References
Arthaud, F., Vallod, D., Robin, J., & Bornette, G. (2012). Eutrophication and drought disturbance shape functional diversity and life-history traits of aquatic plants in shallow lakes. Aquatic Sciences, 74, 471-481.
Bansal, S., & Sheley, R. L. (2016). Annual grass invasion in sagebrush steppe: the relative importance of climate, soil properties and biotic interactions. Oecologia, 181, 543-557.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823.
Bellard, C., Leroy, B., Thuiller, W., Rysman, J. F., & Courchamp, F. (2016). Major drivers of invasion risks throughout the world. Ecosphere, 7(3), e01241.
Belote, R. T., & Weltzin, J. F. (2006). Interactions between two codominant, invasive plants in the understory of a temperate deciduous forest. Biological Invasions, 8(8), 1629–1641.
Bohl Stricker, K., & Stiling, P. (2014). Release from herbivory does not confer invasion success forEugenia uniflora in Florida. Oecologia, 174, 817-826.
Bornette, G., & Puijalon, S. (2011). Response of aquatic plants to abiotic factors: a review. Aquatic sciences, 73, 1-14.
Cao C., Wang S., Li J., Zhao H., Shen W., & Xie Y. (2021) MODIS-based monitoring of spatial distribution of trophic status in 144 key lakes and reservoirs of China in summer of 2018. Journal of Lake Sciences, 33(2), 405-413.
Capers, R. S., Selsky, R., Bugbee, G. J., & White, J. C. (2007). Aquatic plant community invasibility and scale‐dependent patterns in native and invasive species richness. Ecology, 88(12), 3135-3143.
Carpenter, S. R., Stanley, E. H., & Vander Zanden, M. J. (2011). State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annual review of Environment and Resources, 36, 75-99.
Catford, J. A., Kalisz, S., Simberloff, D., & Wardle, D. A. (2017). A framework for understanding human-driven vegetation change. Oikos 126, 1687-1698.
Catford, J. A., Vesk, P. A., Richardson, D. M., & Pyšek, P. (2012). Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems. Global Change Biology, 18(1), 44-62.
Center, T. D., Van, T. K., Dray Jr, F. A., Franks, S. J., Rebelo, M. T., Pratt, P. D., & Rayamajhi, M. B. (2005). Herbivory alters competitive interactions between two invasive aquatic plants. Biological Control, 33(2), 173-185.
Coetzee, J. A., Hill, M. P., Byrne, M. J., & Bownes, A. (2011). A review of the biological control programmes on Eichhornia crassipes (C. mart.) solms (Pontederiaceae), Salvinia molesta DS Mitch. (Salviniaceae), Pistia stratiotes L.(Araceae),Myriophyllum aquaticum (vell.) verdc.(Haloragaceae) andAzolla filiculoides Lam.(Azollaceae) in South Africa. African Entomology, 19(1), 451-468.
Cook, C. D. K., G. J. Gut, E. M. Rix, J. Schneller, and M. Seitz. (1974) Water Plants of the World. Bulletin of the Torrey botanical club 102:282.
Cushman, J. H., Lortie, C. J., & Christian, C. E. (2011). Native herbivores and plant facilitation mediate the performance and distribution of an invasive exotic grass. Journal of Ecology, 99(2), 524–531.
Davis, M. A. (2009). Invasion biology. Oxford University Press on Demand.
Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., … & Sullivan, C. A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological reviews, 81(2), 163-182.
Edwards, D., & Musil, C. J. (1975). Eichhornia crassipes in South Africa-a general review. Journal of the Limnological Society of southern Africa, 1(1), 23-27.
Eschtruth, A. K., & Battles, J. J. (2009). Assessing the relative importance of disturbance, herbivory, diversity, and propagule pressure in exotic plant invasion. Ecological Monographs, 79(2), 265-280.
Fan, S., Yu, H., Dong, X., Wang, L., Chen, X., Yu, D., & Liu, C. (2016). Invasive plant Alternanthera philoxeroides suffers more severe herbivory pressure than native competitors in recipient communities. Scientific reports, 6(1), 1-10.
Fang, J., Wang, X., Shen, Z., Tang, Z., He, J., Yu, D., … & Guo, Z. (2009). Methods and protocols for plant community inventory. Biodiversity Science, 17(6), 533-548.
