest

along the eastern side of the Cairngorms (Fig. 1). Moreover, gene flow is generally in a northern

direction, consistent with the poleward range expansion in this region, although some gene flow

back to the range core is also apparent (Fig. 1). Absolute values of ᵠfst ranged between 0.0008

and 0.07 for all sampling sites (Table S1). 

Differences in Pairwise Fst by distance indicate that there is marginally significant differentiation

by distance across our populations (z=2.43, p=0.10; Table S2, Figure S1). Our directional gene

flow estimates ᵠfst correlated positively with among-population differences in population density

of I. elegans (highest population densities were found at sites with high rates of incoming gene

flow;  z  =  0.89,  p=0.04,  Fig.  4a)  and  was  negatively  associated  with  difference  in  mean

temperature in the warmest quarter (directional gene flow is strongest between sites most similar

in their summer temperatures; z = 14.86, p=0.02, Fig 4b, indicating a colonisation bias towards

climatically similar sites).  No other significant correlations were found between directional gene

flow and any of the other environmental variables included in this study. 

Detrended correspondence analysis (DAPC) results demonstrated that three populations, 7, 8 and

12, demonstrated significant genetic differences from each other and from the other populations

(Figs.  2,  3).  Genetic  variation  along  PC1  is  moderately  correlated  with  temperature  and

precipitation  (correlation  between  PC1  and  precipitation  in  the  wettest  month,  R2 =  0.26,

correlation with mean annual precipitation, R2 = 0.20, and correlation with mean temperature of

274

275

276

277
278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298



the driest quarter, R2 = 0.12). Population 12 differentiates from the others along this axis (Table

1, Fig. 3). Among environmental variables, PC2 is best explained by thermal variability (effect

of mean diurnal temperature range on PC2: R2 = 0.23). Populations 7 and 8 differentiate from the

other  populations,  in opposite  directions,  along this  axis (Fig.  3).  Populations  8 and 12 also

exhibit  lower  heterozygosity  than  the  other  populations  (Table  1),  in  addition  to  being

compositionally differentiated from each other and from other sites. 

OutFlank found no SNPs to be outliers, nor did LFMM. However, when the p value cut off was

relaxed using LFMM to 0.15, 186 genes were suggested as putatively under selection. Similarly,

pcadapt found 186 genes under selection, however when compared candidate genes between the

two methods, there was only 3.76% overlap. Moreover, Bayescan analysis resulted in only one

outlier SNP which was not found to be under selection as identified by the other three methods.

Low concurrence between SNP identification methods suggests that those SNP’s identified as

outliers may represent false positives. 

The gradient forest analysis revealed that population density of I. elegans has the most predictive

power  for  allelic  turnover  among populations.  Density  of  I.  elegans always  had the  highest

predictive power in the model, followed by latitude. Mean temperature in the wettest quarter,

mean temperature in the warmest quarter, and annual temperature range all had approximately

equal importance and offered the highest predictive power of the climatic variables.  Overall,

climatic variables relating to temperature were more important than variables which related to

rainfall. 
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Discussion

We identify two distinct colonisation routes into northeast Scotland, with the possibility of a

third  expansion  wave  entering  from the  south  (Fig.  1).  While  the  data  indicate  a  primarily

northward movement of species, there are also some cases of gene flow back towards the range

core. We also found suggestive evidence of weak isolation-by-distance among our study sites,

consistent with genetic changes associated with the range expansion. However, high gene flow

associated with the range shift resulted in generally low population structure: DAPC analysis

indicated that most of our sites across the region were well mixed genetically, and did not fall

into distinct structured populations, indicating a strong role for gene swamping limiting local

adaptation.  Consistent with this, populations which exhibited the cosmopolitan genotype also

experienced  the  strongest  gene  flow  from  surrounding  populations  (fig  1).  However,  three

populations (7, 8, and 12) did distinguish themselves strongly from the background genotypes.

