References
[1] Mcinnes I B, Schett G. The pathogenesis of rheumatoid arthritis[J]. The New England journal of medicine, 2011, 365(23): 2205-2219.
[2] Sparks J A. Rheumatoid Arthritis[J]. Annals of internal medicine, 2019, 170(1).
[3] Srivastava R K, Dar H Y, Mishra P K. Immunoporosis: Immunology of Osteoporosis-Role of T Cells[J]. Frontiers in immunology, 2018, 9: 657.
[4] Jiang X, Wang S, Zhou C, et al. Comprehensive TCR repertoire analysis of CD4 T-cell subsets in rheumatoid arthritis[J]. Journal of autoimmunity, 2020, 109: 102432.
[5] Qiu R, Zhou L, Ma Y, et al. Regulatory T Cell Plasticity and Stability and Autoimmune Diseases[J]. Clinical reviews in allergy & immunology, 2020, 58(1): 52-70.
[6] Scheinecker C, Göschl L, Bonelli M. Treg cells in health and autoimmune diseases: New insights from single cell analysis[J]. Journal of autoimmunity, 2020, 110: 102376.
[7] Notley C A, Ehrenstein M R. The yin and yang of regulatory T cells and inflammation in RA[J]. Nature reviews. Rheumatology, 2010, 6(10): 572-577.
[8] Xiao X-Y, Li Y-T, Jiang X, et al. EZH2 deficiency attenuates Treg differentiation in rheumatoid arthritis[J]. Journal of autoimmunity, 2020, 108: 102404.
[9] Rubtsov Y P, Rasmussen J P, Chi E Y, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces[J]. Immunity, 2008, 28(4): 546-558.
[10] Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3[J]. Science (New York, N.Y.), 2003, 299(5609): 1057-1061.
[11] Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay[J]. Nature reviews. Genetics, 2010, 11(9): 597-610.
[12] Lu T X, Rothenberg M E. MicroRNA[J]. The Journal of allergy and clinical immunology, 2018, 141(4): 1202-1207.
[13] Zhou Q, Haupt S, Kreuzer J T, et al. Decreased expression of miR-146a and miR-155 contributes to an abnormal Treg phenotype in patients with rheumatoid arthritis[J]. Annals of the rheumatic diseases, 2015, 74(6): 1265-1274.
[14] Kim D, Nguyen Q T, Lee J, et al. Anti-inflammatory Roles of Glucocorticoids Are Mediated by Foxp3 Regulatory T Cells via a miR-342-Dependent Mechanism[J]. Immunity, 2020, 53(3).
[15] Scherm M G, Serr I, Zahm A M, et al. miRNA142-3p targets Tet2 and impairs Treg differentiation and stability in models of type 1 diabetes[J]. Nature communications, 2019, 10(1): 5697.
[16] Xie M, Wang J, Gong W, et al. NF-κB-driven miR-34a impairs Treg/Th17 balance via targeting Foxp3[J]. Journal of autoimmunity, 2019, 102.
[17] Zhou L-L, Zhu Y-M, Qian F-Y, et al. MicroRNA‑143‑3p contributes to the regulation of pain responses in collagen‑induced arthritis[J]. Molecular medicine reports, 2018, 18(3): 3219-3228.
[18] Hwang S-M, Sharma G, Verma R, et al. Inflammation-induced Id2 promotes plasticity in regulatory T cells[J]. Nature communications, 2018, 9(1): 4736.
[19] Brand D D, Latham K A, Rosloniec E F. Collagen-induced arthritis[J]. Nature protocols, 2007, 2(5): 1269-1275.
[20] Yang P, Qian F, Zhang M, et al. Zishen Tongluo formula ameliorates collagen-induced arthritis in mice by modulation of Th17/Treg balance[J]. Journal of ethnopharmacology, 2020, 250: 112428.
[21] Yang P, Zhang M, Wang X, et al. MicroRNA let-7g-5p alleviates murine collagen-induced arthritis by inhibiting Th17 cell differentiation[J]. Biochemical pharmacology, 2020, 174: 113822.
[22] Seeuws S, Jacques P, Van Praet J, et al. A multiparameter approach to monitor disease activity in collagen-induced arthritis[J]. Arthritis research & therapy, 2010, 12(4): R160.
[23] De Molon R S, Thurlings R M, Walgreen B, et al. Systemic Resolvin E1 (RvE1) Treatment Does Not Ameliorate the Severity of Collagen-Induced Arthritis (CIA) in Mice: A Randomized, Prospective, and Controlled Proof of Concept Study[J]. Mediators of inflammation, 2019, 2019: 5689465.
[24] Kang L-J, Kwon E-S, Lee K M, et al. 3’-Sialyllactose as an inhibitor of p65 phosphorylation ameliorates the progression of experimental rheumatoid arthritis[J]. British journal of pharmacology, 2018, 175(23): 4295-4309.
[25] Bai Y, Li Y, Marion T, et al. Resistant starch intake alleviates collagen-induced arthritis in mice by modulating gut microbiota and promoting concomitant propionate production[J]. Journal of autoimmunity, 2021, 116: 102564.
