References
Arthaud, F., Vallod, D., Robin, J., & Bornette, G. (2012).
Eutrophication and drought disturbance shape functional diversity and
life-history traits of aquatic plants in shallow lakes. Aquatic
Sciences, 74, 471-481.
Bansal, S., & Sheley, R. L. (2016). Annual grass invasion in sagebrush
steppe: the relative importance of climate, soil properties and biotic
interactions. Oecologia, 181, 543-557.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear
mixed-effects models using lme4. arXiv preprint arXiv:1406.5823.
Bellard, C., Leroy, B., Thuiller, W., Rysman, J. F., & Courchamp, F.
(2016). Major drivers of invasion risks throughout the world. Ecosphere,
7(3), e01241.
Belote, R. T., & Weltzin, J. F. (2006). Interactions between two
codominant, invasive plants in the understory of a temperate deciduous
forest. Biological Invasions, 8(8), 1629–1641.
Bohl Stricker, K., & Stiling, P.
(2014). Release from herbivory does not confer invasion success forEugenia uniflora in Florida. Oecologia, 174, 817-826.
Bornette, G., & Puijalon, S. (2011). Response of aquatic plants to
abiotic factors: a review. Aquatic sciences, 73, 1-14.
Cao C., Wang S., Li J., Zhao H., Shen W., & Xie Y. (2021) MODIS-based
monitoring of spatial distribution of trophic status in 144 key lakes
and reservoirs of China in summer of 2018. Journal of Lake Sciences,
33(2), 405-413.
Capers, R. S., Selsky, R.,
Bugbee, G. J., & White, J. C. (2007). Aquatic plant community
invasibility and scale‐dependent patterns in native and invasive species
richness. Ecology, 88(12), 3135-3143.
Carpenter, S. R., Stanley, E. H., & Vander Zanden, M. J. (2011). State
of the world’s freshwater ecosystems: physical, chemical, and biological
changes. Annual review of Environment and Resources, 36, 75-99.
Catford, J. A., Kalisz, S., Simberloff, D., & Wardle, D. A. (2017). A
framework for understanding human-driven vegetation change. Oikos 126,
1687-1698.
Catford, J. A., Vesk, P. A., Richardson, D. M., & Pyšek, P. (2012).
Quantifying levels of biological invasion: towards the objective
classification of invaded and invasible ecosystems. Global Change
Biology, 18(1), 44-62.
Center, T. D., Van, T. K., Dray Jr, F. A., Franks, S. J., Rebelo, M. T.,
Pratt, P. D., & Rayamajhi, M. B. (2005). Herbivory alters competitive
interactions between two invasive aquatic plants. Biological Control,
33(2), 173-185.
Coetzee, J. A., Hill, M. P., Byrne, M. J., & Bownes, A. (2011). A
review of the biological control programmes on Eichhornia
crassipes (C. mart.) solms (Pontederiaceae), Salvinia molesta DS
Mitch. (Salviniaceae), Pistia stratiotes L.(Araceae),Myriophyllum aquaticum (vell.) verdc.(Haloragaceae) andAzolla filiculoides Lam.(Azollaceae) in South Africa. African
Entomology, 19(1), 451-468.
Cook, C. D. K., G. J. Gut, E. M. Rix, J. Schneller, and M. Seitz. (1974)
Water Plants of the World. Bulletin of the Torrey botanical club
102:282.
Cushman, J. H., Lortie, C. J., & Christian, C. E. (2011). Native
herbivores and plant facilitation mediate the performance and
distribution of an invasive exotic grass. Journal of Ecology, 99(2),
524–531.
Davis, M. A. (2009). Invasion biology. Oxford University Press on
Demand.
Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I.,
Knowler, D. J., Lévêque, C., … & Sullivan, C. A. (2006). Freshwater
biodiversity: importance, threats, status and conservation challenges.
Biological reviews, 81(2), 163-182.
Edwards, D., & Musil, C. J. (1975). Eichhornia crassipes in
South Africa-a general review. Journal of the Limnological Society of
southern Africa, 1(1), 23-27.
Eschtruth, A. K., & Battles, J. J. (2009). Assessing the relative
importance of disturbance, herbivory, diversity, and propagule pressure
in exotic plant invasion. Ecological Monographs, 79(2), 265-280.
Fan, S., Yu, H., Dong, X., Wang, L., Chen, X., Yu, D., & Liu, C.
(2016). Invasive plant Alternanthera philoxeroides suffers more
severe herbivory pressure than native competitors in recipient
communities. Scientific reports, 6(1), 1-10.
Fang, J., Wang, X., Shen, Z., Tang, Z., He, J., Yu, D., … & Guo, Z.
(2009). Methods and protocols for plant community inventory.