Fleming, J. P., Wersal, R. M., Madsen, J. D., & Dibble, E. D. (2021). Weak non-linear influences of biotic and abiotic factors on invasive macrophyte occurrence. Aquatic Invasions, 16(2).
Flory, S. L., & Bauer, J. T. (2014). Experimental evidence for indirect facilitation among invasive plants. Journal of Ecology, 102(1), 12-18.
Gallardo, B., Clavero, M., Sánchez, M. I., & Vilà, M. (2016). Global ecological impacts of invasive species in aquatic ecosystems. Global change biology,22(1), 151-163.
Gallego, I., Pérez-Martínez, C., Sánchez-Castillo, P. M., Fuentes-Rodríguez, F., Juan, M., & Casas, J. J. (2015). Physical, chemical, and management-related drivers of submerged macrophyte occurrence in Mediterranean farm ponds. Hydrobiologia, 762(1), 209-222.
Gerhardt, F., & Collinge, S. K. (2003). Exotic plant invasions of vernal pools in the Central Valley of California, USA. Journal of Biogeography, 30(7), 1043-1052.
Gillard, M., G. Thiebaut, C. Deleu & B. Leroy, 2017. Present and future distribution of three aquatic plants taxa across the world: decrease in native and increase in invasive ranges. Biological Invasions 19: 2159-2170.
Gosper, C. R., Prober, S. M., Yates, C. J., & Scott, J. K. (2015). Combining asset-and species-led alien plant management priorities in the world’s most intact Mediterranean-climate landscape. Biodiversity and Conservation, 24(11), 2789-2807.
Hautier, Y., Niklaus, P. A., & Hector, A. (2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324(5927), 636-638.
Henry-Silva, G. G., Camargo, A. F., & Pezzato, M. M. (2008). Growth of free-floating aquatic macrophytes in different concentrations of nutrients. Hydrobiologia, 610, 153-160.
Hoveka, L. N., Bezeng, B. S., Yessoufou, K., Boatwright, J. S., & Van der Bank, M. (2016). Effects of climate change on the future distributions of the top five freshwater invasive plants in South Africa. South African Journal of Botany, 102, 33-38.
Hill, M. P., Coetzee, J. A., Martin, G. D., Smith, R., & Strange, E. F. (2020) Invasive alien aquatic plants in South African freshwater ecosystems. In Biological Invasions in South Africa (pp. 97-114). Springer, Cham.
Hortal, J., Roura‐Pascual, N., Sanders, N. J., & Rahbek, C. Understanding (insect) species distributions across spatial scales. Ecography 33, 51-53 (2010).
Hu, J., Yu, H., Li, Y., Wang, J., Lv, T., Liu, C., & Yu, D. (2021). Variation in resource allocation strategies and environmental driving factors for different life-forms of aquatic plants in cold temperate zones. Journal of Ecology, 109(8), 3046-3059.
Hussner, A. (2009). Growth and photosynthesis of four invasive aquatic plant species in Europe. Weed Research, 49(5), 506-515.
Hussner, A. (2012). Alien aquatic plant species in European countries. Weed research, 52(4), 297-306.
Hussner, A., Heidbüchel, P., Coetzee, J., & Gross, E. M. (2021). From introduction to nuisance growth: a review of traits of alien aquatic plants which contribute to their invasiveness. Hydrobiologia, 848(9), 2119-2151.
Jayanth, K. P. (1988). Successful biological control of water hyacinth (Eichhornia crassipes ) byNeochetina eichhorniae (Coleoptera: Curculionidae) in Bangalore, India. International Journal of Pest Management, 34(3), 263-266.
Julien, M. H., Skarratt, B., & Maywald, G. F. (1995). Potential geographical distribution of alligator weed and its biological control by Agasicles hygrophila . Journal of Aquatic Plant Management, 33(1), 55-60.
Kuebbing, S. E., Nuñez, M. A., & Simberloff, D. (2013). Current mismatch between research and conservation efforts: the need to study co-occurring invasive plant species. Biological Conservation, 160, 121-129.
Kuebbing, S. E., & Nuñez, M. A. (2015). Negative, neutral, and positive interactions among nonnative plants: patterns, processes, and management implications. Global Change Biology, 21(2), 926-934.
Lefcheck, J. S. (2016). piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7(5), 573-579.
Lefcheck, J. S. (2019). Structural equation modeling in R for ecology and evolution.
