Conclusion
One of the central questions in macroecology and biogeography is to
understand why species composition differs among different sites. Our
results indicate genome size can be used to bridge the ecological and
evolutionary processes together for a deeper understanding of how
species composition evolves over the biome scale (Segraves 2017;
Pellicer et al. 2018). This opens a new avenue to understand how
genome size contributes to community shifts along gradients of
environmental change (including human-induced climate change such as
shifting temperature and rainfall patterns) and to gather more
mechanistic and predictive insights into community assembly processes.
Given that climate models predict higher temperature and increased
aridity in the temperate steppe (Day et al. 2018), species with
large genomes may be more threatened by global change, and should
therefore receive more attention in conservation efforts.References
Adler, P.B., Salguero-Gómez, R., Compagnoni, A., Hsu, J.S.,
Ray-Mukherjee, J., Mbeau-Ache, C. et al. (2014). Functional
traits explain variation in plant life history strategies. Proc.
Natl. Acad. Sci. U.S.A. , 111, 740-745.
Bai, Y., Han, X., Wu, J., Chen, Z. & Li, L. (2004). Ecosystem stability
and compensatory effects in the Inner Mongolia grassland. Nature ,
431, 181-184.
Baselga, A. & Leprieur, F. (2015). Comparing methods to separate
components of beta diversity. Methods Ecol. Evol. , 6, 1069-1079.
Beaulieu, J.M., Moles, A.T., Leitch, I.J., Bennett, M.D., Dickie, J.B.
& Knight, C.A. (2007). Correlated evolution of genome size and seed
mass. New Phytol. , 173, 422-437.
Blonder, B. (2018). Hypervolume concepts in niche‐and trait‐based
ecology. Ecography , 41, 1441-1455.
Brown, A.M., Warton, D.I., Andrew, N.R., Binns, M., Cassis, G. & Gibb,
H. (2014). The fourth‐corner solution–using predictive models to
understand how species traits interact with the environment.Methods Ecol. Evol. , 5, 344-352.
Castro‐Jimenez, Y., Newton, R., Price, H. & Halliwell, R. (1989).
Drought stress responses of Microseris species differing in nuclear DNA
content. Am. J. Bot. , 76, 789-795.
Chase, J.M. (2010). Stochastic community assembly causes higher
biodiversity in more productive environments. Science , 328,
1388-1391.
Chase, J.M. & Myers, J.A. (2011). Disentangling the importance of
ecological niches from stochastic processes across scales. Philos.
Trans. R. Soc. Lond., B, Biol. Sci. , 366, 2351-2363.
Cornell, H.V. & Lawton, J.H. (1992). Species interactions, local and
regional processes, and limits to the richness of ecological
communities: a theoretical perspective. J. Anim. Ecol. , 61, 1-12.
Day, J.A., Fung, I. & Liu, W. (2018). Changing character of rainfall in
eastern China, 1951–2007. Proc. Natl. Acad. Sci. U.S.A. , 115,
2016-2021.
Doležel, J., Doleželová, M. & Novák, F. (1994). Flow cytometric
estimation of nuclear DNA amount in diploid bananas (Musa
acuminata and M. balbisiana ). Biol. Plant. , 36, 351-357.
Doležel, J., Greilhuber, J., Lucretti, S., Meister, A., Lysák, M.,
Nardi, L. et al. (1998). Plant genome size estimation by flow
cytometry: inter-laboratory comparison. Ann. Bot. , 82, 17-26.
Doležel, J., Greilhuber, J. & Suda, J. (2007). Estimation of nuclear
DNA content in plants using flow cytometry. Nat. Protoc. , 2,
2233.
Doležel, J., Sgorbati, S. & Lucretti, S. (1992). Comparison of three
DNA fluorochromes for flow cytometric estimation of nuclear DNA content
in plants. Physiol. Plant , 85, 625-631.
