Conclusion
One of the central questions in macroecology and biogeography is to understand why species composition differs among different sites. Our results indicate genome size can be used to bridge the ecological and evolutionary processes together for a deeper understanding of how species composition evolves over the biome scale (Segraves 2017; Pellicer et al. 2018). This opens a new avenue to understand how genome size contributes to community shifts along gradients of environmental change (including human-induced climate change such as shifting temperature and rainfall patterns) and to gather more mechanistic and predictive insights into community assembly processes. Given that climate models predict higher temperature and increased aridity in the temperate steppe (Day et al. 2018), species with large genomes may be more threatened by global change, and should therefore receive more attention in conservation efforts.References
Adler, P.B., Salguero-Gómez, R., Compagnoni, A., Hsu, J.S., Ray-Mukherjee, J., Mbeau-Ache, C. et al. (2014). Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. U.S.A. , 111, 740-745.
Bai, Y., Han, X., Wu, J., Chen, Z. & Li, L. (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature , 431, 181-184.
Baselga, A. & Leprieur, F. (2015). Comparing methods to separate components of beta diversity. Methods Ecol. Evol. , 6, 1069-1079.
Beaulieu, J.M., Moles, A.T., Leitch, I.J., Bennett, M.D., Dickie, J.B. & Knight, C.A. (2007). Correlated evolution of genome size and seed mass. New Phytol. , 173, 422-437.
Blonder, B. (2018). Hypervolume concepts in niche‐and trait‐based ecology. Ecography , 41, 1441-1455.
Brown, A.M., Warton, D.I., Andrew, N.R., Binns, M., Cassis, G. & Gibb, H. (2014). The fourth‐corner solution–using predictive models to understand how species traits interact with the environment.Methods Ecol. Evol. , 5, 344-352.
Castro‐Jimenez, Y., Newton, R., Price, H. & Halliwell, R. (1989). Drought stress responses of Microseris species differing in nuclear DNA content. Am. J. Bot. , 76, 789-795.
Chase, J.M. (2010). Stochastic community assembly causes higher biodiversity in more productive environments. Science , 328, 1388-1391.
Chase, J.M. & Myers, J.A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. Lond., B, Biol. Sci. , 366, 2351-2363.
Cornell, H.V. & Lawton, J.H. (1992). Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. J. Anim. Ecol. , 61, 1-12.
Day, J.A., Fung, I. & Liu, W. (2018). Changing character of rainfall in eastern China, 1951–2007. Proc. Natl. Acad. Sci. U.S.A. , 115, 2016-2021.
Doležel, J., Doleželová, M. & Novák, F. (1994). Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana ). Biol. Plant. , 36, 351-357.
Doležel, J., Greilhuber, J., Lucretti, S., Meister, A., Lysák, M., Nardi, L. et al. (1998). Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann. Bot. , 82, 17-26.
Doležel, J., Greilhuber, J. & Suda, J. (2007). Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. , 2, 2233.
Doležel, J., Sgorbati, S. & Lucretti, S. (1992). Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plant , 85, 625-631.
Faizullah, L., Morton, J.A., Hersch-Green, E.I., Walczyk, A.M., Leitch, A.R. & Leitch, I.J. (2021). Exploring environmental selection on genome size in angiosperms. Trends Plant Sci. , https://doi.org/10.1016/j.tplants.2021.1006.1001.
Ferrier, S., Manion, G., Elith, J. & Richardson, K. (2007). Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. , 13, 252-264.
Fick, S.E. & Hijmans, R.J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. , 37, 4302-4315.
Fitzpatrick, M.C., Sanders, N.J., Normand, S., Svenning, J.-C., Ferrier, S., Gove, A.D. et al. (2013). Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients. Proc. Royal Soc. B. , 280, 20131201.
Garcia, S., Canela, M.A., Garnatje, T., McArthur, E.D., Pellicer, J., Sanderson, S.C. et al. (2008). Evolutionary and ecological implications of genome size in the North American endemic sagebrushes and allies (Artemisia , Asteraceae). Biol. J. Linn. Soc. , 94, 631-649.
Greilhuber, J., Doležel, J., Lysak, M.A. & Bennett, M.D. (2005). The origin, evolution and proposed stabilization of the terms ‘genome size’and ‘C-value’to describe nuclear DNA contents. Ann. Bot. , 95, 255-260.
