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Abstract

This paper is concerned with the initial-boundary value problem for a nonlinear
parabolic equation with a small parameter. The existence of a boundary layer as the
parameter goes to zero is obtained together with the estimation on the thickness of the
boundary layer. The main result extends an earlier work of Frid and Shelukhin (1999).
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1 Introduction

In this paper, we study the asymptotic behavior as µ → 0+ of solutions of the initial-
boundary value problem for the parabolic equation:

∂tu = µ∂x

(
(|∂xu|2 + 1)

p−2
2 ∂xu

)
, (x, t) ∈ QT = (0, 1)× (0, T ),

u(0, t) = u1(t), u(1, t) = u2(t), t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ (0, 1),

(1.1)

where µ > 0, p > 1 and T > 0 are constants. Such problems appear in non-Newtonian fluids,
turbulent flows in porous media, glaciology and other contexts (cf. [1–3]). In the field of
viscous fluid, µ is the so-called viscous coefficient describing a nonlinear relation between the
internal stress σ(∂xu) = µ(|∂xu|2+1)

p−2
2 ∂xu and the deformation velocity ∂xu (u is the fluid

velocity), and it is noted that the cases p > 2, p = 2 and p < 2 physically correspond to where
the fluid is of dilatant type, Newtonian and pseudo-plastic type, respectively (cf. [1, 3, 4]).

In [5, Section 4], Frid and Shelukhin studied the boundary layer as the shear viscosity µ →
0 of solutions of initial-boundary value problem for the following Navier-Stokes equations of
incompressible flows with cylindrical symmetry:

∂tv = µ∂x

(
∂xv +

v

x

)
, 0 < a < x < b, t > 0,
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and

∂tw = µ
(
∂2
xw +

∂xw

x

)
, 0 < a < x < b, t > 0,

where µ is the viscosity coefficient, and v and w represent the angular velocity and axial
velocity respectively. They justified the zero viscosity limit as µ → 0+ and established the
value O(µα) with α ∈ (0, 1/2) for the boundary layer thickness. Motivated by their work,
the main purpose of this paper is to extend their result to problem (1.1) (see the following
Theorem 1.2).

It should be pointed out that the theory of boundary layers has been one of the funda-
mental and important issues in fluid dynamics since the seminal work by Prandtl in 1904
(cf. [6]). There are many papers dedicated to the questions of boundary layers, see for
instance [5, 7–11] for the Navier-Stokes equations, [12–14] for the MHD equations, [15–19]
for the primitive equations, and [20–22] for some nonlinear evolution equations. Moreover,
the boundary layer problem also arises in the theory of hyperbolic systems when parabolic
equations with small viscosity are applied as perturbations, see for instance [23–25].

Formally setting µ → 0 in (1.1), one obtains the following

∂tv(x, t) = 0, v(x, 0) = u0(x),

which implies that v(x, t) ≡ u0(x).
Now we define the concept of a BL-thickness based on the sprit of [5].

Definition 1.1. A function δ(µ) is called a BL-thickness for problem (1.1) with vanishing
µ if δ(µ) ↓ 0 as µ ↓ 0, and

lim
µ→0+

∥u− u0∥L∞(0,T ;L∞(δ(µ),1−δ(µ))) = 0,

inf lim
µ→0+

∥u− u0∥L∞(0,T ;L∞(0,1)) > 0.

Remark 1.1. Clearly, this definition does not determine the BL-thickness uniquely, since
any function δ∗(µ) satisfying the inequality δ∗(µ) ≥ δ(µ) is also a BL-thickness.

To make the proof of the existence of a BL-thickness simpler, we shall mainly discuss
problem (1.1) with the following initial data:

u0(x) ≡ 0, ∀x ∈ [0, 1]. (1.2)

The main result of this paper is as follows.

Theorem 1.2. Let p > 1 and u1(t), u2(t) ∈ C1[0, T ] with u1(0) = u2(0) = 0. Then
(a) For any µ ∈ (0, 1), problem (1.1) and (1.2) admits a unique classical solution u = uµ

satisfying, for some C > 0 independent of µ,
sup

0<t<T

∫ 1

0

|∂xu(x, t)|pdx ≤ Cµ
1−p
p ,

sup
0<t<T

∫ 1

0

u2(x, t)dx ≤ Cµ
1
p .

(1.3)

Moreover, if (u1, u2) ̸≡ (0, 0) in (0, T ), then
(b) Any function δ(µ) satisfying δ(µ) ↓ 0 and µ1/p/δ(µ) → 0 as µ ↓ 0 is a BL-thickness

for problem (1.1) and (1.2) with vanishing µ.
(c) Any function δ(µ) satisfying δ(µ) ↓ 0 and δ(µ) = o(µ1/p) as µ ↓ 0 is not a BL-

thickness of problem (1.1) and (1.2) with vanishing µ.