Faizullah, L., Morton, J.A., Hersch-Green, E.I., Walczyk, A.M., Leitch,
A.R. & Leitch, I.J. (2021). Exploring environmental selection on genome
size in angiosperms. Trends Plant Sci. ,
https://doi.org/10.1016/j.tplants.2021.1006.1001.
Ferrier, S., Manion, G., Elith, J. & Richardson, K. (2007). Using
generalized dissimilarity modelling to analyse and predict patterns of
beta diversity in regional biodiversity assessment. Divers.
Distrib. , 13, 252-264.
Fick, S.E. & Hijmans, R.J. (2017). WorldClim 2: new 1‐km spatial
resolution climate surfaces for global land areas. Int. J.
Climatol. , 37, 4302-4315.
Fitzpatrick, M.C., Sanders, N.J., Normand, S., Svenning, J.-C., Ferrier,
S., Gove, A.D. et al. (2013). Environmental and historical
imprints on beta diversity: insights from variation in rates of species
turnover along gradients. Proc. Royal Soc. B. , 280, 20131201.
Garcia, S., Canela, M.A., Garnatje, T., McArthur, E.D., Pellicer, J.,
Sanderson, S.C. et al. (2008). Evolutionary and ecological
implications of genome size in the North American endemic sagebrushes
and allies (Artemisia , Asteraceae). Biol. J. Linn. Soc. ,
94, 631-649.
Greilhuber, J., Doležel, J., Lysak, M.A. & Bennett, M.D. (2005). The
origin, evolution and proposed stabilization of the terms ‘genome
size’and ‘C-value’to describe nuclear DNA contents. Ann. Bot. ,
95, 255-260.
Greilhuber, J. & Leitch, I.J. (2013). Genome size and the phenotype.
In: Plant Genome Diversity, Volume 2, Physical Structure,
Behaviour and Evolution of Plant Genomes (eds. Leitch, IJ, Greilhuber,
J, Doležel, J & Wendel, JF). Springer, pp. 323-344.
Grime, J. & Mowforth, M. (1982). Variation in genome size—an
ecological interpretation. Nature , 299, 151.
Guignard, M.S., Nichols, R.A., Knell, R.J., Macdonald, A., Romila, C.A.,
Trimmer, M. et al. (2016). Genome size and ploidy influence
angiosperm species’ biomass under nitrogen and phosphorus limitation.New Phytol. , 210, 1195-1206.
Herben, T., Suda, J., Klimešová, J., Mihulka, S., Říha, P. & Šímová, I.
(2012). Ecological effects of cell-level processes: genome size,
functional traits and regional abundance of herbaceous plant species.Ann. Bot. , 110, 1357-1367.
Hessen, D.O., Jeyasingh, P.D., Neiman, M. & Weider, L.J. (2010). Genome
streamlining and the elemental costs of growth. Trends Ecol.
Evol. , 25, 75-80.
Keck, F., Rimet, F., Bouchez, A. & Franc, A. (2016). phylosignal: an R
package to measure, test, and explore the phylogenetic signal.Ecol. Evol. , 6, 2774-2780.
Knight, C.A. & Ackerly, D.D. (2002). Variation in nuclear DNA content
across environmental gradients: a quantile regression analysis.Ecol. Lett. , 5, 66-76.
Knight, C.A. & Beaulieu, J.M. (2008). Genome size scaling through
phenotype space. Ann. Bot. , 101, 759-766.
Knight, C.A., Molinari, N.A. & Petrov, D.A. (2005). The large genome
constraint hypothesis: evolution, ecology and phenotype. Ann.
Bot. , 95, 177-190.
Kraft, N.J.B., Comita, L.S., Chase, J.M., Sanders, N.J., Swenson, N.G.,
Crist, T.O. et al. (2011). Disentangling the drivers of beta
diversity along latitudinal and elevational gradients. Science ,
333, 1755-1758.