Such shifts in genetic structure corresponded to sites with reduced connectivity, high elevation,

and divergent climates. Moreover, we identify patterns of allelic turnover across the expansion

front which correspond to gradients in climatic, demographic, and spatial variables, indicating

complex processes and opportunities for adaptation during range shifts.

Colonisation routes 

Our routes of colonisation  data  indicated two distinct  paths of colonisation into the Scottish

highlands: an eastern route, skirting around the eastern extent of the Cairngorms into central

Aberdeenshire,  and  a  westerly  route  moving  northwards  around  the  western  extent  of  the

Cairngorms,  before moving in  a  south-easterly  direction  from the north.  The two expansion
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routes meeting  in central Aberdeenshire (Fig 1). Similar patterns of colonisation in this region

have  been  reported  in  the  UK  butterfly,  Pararge  aegeria,  suggesting  than  non-linear  and

circuitous  poleward  expansion  routes  may  be  common  among  dispersal-limited  ectotherms,

especially in mountainous regions (Hill et al., 2001). While most directions of colonisation are

towards the north (Fig 1), there is also evidence of gene flow back towards the core of the range

core, particularly from sites 6 and 11 (fig 1). Colonisation of Northeast Scotland by I. elegans

damselflies  appears  to  have  occurred  primarily  through  the  eastern  route,  indicated  by  the

thickness of the arrows in fig 4, and complementarily,  the genetic  structure of sites 3 and 9

(putative origin of the eastern expansion route) are highly similar to most of the populations in

the region. In contrast, site 12 (putative origin of western route) is genetically distinct from the

other sites in NE Scotland (Figs. 2 & 3) and also exhibits lower heterozygosity than other sites

(table 1). Whether the lower expansion rates along the western Cairngorms are associated with

the low diversity at a putative source population will require more data from populations further

south.  

Genetic structure and the capacity for local adaptation

Overall  genetic  structure is weak across the region. However, we identified three genetically

distinct populations within the region (represented by populations 7, 8, and 12). One of these

(population 12) appears to reflect either the ancestral gene pool (reflecting southern genotypes

ancestral to the Scottish colonisers) or possibly a new, recurrent colonisation wave into the area

from further south or west. These genotypes may be adapted to warmer, wetter conditions than

other  North  East  Scottish  genotypes,  as  indicated  by  correlations  between  overall  genetic
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differentiation at this site and these environmental variables (Fig. 2), as well as gradient forest

analysis suggesting genome-wide allelic turnover along gradients of temperatures in the warm

and  wet  season  (Fig.  5  & 6).  The  other  two  genetically  distinct  populations  (7  and  8)  are

relatively isolated, high elevation populations, and only weakly connected to other populations

through directional gene flow (Fig 1). Despite population 7 and 8 both being similar as high

elevation sites, climate regimes are quite divergent between them, and in comparison to most of

the other sites, with the western side of the Cairngorm mountain range (population 7) exhibiting

low variability in temperature, contrasting to extremely variable temperatures experienced to the

southeast of the Cairngorms (population 8). This divergence in climate across the massif reflects

the rainshadow and Foehn wind effects that occur on the east coast of the Cairngorms (Birse &

Dry, 1970). The pattern of genetic differentiation between each of these populations and from the

other sites in our study area correspond moderately to variation in climatic thermal variability

(diurnal temperature range; Fig. 2), suggesting that isolation at high elevations may allow these

populations  to  at  least  partially  adapt  to  their  divergent  climates.   Similarly,  gradient  forest

analysis indicated that allelic turnover across the expansion front is well-predicted by thermal

variability, in the form of annual temperature range, in comparison to the predictive ability of

most other climatic variables (Fig. 5). These patterns suggest that fragmentation and topographic

complexity can increase the potential  for adaptation during range expansions. The alternative

explanation,  that  genetic  differentiation  at  sites  7  and  8  may  reflect  drift  in  isolated

subpopulations, is not as readily borne out by the data. Three out of 10 individuals from site 7

and two out of 10 individuals from site 8 expressed more cosmopolitan genotypes, indicating

that gene flow is sufficiently high to swamp differentiated genotypes unless opposed by selection

(figure 2). Variation in genetic differentiation among sites also corresponded to temperature and
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precipitation (PC1), but variation along this axis was primarily driven by site 12, a site of origin

of the western range expansion route. 