In Section 2, we will prove Theorem 1.2. A summary of the conclusions will be given in
Section 3.
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2 Proof of Theorem 1.2

Under the assumptions of Theorem 1.2, from Theorem 4.1 of Chapter VI in [26] it follows
that for any fixed µ > 0, problem (1.1) and (1.2) admits a unique classical solution u := uµ.
Moreover, ∥u∥L∞(QT ) ≤ M = max0≤t≤T (|u2(t)| + |u1(t)|) by the comparison theorem. Next
we will show the following Lemma 2.1, which will paly an important role in the proof of our
main results (i.e. Theorem 1.2).

In what follows, we use C to denote a positive generic constant independent of µ.

Lemma 2.1. Under the assumptions of Theorem 1.2, we have
sup

0<t<T

∫ 1

0

(
|∂xu|2 + 1

) p
2
dx+

∫ T

0

(
∥∂xu∥2L∞(0,1) + 1

) p−1
2
dt ≤ Cµ

1−p
p ,

sup
0<t<T

∫ 1

0

u2(x, t)dx+

∫ T

0

∫ 1

0

(∂tu)
2dxdt ≤ Cµ

1
p .

(2.1)

Proof. For convenience, denote Φ(s) by Φ(s) = (s2 + 1)(p−2)/2s. Multiplying (1.1)1 by
µ∂x(Φ(∂xu)) and integrating over Qt, we have

µ

∫ t

0

∫ 1

0

∂tu∂x(Φ(∂xu)) = µ2

∫ t

0

∫ 1

0

|∂x (Φ(∂xu)) |2dxdt. (2.2)

Using integration by parts and noticing u0 ≡ 0, we obtain

µ

∫ t

0

∫ 1

0

∂tu∂x (Φ(∂xu)) dxdt

=
µ

p
− µ

p

∫ 1

0

(
|∂xu|2 + 1

) p
2
dx+ µ

∫ t

0

(
∂tuΦ(∂xu)

)∣∣x=1

x=0
dt

≤ Cµ− µ

p

∫ 1

0

(
|∂xu|2 + 1

) p
2
dx+ Cµ

∫ t

0

(
∥∂xu∥2L∞(0,1) + 1

) p−1
2
dt.

(2.3)

Now we estimate the final term in the right hand side of (2.3). By the mean value theorem,
for every t ∈ (0, T ) there exists some ξt ∈ (0, 1) such that

∂xu(ξt, t) = u(1, t)− u(0, t) = u2(t)− u1(t),

so, for any constant q > 0, we obtain(
|∂xu(x, t)|2 + 1

) q
2
=
(
|∂xu(ξt, t)|2 + 1

) q
2
+

∫ x

ξt

∂x

(
|∂xu(x, t)|2 + 1

) q
2
dx

≤ C + C

∫ 1

0

∣∣∣(|∂xu|2 + 1
) q−2

2
∂xu∂

2
xu
∣∣∣dx

≤ C + C

∫ 1

0

∣∣∣(|∂xu|2 + 1
) p−2

2
∂2
xu
∣∣∣(|∂xu|2 + 1

) q−p+1
2

dx.

(2.4)

Noticing p > 1 and using the facts:
1 + (p− 2)

|∂xu|2

|∂xu|2 + 1
∈ [1, p− 1], (p > 2),

1 + (p− 2)
|∂xu|2

|∂xu|2 + 1
∈ [p− 1, 1], (1 < p ≤ 2),
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and

∂x (Φ(∂xu)) =
(
|∂xu|2 + 1

)(p−2)/2
[
1 + (p− 2)

|∂xu|2

|∂xu|2 + 1

]
∂2
xu, (2.5)

we have (
|∂xu|2 + 1

) p−2
2 |∂2

xu| ≤ C
(
|∂xu|2 + 1

) p−2
2

[
1 + (p− 2)

|∂xu|2

|∂xu|2 + 1

] ∣∣∂2
xu
∣∣

= C|∂x (Φ(∂xu)) |.

Substituting it into (2.4) yields(
|∂xu(x, t)|2 + 1

) q
2 ≤ C + C

∫ 1

0

|∂x (Φ(∂xu))|
(
|∂xu|2 + 1

) q−p+1
2

dx. (2.6)

Taking q = 3p−2
2

in (2.6) and using Hölder inequality, we obtain

(
∥∂xu∥2L∞(0,1) + 1

) 3p−2
4 ≤ C + C

(∫ 1

0

|∂x (Φ(∂xu))|2
) 1

2
(∫ 1

0

(
|∂xu|2 + 1

) p
2
dx

) 1
2

.