Laliberté, E., Zemunik, G. & Turner, B.L. (2014). Environmental
filtering explains variation in plant diversity along resource
gradients. Science , 345, 1602-1605.
Lee, S.-I. & Kim, N.-S. (2014). Transposable elements and genome size
variations in plants. Genomics Inform , 12, 87-97.
Leitch, A. & Leitch, I. (2008). Genomic plasticity and the diversity of
polyploid plants. Science , 320, 481-483.
Leitch, I.J., Hanson, L., Lim, K., Kovarik, A., Chase, M., Clarkson, J.et al. (2008). The ups and downs of genome size evolution in
polyploid species of Nicotiana (Solanaceae). Ann. Bot. ,
101, 805-814.
Leitch, I.J. & Leitch, A.R. (2013). Genome size diversity and evolution
in land plants. In: Plant Genome Diversity Volume 2 . Springer,
pp. 307-322.
Lysak, M.A. & Dolezel, J. (1998). Estimation of nuclear DNA content inSesleria (Poaceae). Caryologia , 51, 123-132.
MacGillivray, C. & Grime, J. (1995). Genome size predicts frost
resistance in British herbaceous plants: implications for rates of
vegetation response to global warming. Funct. Ecol. , 9, 320-325.
Manion, G., Lisk, M., Ferrier, S., Lugilde, K.M., Fitzpatrick, M.C.,
Fitzpatrick, M.M.C. et al. (2017). Package ‘gdm’. A toolkit
with functions to fit, plot, and summarize Generalized Dissimilarity
Models: CRAN Repository, R .
McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. (2006).
Rebuilding community ecology from functional traits. Trends Ecol.
Evol. , 21, 178-185.
Miller, J.E., Damschen, E.I. & Ives, A.R. (2019). Functional traits and
community composition: A comparison among community‐weighted means,
weighted correlations, and multilevel models. Methods Ecol.
Evol. , 10, 415-425.
Mori, A.S., Isbell, F. & Seidl, R. (2018). β-diversity, community
assembly, and ecosystem functioning. Trends Ecol. Evol. , 33,
549-564.
Murphy, J. & Riley, J.P. (1962). A modified single solution method for
the determination of phosphate in natural waters. Anal. Chim.
Acta , 27, 31-36.
Ovaskainen, O., Abrego, N., Halme, P. & Dunson, D. (2016). Using latent
variable models to identify large networks of species‐to‐species
associations at different spatial scales. Methods Ecol. Evol. , 7,
549-555.
Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan,
L., Dunson, D. et al. (2017). How to make more out of community
data? A conceptual framework and its implementation as models and
software. Ecol. Lett. , 20, 561-576.
Pellicer, J., Hidalgo, O., Dodsworth, S. & Leitch, I.J. (2018). Genome
size diversity and its impact on the evolution of land plants.Genes , 9, 88.
Pollock, L.J., Morris, W.K. & Vesk, P.A. (2012). The role of functional
traits in species distributions revealed through a hierarchical model.Ecography , 35, 716-725.
Qian, H. & Jin, Y. (2016). An updated megaphylogeny of plants, a tool
for generating plant phylogenies and an analysis of phylogenetic
community structure. J Plant Ecol , 9, 233-239.
R Core Team (2019). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
Austria.
Robroek, B.J., Jassey, V.E., Payne, R.J., Martí, M., Bragazza, L.,
Bleeker, A. et al. (2017). Taxonomic and functional turnover are
decoupled in European peat bogs. Nat. Commun. , 8, 1-9.
Said, M., Hřibová, E., Danilova, T.V., Karafiátová, M., Čížková, J.,
Friebe, B. et al. (2018). The Agropyron cristatumkaryotype, chromosome structure and cross-genome homoeology as revealed
by fluorescence in situ hybridization with tandem repeats and wheat
single-gene probes. Theor. Appl. Genet. , 131, 2213-2227.