Greilhuber, J. & Leitch, I.J. (2013). Genome size and the phenotype. In: Plant Genome Diversity, Volume 2, Physical Structure, Behaviour and Evolution of Plant Genomes (eds. Leitch, IJ, Greilhuber, J, Doležel, J & Wendel, JF). Springer, pp. 323-344.
Grime, J. & Mowforth, M. (1982). Variation in genome size—an ecological interpretation. Nature , 299, 151.
Guignard, M.S., Nichols, R.A., Knell, R.J., Macdonald, A., Romila, C.A., Trimmer, M. et al. (2016). Genome size and ploidy influence angiosperm species’ biomass under nitrogen and phosphorus limitation.New Phytol. , 210, 1195-1206.
Herben, T., Suda, J., Klimešová, J., Mihulka, S., Říha, P. & Šímová, I. (2012). Ecological effects of cell-level processes: genome size, functional traits and regional abundance of herbaceous plant species.Ann. Bot. , 110, 1357-1367.
Hessen, D.O., Jeyasingh, P.D., Neiman, M. & Weider, L.J. (2010). Genome streamlining and the elemental costs of growth. Trends Ecol. Evol. , 25, 75-80.
Keck, F., Rimet, F., Bouchez, A. & Franc, A. (2016). phylosignal: an R package to measure, test, and explore the phylogenetic signal.Ecol. Evol. , 6, 2774-2780.
Knight, C.A. & Ackerly, D.D. (2002). Variation in nuclear DNA content across environmental gradients: a quantile regression analysis.Ecol. Lett. , 5, 66-76.
Knight, C.A. & Beaulieu, J.M. (2008). Genome size scaling through phenotype space. Ann. Bot. , 101, 759-766.
Knight, C.A., Molinari, N.A. & Petrov, D.A. (2005). The large genome constraint hypothesis: evolution, ecology and phenotype. Ann. Bot. , 95, 177-190.
Kraft, N.J.B., Comita, L.S., Chase, J.M., Sanders, N.J., Swenson, N.G., Crist, T.O. et al. (2011). Disentangling the drivers of beta diversity along latitudinal and elevational gradients. Science , 333, 1755-1758.
Laliberté, E., Zemunik, G. & Turner, B.L. (2014). Environmental filtering explains variation in plant diversity along resource gradients. Science , 345, 1602-1605.
Lee, S.-I. & Kim, N.-S. (2014). Transposable elements and genome size variations in plants. Genomics Inform , 12, 87-97.
Leitch, A. & Leitch, I. (2008). Genomic plasticity and the diversity of polyploid plants. Science , 320, 481-483.
Leitch, I.J., Hanson, L., Lim, K., Kovarik, A., Chase, M., Clarkson, J.et al. (2008). The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann. Bot. , 101, 805-814.
Leitch, I.J. & Leitch, A.R. (2013). Genome size diversity and evolution in land plants. In: Plant Genome Diversity Volume 2 . Springer, pp. 307-322.
Lysak, M.A. & Dolezel, J. (1998). Estimation of nuclear DNA content inSesleria (Poaceae). Caryologia , 51, 123-132.
MacGillivray, C. & Grime, J. (1995). Genome size predicts frost resistance in British herbaceous plants: implications for rates of vegetation response to global warming. Funct. Ecol. , 9, 320-325.
Manion, G., Lisk, M., Ferrier, S., Lugilde, K.M., Fitzpatrick, M.C., Fitzpatrick, M.M.C. et al. (2017). Package ‘gdm’. A toolkit with functions to fit, plot, and summarize Generalized Dissimilarity Models: CRAN Repository, R .
McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends Ecol. Evol. , 21, 178-185.
Miller, J.E., Damschen, E.I. & Ives, A.R. (2019). Functional traits and community composition: A comparison among community‐weighted means, weighted correlations, and multilevel models. Methods Ecol. Evol. , 10, 415-425.
Mori, A.S., Isbell, F. & Seidl, R. (2018). β-diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. , 33, 549-564.
Murphy, J. & Riley, J.P. (1962). A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta , 27, 31-36.
Ovaskainen, O., Abrego, N., Halme, P. & Dunson, D. (2016). Using latent variable models to identify large networks of species‐to‐species associations at different spatial scales. Methods Ecol. Evol. , 7, 549-555.
Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan, L., Dunson, D. et al. (2017). How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. , 20, 561-576.