Biodiversity Science, 17(6), 533-548.
Fleming, J. P., Wersal, R. M., Madsen, J. D., & Dibble, E. D. (2021).
Weak non-linear influences of biotic and abiotic factors on invasive
macrophyte occurrence. Aquatic Invasions, 16(2).
Flory, S. L., & Bauer, J. T. (2014). Experimental evidence for indirect
facilitation among invasive plants. Journal of Ecology, 102(1), 12-18.
Gallardo, B., Clavero, M., Sánchez, M. I., & Vilà, M. (2016). Global
ecological impacts of invasive species in aquatic ecosystems. Global
change biology,22(1), 151-163.
Gallego, I., Pérez-Martínez, C., Sánchez-Castillo, P. M.,
Fuentes-Rodríguez, F., Juan, M., & Casas, J. J. (2015). Physical,
chemical, and management-related drivers of submerged macrophyte
occurrence in Mediterranean farm ponds. Hydrobiologia, 762(1), 209-222.
Gerhardt, F., & Collinge, S. K. (2003). Exotic plant invasions of
vernal pools in the Central Valley of California, USA. Journal of
Biogeography, 30(7), 1043-1052.
Gillard, M., G. Thiebaut, C. Deleu & B. Leroy, 2017. Present and future
distribution of three aquatic plants taxa across the world: decrease in
native and increase in invasive ranges. Biological Invasions 19:
2159-2170.
Gosper, C. R., Prober, S. M., Yates, C. J., & Scott, J. K. (2015).
Combining asset-and species-led alien plant management priorities in the
world’s most intact Mediterranean-climate landscape. Biodiversity and
Conservation, 24(11), 2789-2807.
Hautier, Y., Niklaus, P. A., & Hector, A. (2009). Competition for light
causes plant biodiversity loss after eutrophication. Science, 324(5927),
636-638.
Henry-Silva, G. G., Camargo, A. F., & Pezzato, M. M. (2008). Growth of
free-floating aquatic macrophytes in different concentrations of
nutrients. Hydrobiologia, 610, 153-160.
Hoveka, L. N., Bezeng, B. S., Yessoufou, K., Boatwright, J. S., & Van
der Bank, M. (2016). Effects of climate change on the future
distributions of the top five freshwater invasive plants in South
Africa. South African Journal of Botany, 102, 33-38.
Hill, M. P., Coetzee, J. A., Martin, G. D., Smith, R., & Strange, E. F.
(2020) Invasive alien aquatic plants in South African freshwater
ecosystems. In Biological Invasions in South Africa (pp. 97-114).
Springer, Cham.
Hortal, J., Roura‐Pascual, N., Sanders, N. J., & Rahbek, C.
Understanding (insect) species distributions across spatial scales.
Ecography 33, 51-53 (2010).
Hu, J., Yu, H., Li, Y., Wang, J., Lv, T., Liu, C., & Yu, D. (2021).
Variation in resource allocation strategies and environmental driving
factors for different life-forms of aquatic plants in cold temperate
zones. Journal of Ecology, 109(8), 3046-3059.
Hussner, A. (2009). Growth and photosynthesis of four invasive aquatic
plant species in Europe. Weed Research, 49(5), 506-515.
Hussner, A. (2012). Alien aquatic plant species in European countries.
Weed research, 52(4), 297-306.
Hussner, A., Heidbüchel, P., Coetzee, J., & Gross, E. M. (2021). From
introduction to nuisance growth: a review of traits of alien aquatic
plants which contribute to their invasiveness. Hydrobiologia, 848(9),
2119-2151.
Jayanth, K. P. (1988). Successful
biological control of water hyacinth (Eichhornia crassipes ) byNeochetina eichhorniae (Coleoptera: Curculionidae) in Bangalore,
India. International Journal of Pest Management, 34(3), 263-266.
Julien, M. H., Skarratt, B., &
Maywald, G. F. (1995). Potential geographical distribution of alligator
weed and its biological control by Agasicles hygrophila . Journal
of Aquatic Plant Management, 33(1), 55-60.
Kuebbing, S. E., Nuñez, M. A., & Simberloff, D. (2013). Current
mismatch between research and conservation efforts: the need to study
co-occurring invasive plant species. Biological Conservation, 160,
121-129.
Kuebbing, S. E., & Nuñez, M. A. (2015). Negative, neutral, and positive
interactions among nonnative plants: patterns, processes, and management
implications. Global Change Biology, 21(2), 926-934.
Lefcheck, J. S. (2016). piecewiseSEM: Piecewise structural equation
modelling in r for ecology, evolution, and systematics. Methods in
Ecology and Evolution, 7(5), 573-579.
Lefcheck, J. S. (2019). Structural equation modeling in R for ecology
and evolution.