Consequently,(
∥∂xu∥2L∞(0,1) + 1

) p−1
2

≤ C + C

(∫ 1

0

∣∣∂x(Φ(U)
)∣∣2 dx) p−1

3p−2
(∫ 1

0

(
|∂xu|2 + 1

) p
2
dx

) p−1
3p−2

,

which together with Young inequality give

µ
(
∥∂xu∥2L∞(0,1) + 1

) p−1
2

≤ Cµ+ Cµ
1

3p−2

(
µ2

∫ 1

0

∣∣∂x(Φ(U)
)∣∣2 dx) p−1

3p−2
(
µ

∫ 1

0

(
|∂xu|2 + 1

)p/2
dx

) p−1
3p−2

≤ Cµ+ Cϵµ
1
p + ϵµ2

∫ 1

0

∣∣∂x(Φ(U)
)∣∣2 dx+ µ

∫ 1

0

(
|∂xu|2 + 1

) p
2
dx, ∀ϵ > 0.

(2.7)

Combining (2.7) with (2.2) and (2.3), taking a sufficient small ϵ > 0 and using Gronwall
inequality, we obtain

µ

∫ 1

0

(
|∂xu|2 + 1

) p
2
dx+ µ2

∫ t

0

∫ 1

0

|∂x
(
Φ(∂xu)

)
|2dxdt ≤ Cµ1/p, ∀t ∈ [0, T ].

It follows from (2.7) and (1.1)1 that

µ

∫ T

0

(
∥∂xu∥2L∞(0,1) + 1

) p−1
2
dt ≤ Cµ1/p, (2.8)

and ∫ T

0

∫ 1

0

(∂tu)
2dxdt = µ2

∫ T

0

∫ 1

0

|∂x
(
Φ(∂xu)

)
|2dxdt ≤ Cµ1/p.
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Multiplying (1.1)1 by u and integrating over Qt, we obtain∫ t

0

∫ 1

0

u∂tudxdt = µ

∫ t

0

∫ 1

0

u∂x (Φ(∂xu)) dxdt.

By using integration by parts and (2.8), we have∫ 1

0

u2dx =− 2µ

∫ t

0

∫ 1

0

Φ(∂xu)∂xudxdt+ 2µ

∫ t

0

Φ(∂xu)u
∣∣∣x=1

x=0
dt

≤Cµ

∫ t

0

(
∥∂xu∥2L∞(0,1) + 1

) p−1
2
dt ≤ Cµ

1
p ,

where we have used Φ(∂xu)∂xu ≥ 0. Thus, (2.1) is justified, and the proof is completed.

Denote φε for ε ∈ (0, 1) and ξδ for δ ∈ (0, 1/2) by

φε(s) =
√
s2 + ε2, ξδ(x) =


x, 0 ≤ x < δ,

δ, δ ≤ x < 1− δ,

1− x, 1− δ ≤ x ≤ 1.

It is easy to check that φε satisfies
|s| ≤ |φε(s)| ≤ |s|+ ε,

φ′′
ε(s) ≥ 0,

lim
ε→0

φ′
ε(s) = sgn(s), ∀s ∈ R,

where

sgn(s) =


1, s > 0,

0, s = 0,

− 1, s < 0.

Now we give the proof of Theorem 1.2 as follows.

Proof. For convenience, we write U = ux. Differentiating (1.1) with respect to x, we have

Ut = µ
(
Φ(U)

)
xx
, (2.9)

where Φ(s) = (s2+1)(p−2)/2s. Multiplying (2.9) by φ′
ε (Φ(U)) ξδ(x) and integrating over QT ,

we have∫ T

0

∫ 1

0

Utφ
′
ε (Φ(U)) ξδ(x)dxdt

= µ

∫ T

0

∫ 1

0

(
Φ(U)

)
xx
φ′
ε (Φ(U)) ξδ(x)dxdt

= −µ

∫ T

0

∫ 1

0

(
Φ(U)

)2
x
φ′′
ε(Φ(U))ξδ(x)dxdt− µ

∫ T

0

∫ 1

0

(
Φ(U)

)
x
φ′
ε (Φ(U)) ξ′δ(x)dxdt

=: I1 + I2.

(2.10)

Noticing φ′′
ε ≥ 0, we obtain

I1 ≤ 0. (2.11)
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Using integration by parts and noticing |φε(s)| ≤ |s|+ ε, we have

I2 =− µ

∫ T

0

∫ δ

0

(
Φ(U)

)
x
φ′
ε (Φ(U)) dxdt

+ µ

∫ T

0

∫ 1

1−δ

(
Φ(U)

)
x
φ′
ε (Φ(U)) dxdt

≤ µ

∫ T

0

[
φε

(
Φ(U)

)∣∣∣
x=0

+ φε (Φ(U))
∣∣∣
x=1

]
dt

≤ Cµ+ µ

∫ T

0

(
∥∂xu∥2L∞(0,1) + 1

) p−1
2
dt

≤ Cµ1/p.

