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Abstract

The counteractive influence of atmospheric CO2 enrichment and drought stress on tree growth

results in great uncertainty in growth patterns of planted forests in cold semi-arid regions. We used

tree-ring chronology and carbon isotope analysis to track ecophysiological processes in reaction to

environmental factors over the past four decades of Populus simonii plantations in cold semi-arid

areas in northern China. Our results showed that the boosting effect of the rising atmospheric CO2

concentration (Ca) on iWUE and stem growth was more significant in declined stands. However,

the increased iWUE did not negate tree dieback when water stress was present. Therefore, the BAI

and iWUE deviation of different health status trees started from a very early age. Climatic factors

showed limited influences on  the stem growth of the poplar plantations. The inaccessibility of

deep soil water due to site-specific soil conditions rendered the trees exposed to chronic soil water

stress  and  constrained  stomatal  conductance  and  reduced  the  CO2 fertilization  effect.

Consequently, these stands experienced  a lower stem growth rate. In summary, we suggest that

soil moisture conditions the iWUE and growth sensitivity to global warming and thus portrays

site-specific decline episodes of different degrees in drought-prone areas.

Keywords:  tree  dieback,  dendrochronology,  soil  water  use  profile,  isotope,  planted  forests,

climate change
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Introduction

Increasing drought severity and frequency, due to global warming, has led to vegetation mortality

in  many  regions  of  the  world  (N.  G.  McDowell,  Allen,  &  Marshall,  2010).  Functional  and

structural changes driven by mortality in the ecosystem will cause hydrological changes (Newman

et al., 2006), carbon storage reduction (Breshears & Allen, 2002; Kurz et al., 2008), and ecotone

conversions (Allen & Breshears, 1998). However, the influence of global warming seems to be a

double-edged  sword  regarding  vegetation  dynamics  in  cold  regions.  Rising  atmospheric  CO2

concentration (Ca) and temperature has driven significant changes of vegetation dynamics in cold

regions in terms of distribution patterns (Wei et al., 2020) and phenology e.g. (Shen et al., 2019).

Plants in such areas are adapted to low temperature conditions and a short growing season, which

makes them benefit from increasingly warmer climates. In addition, decades of increasing Ca have

been  proven  to  boost  vegetation  growth  by  stimulating intrinsic  water-use  efficiency iWUE

(McCarroll  & Loader,  2004;  Reed,  Ballantyne,  Cooper,  & Sala,  2018).  Meanwhile,  previous

studies indicated that  global warming has begun to afflict  the semi-arid and arid regions with

increasing drought frequency (Fu, 2007; Huang, Guan, & Ji, 2012). The aridity trend thus renders

the fragile  ecosystems in  such areas as  the most  sensitive areas under the  scenario  of  global

warming (Rotenberg & Yakir, 2010). Therefore, understanding the responses of forest ecosystems

in cold semi-arid regions under this scenario, provides valuable references for understanding and

predicting vegetation patterns in these climatically sensitive areas.

Rising  Ca enhance  tree  growth  through  improved  photosynthesis,  also  known  as  the  “CO2

fertilization hypothesis” (Norby et al., 2005). It might also lead to reduced stomatal conductance,

and thus enhancing the  iWUE. Greater  iWUE is  of  crucial  importance  in  water-limited plant
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communities because it  alleviates water stress and prolongs the growing season. However, the

prevailing  increasing  in  iWUE  does  not  necessarily  translate  to  enhanced  tree  growth,  for

example, in cold and arid boreal forests (Dietrich et al., 2016), Mediterranean regions (Fernández-

de-Uña, McDowell, Cañellas, & Gea-Izquierdo, 2016) and even tropic areas (van der Sleen et al.,

2015). Global meta-analyses attribute the insignificant effect of CO2 enrichment on tree growth to

water  stress  and  nutrient  deficiency  (Peñuelas,  Canadell,  &  Ogaya,  2011;  Silva,  Anand,  &

Leithead,  2010).  Under  drought  stress,  plants  die  of  hydraulic  failure,  carbon  starvation,  or

simplistic  limitations  (N.  McDowell  et  al.,  2008).  With  warming  temperature,  atmospheric

moisture stress posed by rising vapor pressure deficit (VPD) is becoming increasingly crucial to

plant performance and survival  (Allen, Breshears, & McDowell,  2015; Williams et al.,  2013).

Recent global forest mortality cases are evidence of the drought constraint over the boosting effect

of CO2 on tree growth (Raffa et al., 2008; Suarez, Ghermandi, & Kitzberger, 2004) and potential

association with increased air temperatures  (Breshears et al., 2005; Van Mantgem et al., 2009).

Therefore, understanding the hydro-carbon mechanisms of tree growth lays the foundation for

improving the accuracy of forecasting forest mortality under the scenario of climate change. In

addition,  investigation  of  climatic  interference  on  tree  growth  in  response  to  enriching  Ca is

necessary to predict forest dynamics in cold semi-arid areas and has implications in modelling

other ecological processes.