Levine, J. M., Adler, P. B., & Yelenik, S. G. (2004). A meta‐analysis of biotic resistance to exotic plant invasions. Ecology letters, 7(10), 975-989.
Li, Z., He, L., Zhang, H., Urrutia‐Cordero, P., Ekvall, M. K., Hollander, J., & Hansson, L. A. (2017). Climate warming and heat waves affect reproductive strategies and interactions between submerged macrophytes. Global change biology, 23(1), 108-116.
Lu, X., & Ding, J. (2012). History of exposure to herbivores increases the compensatory ability of an invasive plant. Biological Invasions, 14(3), 649-658.
Maron, J. L., & Vila, M. (2001). When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos, 95(3), 361-373.
Merow, C., Bois, S. T., Allen, J. M., Xie, Y., & Silander Jr, J. A. (2017). Climate change both facilitates and inhibits invasive plant ranges in New England. Proceedings of the National Academy of Sciences, 114(16), E3276-E3284.
Michelan, T. S., Thomaz, S. M., & Bini, L. M. (2013). Native macrophyte density and richness affect the invasiveness of a tropical Poaceae species. PLoS One, 8(3), e60004.
Milbau, A., Stout, J. C., Graae, B. J., & Nijs, I. (2009). A hierarchical framework for integrating invasibility experiments incorporating different factors and spatial scales. Biological Invasions, 11(4), 941-950.
Molina-Montenegro, M. A., Badano, E. I., & Cavieres, L. A. (2008). Positive interactions among plant species for pollinator service: Assessing the ‘magnet species’ concept with invasive species. Oikos, 117(12), 1833–1839.
O’Hare, M. T., Baattrup-Pedersen, A., Baumgarte, I., Freeman, A., Gunn, I. D., Lázár, A. N., … & Bowes, M. J. (2018). Responses of aquatic plants to eutrophication in rivers: a revised conceptual model. Frontiers in plant science, 9, 451.
Pan, X., Geng, Y., Sosa A. J., Zhang, W., Li, B., & Chen J. (2007). Invasive Alternanthera philoxeroides : biology, ecology and management. Journal of Systematics and Evolution, 45(6), 884.
Parker, J. D., & Hay, M. E. (2005). Biotic resistance to plant invasions? Native herbivores prefer non-native plants. Ecology Letters, 8(9), 959-967.
Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global ecology and biogeography, 12(5), 361-371.
Petruzzella, A., Manschot, J., van Leeuwen, C. H., Grutters, B., & Bakker, E. S. (2018). Mechanisms of invasion resistance of aquatic plant communities. Frontiers in plant science, 9, 134.
Quinn, L. D., C. Jarnevich, G. W. Chong & P. H. Evangelista, 2011. Effects of land use and environment on alien and native macrophytes: lessons from a large-scale survey of Australian rivers. Diversity and Distribution 17: 132–143.
R Development Core Team. (2022). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Rahel, F. J., & Olden, J. D. (2008). Assessing the effects of climate change on aquatic invasive species. Conservation biology, 22(3), 521-533.
Ribas, L. G. D. S., Cunha, E. R., Vitule, J. R. S., Mormul, R. P., Thomaz, S. M., & Padial, A. A. (2017). Biotic resistance by snails and fish to an exotic invasive aquatic plant. Freshwater Biology, 62(7), 1266-1275.
Rinke, K., Keller, P. S., Kong, X., Borchardt, D., & Weitere, M. (2019). Ecosystem services from inland waters and their aquatic ecosystems. Atlas of ecosystem services: Drivers, risks, and societal responses, 191-195.
Salgado, J., M. I. Vélez, L. C. Caceres-Torres, J. A. VillegasIbagon, L. C. Bernal-Gonzalez, L. Lopera-Congote, N. M. Martinez-Medina & C. González-Arango, 2019. Long term habitat degradation drives neotropical macrophyte species loss while assisting the spread of invasive plant species. Frontiers in Ecology and Evolution 7: 140.
Santos, M. J., Anderson, L. W., & Ustin, S. L. (2011). Effects of invasive species on plant communities: an example using submersed aquatic plants at the regional scale. Biological Invasions, 13, 443-457.
Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., … & Essl, F. (2017). No saturation in the accumulation of alien species worldwide. Nature communications, 8(1), 1-9.
Simberloff, D. (2006). Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? Ecology Letters, 9(8), 912-919.