(2.12)

Combining (2.10) with (2.11) and (2.12), we obtain∫ t

0

∫ 1

0

Utφ
′
ε (Φ(U)) ξδ(x)dxds ≤ Cµ1/p,

therefore, ∫ 1

0

(∫ U(x,t)

0

φ′
ε (Φ(s)) ds

)
ξδ(x)dx ≤ Cµ1/p.

Letting ε → 0+ and using limε→0 φ
′
ε(s) = sgn(s), we have∫ 1

0

∫ U(x,t)

0

sgn (Φ(s)) ξδ(x)dx ≤ Cµ1/p,

consequently, ∫ 1

0

|U(x, t)|ξδ(x)dx =

∫ 1

0

∫ U(x,t)

0

sgn(s)ξδ(x)dx

=

∫ 1

0

∫ U(x,t)

0

sgn (Φ(s)) ξδ(x)dx

≤ Cµ1/p,

namely, ∫ 1

0

|∂xu(x, t)|ξδ(x)dx ≤ Cµ1/p.

This implies that for any δ ∈ (0, 1/2),

sup
0<t<T

∫ 1−δ

δ

|∂xu(x, t)|dx ≤ C
µ1/p

δ
. (2.13)

On the other hand, we have, by using the embedding W 1,1 ↪→ L∞ and (2.13), that for any
δ ∈ (0, 1/4),

∥u(·, t)∥L∞(δ,1−δ) ≤C

∫ 1

0

|u|dx+ C

∫ 1−δ

δ

|∂xu|dx

≤C

(
µ

1
p +

µ1/p

δ

)
.
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Hence, for any function δ(µ) satisfying δ(µ) ↓ 0 and µ1/p/δ(µ) → 0 as µ ↓ 0, we have

lim
µ→0+

∥u∥L∞(0,T ;L∞(δ(µ),1−δ(µ))) = 0.

Moreover, lim infµ→0+ ∥u∥L∞(0,T ;L∞(0,1)) > 0 since (u1(t), u2(t)) ̸≡ (0, 0) in (0, T ). This ends
the proof of the conclusion (b).

Finally, we show the conclusion (c). To see this, suppose, on the contrary, that some
function δ(µ) satisfying δ(µ) ↓ 0 and δ(µ) = o(µ1/p) as µ ↓ 0 is a BL-thickness of problem
(1.1) and (1.2) with vanishing µ. Then we first obtain from the definition of a BL-thickness
that limµ→0+ ∥u∥L∞(0,T ;L∞(δ(µ),1−δ(µ)) = 0. In particular, we have

lim
µ→0+

[
∥u(δ(µ), t)∥L∞(0,T ) + ∥u(1− δ(µ), t)∥L∞(0,T )

]
= 0.

On the other hand, by using Hölder inequality and Lemma 2.1, we obtain∫ 1

1−δ(µ)

|ux|dx+

∫ δ(µ)

0

|ux|dx ≤ 2

(∫ 1

0

|ux|pdx
)1/p

(δ(µ))(p−1)/p

= 2

(
µ

p−1
p

∫ 1

0

|ux|pdx
)1/p(

δ(µ)

µ1/p

)(p−1)/p

≤ C

(
δ(µ)

µ1/p

)(p−1)/p

→ 0 (µ → 0+),

which together with Newton-Lebnitz formula give

∥u1∥L∞(0,T ) ≤ ∥u(δ(µ), t)∥L∞(0,T ) + sup
0<t<T

∫ δ(µ)

0

|ux|dx → 0 (µ → 0+),

∥u2∥L∞(0,T ) ≤ ∥u(1− δ(µ), t)∥L∞(0,T ) + sup
0<t<T

∫ 1

1−δ(µ)

|ux|dx → 0 (µ → 0+),

so (u1, u2) ≡ 0 on (0, T ). This leads to a contradiction, and ends the proof of (c).
Thus, the proof of Theorem 1.2 is completed.

3 Conclusions

In this paper, we study the boundary layer behavior of solutions of problem (1.1) and (1.2) as
µ → 0, and establish the value O(µα) with any α ∈ (0, 1/p) for the boundary layer thickness
(see Theorem 1.2). Thus, we extend the corresponding work by Frid and Shelukhin [5].

Exactly, one can see from the conclusions (b) and (c) in Theorem 1.2 that for any small
ε > 0, the function δ1(µ) = µ1/p−ε is a BL-thickness, while the function δ2(µ) = µ1/p+ε is
not. However, we do not know whether the function δ(µ) = µ1/p is a BL-thickness. This will
be a problem to be pursued by the authors in the future.
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