Levine, J. M., Adler, P. B., & Yelenik, S. G. (2004). A meta‐analysis
of biotic resistance to exotic plant invasions. Ecology letters, 7(10),
975-989.
Li, Z., He, L., Zhang, H., Urrutia‐Cordero, P., Ekvall, M. K.,
Hollander, J., & Hansson, L. A. (2017). Climate warming and heat waves
affect reproductive strategies and interactions between submerged
macrophytes. Global change biology, 23(1), 108-116.
Lu, X., & Ding, J. (2012). History of exposure to herbivores increases
the compensatory ability of an invasive plant. Biological Invasions,
14(3), 649-658.
Maron, J. L., & Vila, M. (2001). When do herbivores affect plant
invasion? Evidence for the natural enemies and biotic resistance
hypotheses. Oikos, 95(3), 361-373.
Merow, C., Bois, S. T., Allen, J. M., Xie, Y., & Silander Jr, J. A.
(2017). Climate change both facilitates and inhibits invasive plant
ranges in New England. Proceedings of the National Academy of Sciences,
114(16), E3276-E3284.
Michelan, T. S., Thomaz, S. M., & Bini, L. M. (2013). Native macrophyte
density and richness affect the invasiveness of a tropical Poaceae
species. PLoS One, 8(3), e60004.
Milbau, A., Stout, J. C., Graae, B. J., & Nijs, I. (2009). A
hierarchical framework for integrating invasibility experiments
incorporating different factors and spatial scales. Biological
Invasions, 11(4), 941-950.
Molina-Montenegro, M. A., Badano, E. I., & Cavieres, L. A. (2008).
Positive interactions among plant species for pollinator service:
Assessing the ‘magnet species’ concept with invasive species. Oikos,
117(12), 1833–1839.
O’Hare, M. T., Baattrup-Pedersen,
A., Baumgarte, I., Freeman, A., Gunn, I. D., Lázár, A. N., … & Bowes,
M. J. (2018). Responses of aquatic plants to eutrophication in rivers: a
revised conceptual model. Frontiers in plant science, 9, 451.
Pan, X., Geng, Y., Sosa A. J., Zhang, W., Li, B., & Chen J. (2007).
Invasive Alternanthera philoxeroides : biology, ecology and
management. Journal of Systematics and Evolution, 45(6), 884.
Parker, J. D., & Hay, M. E. (2005). Biotic resistance to plant
invasions? Native herbivores prefer non-native plants. Ecology Letters,
8(9), 959-967.
Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of
climate change on the distribution of species: are bioclimate envelope
models useful? Global ecology and biogeography, 12(5), 361-371.
Petruzzella, A., Manschot, J., van Leeuwen, C. H., Grutters, B., &
Bakker, E. S. (2018). Mechanisms of invasion resistance of aquatic plant
communities. Frontiers in plant science, 9, 134.
Quinn, L. D., C. Jarnevich, G. W. Chong & P. H. Evangelista, 2011.
Effects of land use and environment on alien and native macrophytes:
lessons from a large-scale survey of Australian rivers. Diversity and
Distribution 17: 132–143.
R Development Core Team. (2022). R: a language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna,
Austria.
Rahel, F. J., & Olden, J. D. (2008). Assessing the effects of climate
change on aquatic invasive species. Conservation biology, 22(3),
521-533.
Ribas, L. G. D. S., Cunha, E. R., Vitule, J. R. S., Mormul, R. P.,
Thomaz, S. M., & Padial, A. A. (2017). Biotic resistance by snails and
fish to an exotic invasive aquatic plant. Freshwater Biology, 62(7),
1266-1275.
Rinke, K., Keller, P. S., Kong, X., Borchardt, D., & Weitere, M.
(2019). Ecosystem services from inland waters and their aquatic
ecosystems. Atlas of ecosystem services: Drivers, risks, and societal
responses, 191-195.
Salgado, J., M. I. Vélez, L. C. Caceres-Torres, J. A. VillegasIbagon, L.
C. Bernal-Gonzalez, L. Lopera-Congote, N. M. Martinez-Medina & C.
González-Arango, 2019. Long term habitat degradation drives neotropical
macrophyte species loss while assisting the spread of invasive plant
species. Frontiers in Ecology and Evolution 7: 140.
Santos, M. J., Anderson, L. W., & Ustin, S. L. (2011). Effects of
invasive species on plant communities: an example using submersed
aquatic plants at the regional scale. Biological Invasions, 13, 443-457.
Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E.,
Jeschke, J. M., … & Essl, F. (2017). No saturation in the
accumulation of alien species worldwide. Nature communications, 8(1),
1-9.
Simberloff, D. (2006). Invasional meltdown 6 years later: important
phenomenon, unfortunate metaphor, or both? Ecology Letters, 9(8),
912-919.