[26] Jin S, Sun S, Ling H, et al. Protectin DX restores Treg/T17 cell balance in rheumatoid arthritis by inhibiting NLRP3 inflammasome via miR-20a[J]. Cell death & disease, 2021, 12(3): 280.
[27] Stypinska B, Wajda A, Walczuk E, et al. The Serum Cell-Free microRNA Expression Profile in MCTD, SLE, SSc, and RA Patients[J]. Journal of clinical medicine, 2020, 9(1).
[28] Yang Z, Wang J, Pan Z, et al. miR-143-3p regulates cell proliferation and apoptosis by targeting IGF1R and IGFBP5 and regulating the Ras/p38 MAPK signaling pathway in rheumatoid arthritis[J]. Experimental and therapeutic medicine, 2018, 15(4): 3781-3790.
[29] Specjalski K, Maciejewska A, Pawłowski R, et al. Changes in the Expression of MicroRNA in the Buildup Phase of Wasp Venom Immunotherapy: A Pilot Study[J]. International archives of allergy and immunology, 2016, 170(2).
[30] Rodríguez-Nogales A, Algieri F, Garrido-Mesa J, et al. Differential intestinal anti-inflammatory effects of Lactobacillus fermentum and Lactobacillus salivarius in DSS mouse colitis: impact on microRNAs expression and microbiota composition[J]. Molecular nutrition & food research, 2017, 61(11).
[31] Miyoshi M, Liu S. Collagen-Induced Arthritis Models[J]. Methods in molecular biology (Clifton, N.J.), 2018, 1868: 3-7.
[32] Jin S, Chen H, Li Y, et al. Maresin 1 improves the Treg/Th17 imbalance in rheumatoid arthritis through miR-21[J]. Annals of the rheumatic diseases, 2018, 77(11): 1644-1652.
[33] Sun H, Gao W, Pan W, et al. Tim3 Foxp3 Treg Cells Are Potent Inhibitors of Effector T Cells and Are Suppressed in Rheumatoid Arthritis[J]. Inflammation, 2017, 40(4): 1342-1350.
[34] Zhang X, Zhang X, Zhuang L, et al. Decreased regulatory T-cell frequency and interleukin-35 levels in patients with rheumatoid arthritis[J]. Experimental and therapeutic medicine, 2018, 16(6): 5366-5372.
[35] Vitales-Noyola M, Layseca-Espinosa E, Baranda L, et al. Analysis of Sodium Chloride Intake and Treg/Th17 Lymphocytes in Healthy Individuals and Patients with Rheumatoid Arthritis or Systemic Lupus Erythematosus[J]. Journal of immunology research, 2018, 2018: 9627806.
[36] Diefenhardt P, Nosko A, Kluger M A, et al. IL-10 Receptor Signaling Empowers Regulatory T Cells to Control Th17 Responses and Protect from GN[J]. Journal of the American Society of Nephrology : JASN, 2018, 29(7): 1825-1837.
[37] Jofra T, Galvani G, Cosorich I, et al. Experimental colitis in IL-10-deficient mice ameliorates in the absence of PTPN22[J]. Clinical and experimental immunology, 2019, 197(3): 263-275.
[38] Donate P B, Alves De Lima K, Peres R S, et al. Cigarette smoke induces in Th17 cells that enhance osteoclastogenesis in inflammatory arthritis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(1).
[39] Evangelatos G, Fragoulis G E, Koulouri V, et al. MicroRNAs in rheumatoid arthritis: From pathogenesis to clinical impact[J]. Autoimmunity reviews, 2019, 18(11): 102391.
[40] Zhang L, Wu H, Zhao M, et al. Clinical significance of miRNAs in autoimmunity[J]. Journal of autoimmunity, 2020, 109: 102438.
[41] Zhou J, Chaudhry H, Zhong Y, et al. Dysregulation in microRNA expression in peripheral blood mononuclear cells of sepsis patients is associated with immunopathology[J]. Cytokine, 2015, 71(1).
[42] Hong B-K, You S, Yoo S-A, et al. MicroRNA-143 and -145 modulate the phenotype of synovial fibroblasts in rheumatoid arthritis[J]. Experimental & molecular medicine, 2017, 49(8): e363.
[43] Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells[J]. Nature, 2006, 441(7090): 235-238.
[44] Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function[J]. Nucleic acids research, 2019, 47(D1): D155-D162.
[45] Fromm B, Keller A, Yang X, et al. Quo vadis microRNAs?[J]. Trends in genetics : TIG, 2020, 36(7): 461-463.
[46] Xu M, Pokrovskii M, Ding Y, et al. c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont[J]. Nature, 2018, 554(7692): 373-377.
[47] Neumann C, Blume J, Roy U, et al. c-Maf-dependent T cell control of intestinal T17 cells and IgA establishes host-microbiota homeostasis[J]. Nature immunology, 2019, 20(4): 471-481.
[48] Gabryšová L, Alvarez-Martinez M, Luisier R, et al. c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4 T cells[J]. Nature immunology, 2018, 19(5): 497-507.