It is noteworthy also that these signatures of genetic structure and climate do not appear to reflect

measurable selection at individual SNPs, at least as could be robustly detected in the data, and

this suggests a highly polygenic signature of divergence. Nonetheless, genome-wide divergence

associated with environmental variables may reflect patterns of local adaptation if selected traits

are highly polygenic (Pritchard & Rienzo, 2010), patterns of genotype-phenotype matching are

complex  (Goldstein et al., 2010), or if environmental selection at the population level acts on

gene frequencies rather than simple allelic substitution within individuals (e.g., (Lancaster et al.,

2017)).  Accordingly,  gradient  forest  analysis  revealed  that  genome-wide  variation  in  allele

frequencies across the study were nearly linearly correlated with temperature during warm and

rainy seasons, as well  as annual thermal variability (Fig. 6). However, latitude (i.e.,  distance

from the range core) and population density (associated with levels of admixture) also predicted

allele  frequency changes,  indicating  that,  as expected during an active  range expansion,  that

gradients in allele frequency are likely driven by both adaptive and neutral processes.

Determinants of directional gene flow and admixture

We found evidence for admixture from different colonisation routes, and further evidence that

this admixture provided a fitness benefit in the colonised region, with sites receiving the most

migrants having both high heterozygosity (Table 1) and high population density (Fig. 5, Table

2). Note particularly that sites with highest heterozygosity and population density (sites 1, 2, and
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4) are also situated at the confluence of the eastern and western colonisation routes (Figure 1). A

fitness  benefit  from  admixture  has  previously  been  observed  during  range  expansions  and

invasions  (Keller  et  al.,  2014),  and our results  suggest  that  admixture is  likely an important

process  driving  population  growth rates  during native  range expansions.  The gradient  forest

analysis further suggests that allelic turnover is correlated with population density (Fig. 5), which

implies that admixture between lineages from multiple colonisation routes may be involved in

driving changes in both allele frequencies and population densities at the range limit, and that

admixed populations, while exhibiting low structure, may contain novel allelic combinations in

support of further adaptation as the range shifts continues to progress northward. 

We detected  significantly  higher  rates  of  directional  gene  flow between  sites  that  are  more

similar in thermal regimes during the warmest quarter (Fig 4b), after accounting for effects of

geographic distance between sites. This suggests that local adaptation or acclimation to climatic

conditions at an individual’s natal site has a strong effect on its colonisation success of a new

site.  Despite the ubiquity of model predictions which assume that colonisation events follow

climate isoclines, empirical evidence that climatic similarity from the source population affects

colonisation success is equivocal (Maron, 2006). Our results suggest that, despite the widespread

and rapid movement of  I. elegans into regions characterised by cooler and dryer climates, and

with changes in patterns of thermal variability, that expansion rates are generally greatest among

more climatically matched sites. Climatic differences among even closely-adjacent colonisation

sites may present a significant barrier  to gene flow, allowing local adaptation to occur. This

result  provides  some  additional,  albeit  indirect  support  for  the  hypothesis  that  the  diverse
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ecological  niches  provided by rugged terrain  offer  greater  opportunities  for  local  adaptation

within the expansion zone. 