Silveira, M. J., Chollet, S., Thiébaut, G., & Thomaz, S. M. (2018).
Abiotic factors, not herbivorous pressure, are primarily responsible for
the performance of an invasive aquatic plant. In Annales de
Limnologie-International Journal of Limnology (Vol. 54, p. 12). EDP
Sciences.
Soti, P. G., & Volin, J. C. (2010). Does water hyacinth
(Eichhornia crassipes ) compensate for simulated defoliation?
Implications for effective biocontrol. Biological control, 54(1), 35-40.
Strayer, D. L. (2010). Alien species in fresh waters: ecological
effects, interactions with other stressors, and prospects for the
future. Freshwater biology, 55, 152-174.
Szymura, T. H., Szymura, M., Zając, M., & Zając, A. (2018). Effect of
anthropogenic factors, landscape structure, land relief, soil and
climate on risk of alien plant invasion at regional scale. Science of
the Total Environment, 626, 1373-1381.
Tecco, P. A., Diaz, S., Gurvich, D. E., Perez-Harguindeguy, N., Cabido,
M., & Bertone, G. A. (2007). Facilitation and interference underlying
the association between the woody invaders Pyracantha
angustifolia and Ligustrum lucidum . Applied Vegetation Science,
10(2), 211–218.
Teixeira, M. C., Bini, L. M., & Thomaz, S. M. (2017). Biotic resistance
buffers the effects of nutrient enrichment on the success of a highly
invasive aquatic plant. Freshwater Biology, 62(1), 65-71.
Thomaz, S. M., Mormul, R. P., & Michelan, T. S. (2015). Propagule
pressure, invasibility of freshwater ecosystems by macrophytes and their
ecological impacts: a review of tropical freshwater ecosystems.
Hydrobiologia, 746, 39-59.
Trebitz, A. S. & D. L. Taylor, 2007. Exotic and invasive aquatic plants
in great lakes coastal wetlands: distribution and relation to watershed
land use and plant richness and cover. Journal of Great Lakes Research
33: 705–721.
Van Kleunen, M., Weber, E., & Fischer, M. (2010). A meta-analysis of
trait differences between invasive and non-invasive plant species.
Ecology letters,13(2), 235-245.
Walker, S., Bastow Wilson, J., & Lee, W. G. (2005). Does fluctuating
resource availability increase invasibility? Evidence from field
experiments in New Zealand short tussock grassland. Biological
Invasions, 7, 195-211.
Walsh C, &MacNally R. Hierarchical partitioning. An Online Reference
Version, 2015: 1.0-4.
Wang, H., Wang, Q., Bowler, P. A., & Xiong, W. (2016). Invasive aquatic
plants in China. Aquatic Invasions, 11(1).
Wersal, R. M., & Madsen, J. D.
(2011). Comparative effects of water level variations on growth
characteristics of Myriophyllum aquaticum . Weed Research, 51(4),
386-393.
Xie, D., Yu, D., Yu, L. F., & Liu, C. H. Asexual propagations of
introduced exotic macrophytes Elodea nuttallii ,Myriophyllum aquaticum , and M. propinquum are improved by
nutrient-rich sediments in China. Hydrobiologia 655, 37-47
(2010).
Yang, S., Ferrari, M. J., & Shea, K. (2011). Pollinator behavior
mediates negative interactions between two congeneric invasive plant
species. The American Naturalist, 177(1), 110–118.
Yu, H., Wang, L., Liu, C., & Fan, S. (2018). Coverage of native plants
is key factor influencing the invasibility of freshwater ecosystems by
exotic plants in China. Frontiers in Plant Science, 9, 250.
Yu H. (2017) The Flora, Distribution pattern, Diffusion pathway of Alien
Species of Aquatic Plants in China. Ph.D. thesis, Wuhan University.
Yu, H., & Fan, S. (2018). Differences in physiological traits and
resistances of Alternanthera philoxeroides after herbivory by
generalists and specialists. Aquatic Ecology, 52(4), 323-332.
Zhang, X., Yu, H., Yu, H., Liu,
C., Fan, S., & Yu, D. (2021a). Highly competitive native aquatic
species could suppress the growth of invasive aquatic species with
similar traits. Biological Invasions, 23, 267-280.
Zhang, X., Yu, H., Lv, T., Yang, L., Liu, C., Fan, S., & Yu, D.
(2021b). Effects of different scenarios of temperature rise and
biological control agents on interactions between two noxious invasive
plants. Diversity and Distributions, 27(12), 2300-2314.
Zhang, Z., & van Kleunen, M. (2019). Common alien plants are more
competitive than rare natives but not than common natives. Ecology
Letters, 22(9), 1378-1386.