Silveira, M. J., Chollet, S., Thiébaut, G., & Thomaz, S. M. (2018). Abiotic factors, not herbivorous pressure, are primarily responsible for the performance of an invasive aquatic plant. In Annales de Limnologie-International Journal of Limnology (Vol. 54, p. 12). EDP Sciences.
Soti, P. G., & Volin, J. C. (2010). Does water hyacinth (Eichhornia crassipes ) compensate for simulated defoliation? Implications for effective biocontrol. Biological control, 54(1), 35-40.
Strayer, D. L. (2010). Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater biology, 55, 152-174.
Szymura, T. H., Szymura, M., Zając, M., & Zając, A. (2018). Effect of anthropogenic factors, landscape structure, land relief, soil and climate on risk of alien plant invasion at regional scale. Science of the Total Environment, 626, 1373-1381.
Tecco, P. A., Diaz, S., Gurvich, D. E., Perez-Harguindeguy, N., Cabido, M., & Bertone, G. A. (2007). Facilitation and interference underlying the association between the woody invaders Pyracantha angustifolia and Ligustrum lucidum . Applied Vegetation Science, 10(2), 211–218.
Teixeira, M. C., Bini, L. M., & Thomaz, S. M. (2017). Biotic resistance buffers the effects of nutrient enrichment on the success of a highly invasive aquatic plant. Freshwater Biology, 62(1), 65-71.
Thomaz, S. M., Mormul, R. P., & Michelan, T. S. (2015). Propagule pressure, invasibility of freshwater ecosystems by macrophytes and their ecological impacts: a review of tropical freshwater ecosystems. Hydrobiologia, 746, 39-59.
Trebitz, A. S. & D. L. Taylor, 2007. Exotic and invasive aquatic plants in great lakes coastal wetlands: distribution and relation to watershed land use and plant richness and cover. Journal of Great Lakes Research 33: 705–721.
Van Kleunen, M., Weber, E., & Fischer, M. (2010). A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology letters,13(2), 235-245.
Walker, S., Bastow Wilson, J., & Lee, W. G. (2005). Does fluctuating resource availability increase invasibility? Evidence from field experiments in New Zealand short tussock grassland. Biological Invasions, 7, 195-211.
Walsh C, &MacNally R. Hierarchical partitioning. An Online Reference Version, 2015: 1.0-4.
Wang, H., Wang, Q., Bowler, P. A., & Xiong, W. (2016). Invasive aquatic plants in China. Aquatic Invasions, 11(1).
Wersal, R. M., & Madsen, J. D. (2011). Comparative effects of water level variations on growth characteristics of Myriophyllum aquaticum . Weed Research, 51(4), 386-393.
Xie, D., Yu, D., Yu, L. F., & Liu, C. H. Asexual propagations of introduced exotic macrophytes Elodea nuttallii ,Myriophyllum aquaticum , and M. propinquum are improved by nutrient-rich sediments in China. Hydrobiologia 655, 37-47 (2010).
Yang, S., Ferrari, M. J., & Shea, K. (2011). Pollinator behavior mediates negative interactions between two congeneric invasive plant species. The American Naturalist, 177(1), 110–118.
Yu, H., Wang, L., Liu, C., & Fan, S. (2018). Coverage of native plants is key factor influencing the invasibility of freshwater ecosystems by exotic plants in China. Frontiers in Plant Science, 9, 250.
Yu H. (2017) The Flora, Distribution pattern, Diffusion pathway of Alien Species of Aquatic Plants in China. Ph.D. thesis, Wuhan University.
Yu, H., & Fan, S. (2018). Differences in physiological traits and resistances of Alternanthera philoxeroides after herbivory by generalists and specialists. Aquatic Ecology, 52(4), 323-332.
Zhang, X., Yu, H., Yu, H., Liu, C., Fan, S., & Yu, D. (2021a). Highly competitive native aquatic species could suppress the growth of invasive aquatic species with similar traits. Biological Invasions, 23, 267-280.
Zhang, X., Yu, H., Lv, T., Yang, L., Liu, C., Fan, S., & Yu, D. (2021b). Effects of different scenarios of temperature rise and biological control agents on interactions between two noxious invasive plants. Diversity and Distributions, 27(12), 2300-2314.
Zhang, Z., & van Kleunen, M. (2019). Common alien plants are more competitive than rare natives but not than common natives. Ecology Letters, 22(9), 1378-1386.