Conclusions

Results of this study highlight the complex interaction between colonisation dynamics, gene flow

and adaptation during climate change-mediated range shifts. We find some evidence that local

adaptation may be occurring within recently colonised populations of the range shifting species I.

elegans, and this is facilitated by topographic complexity in the region over which the ongoing

latitudinal and elevational range shift is occurring. Topographic complexity drives high spatial

heterogeneity of local thermal variability regimes, imposing particularly strong pressure for local

adaptation. Simultaneously, complex terrain allows for sufficient reductions in directional gene

flow for  selection  to  oppose it,  at  least  in  relatively  isolated  populations  (Fig.  4).  Thus our

combined data  suggests that  mountainous regions can support the opportunity for adaptation

during range shifts. Although spatial distances across elevational expansions are often shorter

than  for  latitudinal  expansions,  the  current  results  suggest  that  steep  climatic  gradients  and

rugged topography in mountainous regions can be effective drivers of both divergent selection

regimes and reduced gene flow. As most contemporary latitudinal range shifts are occurring over

relatively short geographic distances (Chen et al., 2011a), our results suggest that in the absence

of topographic or other forms of landscape complexity,  latitudinal expansion routes may not

necessarily  provide  sufficient  barriers  to  gene  flow  to  allow  for  local  adaption  during  the

expansion.
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Figure 1: Location of each damselfly population, with topography of the study area 
(NortheastScotland) depicted. Arrow thicknesses indicate the incidence and direction of 
significant gene flow ( Fst )between populations, where the strength of Fst varies between ᵠ ᵠ
0.0008 and 0.07(corresponding to thickness of each arrow).

Figure 2: Membership probability to each of the 12-predefined populations for each genotyped 
individual.Most individuals exhibit equal probability of membership across the sites, but 
approximately 3/4 of the sampled individuals from each of populations 7, 8, and 12 show signals 
of site-specific genomic differentiation.

Figure 3: Principal components from DAPC analysis, depicting clustering of individual 
genotypes, where the X axis depicts PC1, while the Y axis depicts PC2. Coloured rings indicate 
populations, with each population identified by its number label.

Figure 4: Pairwise difference in gene low ( Fst) are plotted against A) the pairwise difference in ᵠ
density of Ischnura elegans between populations, and B) pairwise difference in mean 
temperature in the warmest quarter (Bio 7) between populations.

Figure 5: Accuracy and R2 importance of environmental parameters in determining gene 
frequency turnover from gradient forest analysis.

Figure 6: Mean increase in cumulative importance of the top 5 most important predictorvariables
of allelic turnover from the gradient forest models.
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Table1 
Geographic position, elevation, density of Ischnura elegans, and population heterozygosity of 
SNP data at our study sites.

Site Latitude Elevation 
(m)

Ischnura
elegans
Density

Heterozygosity

1 57.15618 188 1.255 0.563
2 57.26532 203 0.708 0.233
3 56.648 84 0.468 0.323
4 56.73116 403 1.133 0.299
5 56.56895 50 1.06 0.289
6 57.01947 93 0.511 0.217
7 57.18623 253 0.687 0.251
8 56.74228 249 0.175 0.189
9 56.54172 9 0.518 0.277
10 57.52185 66 0.158 0.308
11 57.67603 3 0.25 0.445
12 56.6119 119 0.125 0.162
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Table 2 
Correlations between the principal components of the detrended correspondence analysis and the
environmental variables, highlighting the correlation between genetic differentiation between 
populations and the environment. Correlations with values of R2 above 0.10 are highlighted in 
bold.

PC2 PC1
Effect R2 Effect R2

Ischnura elegans 
Density 

0.4412 -0.0656 -0.7974 -0.05063

Annual Mean 
Temperature 

-0.01568 -0.08344 0.03164 -0.07038

Mean Diurnal Range -0.4348
0.233

-0.07967 -0.09509

Min Temperature of 
Coldest Month

-0.01829 -0.05175 0.01508 -0.08559

Temperature Annual 
Range 

0.02303 0.002732 0.003596 -0.0989

Mean Temperature of 
Driest Quarter

0.01418 3.297e-05 0.03141 0.1157

BIO10 = Mean 
Temperature of 
Warmest Quarter

0.02661 -0.06667 0.06600 -0.009929

BIO12 = Annual 
Precipitation

0.0009961 -0.07967 0.005807
0.2035

Precipitation of 
Wettest Month

0.006161 -0.08598 0.04710
0.2601
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	0.233
	0.2035
	0.2601