Pellicer, J., Hidalgo, O., Dodsworth, S. & Leitch, I.J. (2018). Genome size diversity and its impact on the evolution of land plants.Genes , 9, 88.
Pollock, L.J., Morris, W.K. & Vesk, P.A. (2012). The role of functional traits in species distributions revealed through a hierarchical model.Ecography , 35, 716-725.
Qian, H. & Jin, Y. (2016). An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J Plant Ecol , 9, 233-239.
R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Robroek, B.J., Jassey, V.E., Payne, R.J., Martí, M., Bragazza, L., Bleeker, A. et al. (2017). Taxonomic and functional turnover are decoupled in European peat bogs. Nat. Commun. , 8, 1-9.
Said, M., Hřibová, E., Danilova, T.V., Karafiátová, M., Čížková, J., Friebe, B. et al. (2018). The Agropyron cristatumkaryotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. Theor. Appl. Genet. , 131, 2213-2227.
Salguero-Gómez, R., Jones, O.R., Jongejans, E., Blomberg, S.P., Hodgson, D.J., Mbeau-Ache, C. et al. (2016). Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl. Acad. Sci. U.S.A. , 113, 230-235.
Segraves, K.A. (2017). The effects of genome duplications in a community context. New Phytol. , 215, 57-69.
Sheth, S.N., Morueta‐Holme, N. & Angert, A.L. (2020). Determinants of geographic range size in plants. New Phytol. , 226, 650-665.
Šmarda, P., Hejcman, M., Březinová, A., Horová, L., Steigerová, H., Zedek, F. et al. (2013). Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long‐term grassland fertilization experiment. New Phytol. , 200, 911-921.
Stephens, C.R., González-Salazar, C., Villalobos, M. & Marquet, P. (2020). Can Ecological Interactions be Inferred from Spatial Data?Biodivers. inform. , 15, 11-54.
Tikhonov, G., Opedal, Ø.H., Abrego, N., Lehikoinen, A., de Jonge, M.M., Oksanen, J. et al. (2020). Joint species distribution modelling with the r‐package Hmsc. Methods Ecol. Evol. , 11, 442-447.
Tilman, D. (1994). Competition and biodiversity in spatially structured habitats. Ecology , 75, 2-16.
Tjur, T. (2009). Coefficients of determination in logistic regression models—A new proposal: The coefficient of discrimination. Am Stat , 63, 366-372.
van Breugel, M., Craven, D., Lai, H.R., Baillon, M., Turner, B.L. & Hall, J.S. (2019). Soil nutrients and dispersal limitation shape compositional variation in secondary tropical forests across multiple scales. J. Ecol. , 107, 566-581.
Van de Peer, Y., Ashman, T.-L., Soltis, P.S. & Soltis, D.E. (2021). Polyploidy: an evolutionary and ecological force in stressful times.Plant Cell , 33, 11-26.
Wan, T., Sun, Q., Cai, P., Meng, X., Yi, W. & Wang, W. (2011). Observation of chromosome karyotypes of Artemisia frigida in different ecological areas of Inner Mongolia. Acta Botanica Boreali-Occidentalia Sinica , 31, 456-461.
Wang, C., Wang, X., Liu, D., Wu, H., Lü, X., Fang, Y. et al.(2014). Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nat. Commun. , 5, 1-8.
Wang, X.-B., Lü, X.-T., Yao, J., Wang, Z.-W., Deng, Y., Cheng, W.-X.et al. (2017). Habitat-specific patterns and drivers of bacterial β-diversity in China’s drylands. ISME J. , 11, 1345-1358.
Warton, D.I., Blanchet, F.G., O’Hara, R.B., Ovaskainen, O., Taskinen, S., Walker, S.C. et al. (2015). So many variables: joint modeling in community ecology. Trends Ecol. Evol. , 30, 766-779.
Xu, Z., Wan, S., Ren, H., Han, X., Li, M.-H., Cheng, W. et al.(2012). Effects of water and nitrogen addition on species turnover in temperate grasslands in northern China. PloS one , 7, e39762.
Zanne, A.E., Tank, D.C., Cornwell, W.K., Eastman, J.M., Smith, S.A., FitzJohn, R.G. et al. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature , 506, 89-92.
Zhao, Y., Xie, J., Dou, Q., Wang, J. & Zhang, Z. (2017). Diversification of the P genome among Agropyron Gaertn .(Poaceae) species detected by FISH. Comp. Cytogenet. , 11, 495-509.