Salguero-Gómez, R., Jones, O.R., Jongejans, E., Blomberg, S.P., Hodgson,
D.J., Mbeau-Ache, C. et al. (2016). Fast–slow continuum and
reproductive strategies structure plant life-history variation
worldwide. Proc. Natl. Acad. Sci. U.S.A. , 113, 230-235.
Segraves, K.A. (2017). The effects of genome duplications in a community
context. New Phytol. , 215, 57-69.
Sheth, S.N., Morueta‐Holme, N. & Angert, A.L. (2020). Determinants of
geographic range size in plants. New Phytol. , 226, 650-665.
Šmarda, P., Hejcman, M., Březinová, A., Horová, L., Steigerová, H.,
Zedek, F. et al. (2013). Effect of phosphorus availability on the
selection of species with different ploidy levels and genome sizes in a
long‐term grassland fertilization experiment. New Phytol. , 200,
911-921.
Stephens, C.R., González-Salazar, C., Villalobos, M. & Marquet, P.
(2020). Can Ecological Interactions be Inferred from Spatial Data?Biodivers. inform. , 15, 11-54.
Tikhonov, G., Opedal, Ø.H., Abrego, N., Lehikoinen, A., de Jonge, M.M.,
Oksanen, J. et al. (2020). Joint species distribution modelling
with the r‐package Hmsc. Methods Ecol. Evol. , 11, 442-447.
Tilman, D. (1994). Competition and biodiversity in spatially structured
habitats. Ecology , 75, 2-16.
Tjur, T. (2009). Coefficients of determination in logistic regression
models—A new proposal: The coefficient of discrimination. Am
Stat , 63, 366-372.
van Breugel, M., Craven, D., Lai, H.R., Baillon, M., Turner, B.L. &
Hall, J.S. (2019). Soil nutrients and dispersal limitation shape
compositional variation in secondary tropical forests across multiple
scales. J. Ecol. , 107, 566-581.
Van de Peer, Y., Ashman, T.-L., Soltis, P.S. & Soltis, D.E. (2021).
Polyploidy: an evolutionary and ecological force in stressful times.Plant Cell , 33, 11-26.
Wan, T., Sun, Q., Cai, P., Meng, X., Yi, W. & Wang, W. (2011).
Observation of chromosome karyotypes of Artemisia frigida in
different ecological areas of Inner Mongolia. Acta Botanica
Boreali-Occidentalia Sinica , 31, 456-461.
Wang, C., Wang, X., Liu, D., Wu, H., Lü, X., Fang, Y. et al.(2014). Aridity threshold in controlling ecosystem nitrogen cycling in
arid and semi-arid grasslands. Nat. Commun. , 5, 1-8.
Wang, X.-B., Lü, X.-T., Yao, J., Wang, Z.-W., Deng, Y., Cheng, W.-X.et al. (2017). Habitat-specific patterns and drivers of bacterial
β-diversity in China’s drylands. ISME J. , 11, 1345-1358.
Warton, D.I., Blanchet, F.G., O’Hara, R.B., Ovaskainen, O., Taskinen,
S., Walker, S.C. et al. (2015). So many variables: joint modeling
in community ecology. Trends Ecol. Evol. , 30, 766-779.
Xu, Z., Wan, S., Ren, H., Han, X., Li, M.-H., Cheng, W. et al.(2012). Effects of water and nitrogen addition on species turnover in
temperate grasslands in northern China. PloS one , 7, e39762.
Zanne, A.E., Tank, D.C., Cornwell, W.K., Eastman, J.M., Smith, S.A.,
FitzJohn, R.G. et al. (2014). Three keys to the radiation of
angiosperms into freezing environments. Nature , 506, 89-92.
Zhao, Y., Xie, J., Dou, Q., Wang, J. & Zhang, Z. (2017).
Diversification of the P genome among Agropyron Gaertn .(Poaceae)
species detected by FISH. Comp. Cytogenet. , 11, 495-509.