Tree-ring  parameters  provide  important  information  on  tree  growth  variability  and  allow  a

retrospective analysis of tree growth responses to climate change, e.g.  (Marchand et al., 2020;

Spiecker,  2002). Data  related  to tree-ring  patterns  demonstrate  varied  growth  patterns  when

exposed to water stress and before death (Barbeta & Penuelas, 2017). Isotopic information related
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to  tree  rings  also  records  the  process  of  growth  decline  and  eventually  death  due  to  carbon

deprivation  or  nutrient  deficiency  related  to  long-term  drought  (Rodríguez-Calcerrada  et  al.,

2017). The iWUE can be inferred through tree-ring δ13C, which simultaneously records the carbon

assimilation and stomatal conductance, both of which are susceptible to environmental conditions

(Timofeeva et al., 2017). Combined with stem growth information, iWUE and δ13C are very useful

for  unraveling  the  hydraulic  and carbon assimilation  mechanisms underlying  tree  adaption  to

environmental stress (Bigler & Veblen, 2009; Levanič, Čater, & McDowell, 2011).

Poplar trees have been the preferred afforestation species to revitalize degraded land around the

world based on their superior growth performance and adaptability to site conditions. Compared to

natural forests, the planted forests are inherently lower in species richness and more uniform in

stand structures (Li et al., 2009). Therefore, they seem to demonstrate varied response patterns to

environmental stresses differently from natural forests  (Brockerhoff,  Jactel,  Parrotta, Quine,  &

Sayer, 2008; Li et al., 2009). However, no definite conclusions have been reached as to whether

plantations are more resistant to environmental stresses than natural forests or not. Such variances

can  be  ascribed  to  climatic-  or  species-specific  factors  and  management  approaches,  such  as

pruning and irrigation.  Therefore, from both the socio-economic and ecological perspectives, an

examination of growth and iWUE chronology of poplar plantations in cold semi-arid areas will

provide information on growth response to climate change and  Ca enrichment, and thus support

the projection of future growth and the potential of this growth as a carbon sink for this ecosystem.

Emerging vegetation mortality has begun to impact the governmental policies (Allen et al., 2010;

Dai,  Trenberth, & Qian,  2004) due to  its  implications for  ecosystem services and interactions

between local mortality, carbon sinks and climate (Bertrand et al., 2011; Klein, Yakir, Buchmann,
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& Grünzweig, 2014). Efforts to understand how rising Ca will interact with other environmental

factors in determining the tree growth will contribute to understanding current forest decline and

hence integrate forest management plans with different climatic scenarios. In this case, we focus

on  a  better  understanding  of  how  plantation  ecosystems  adapt  to  warming  and  drying

environments. The specific questions we address include: (1) how stem growth of different vigor

classes is impacted by climatic factors and atmospheric  Ca; and (2) to elucidate the mechanism

underlying the forest decline from the perspective of carbon assimilation and water use strategy.

Methods and materials

Study area

The study area locates in Zhangbei county in Hebei Province, China (40°57'-41° 34' N，114° 10'-

115° 27' E, 1300 m-2128 m a.s.l).  This area is under the control of the temperate continental

climate. The precipitation is averaged at 392.7 mm. The precipitation majorly occurs during June

and September which accounts for 64-69% of the annual total. The annual temperature is averaged

at 4.1  with a high diurnal-nocturnal temperature difference around 13~15 and the cumulative℃ ℃

temperature is 2448 . The frostless period adds up to 90~110 d. The area features strong wind℃

with a wind gust of 10.8-13.8m/s amount to 50-70 days. Calcified layers are widely distributed in

this area which may jeopardize the root absorption of water by the trees. 

The shelterbelts are dominated by Populus simonii which are dated back to 1970s. All the sampled

stands were planted by the year of 1975 and no forest management practice have been applied to

them. The growth decline of poplar shelterbelts is characterized by severe defoliation and a high

mortality rate. To compare poplar stands with varying symptoms of declination, we conducted a

comprehensive field survey that included 27 sampling plots (Fig. S1) of three decline degrees
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(Table  1)  across  the  whole  study  area.  At  each  site,  we  surveyed  the  tree  height  and  DBH

demography of each 20×20m plot. The health status of individual trees was assessed according to

the crown defoliation rate. To avoid bias from the crown defoliation of similar sized-trees by

different observers, we selected 6 individuals with the highest amount of leaves as a reference to

‘healthy’ trees. Declining trees were defined as individuals that showed dieback crown over 40%,

and declining sites were defined as those contained over 20% dieback trees, among which a total

of 20-60% dieback trees were classified as the first-degree decline (DI) stands and over 60%

dieback  trees  as  the  second-degree  decline  (DII)  stands  (Table  1).  The  non-declining  stands

displayed a significantly lower ratio of dieback trees than that of the declining sites (4.8 ± 1.4%

v.s. 22.7± 3.1%, Mann–Whitney test, U = 6.9, P < 0.001).

Insert Table 1

Environmental data

Monthly meteorological data (precipitation, temperature including the maximum, minimum and 

average values and relative humidity) of the study area from 1975 to 2016 were downloaded from 

the National Meteorological Science Data Center (http://data.cma.cn/). Kendall tests were 

conducted to confirm the data validity and representativeness of local climatic trends(Sun et al., 

2018). Standardized Precipitation-Evapotranspiration Index (SPEI) was calculated using the SPEI 

(Standardized Precipitation Evapotranspiration Index) package in R (http://sac.csic.es/spei/) with a

12-month scale (SPEI12) and was used to delineate the drought and non-drought periods. SPEI 

values above -0.5 represent no drought conditions (hereby indicated as S0), from -1.0 to –0.5 mild 

drought (SI), from -1.5 to -1.0 moderate drought (SII), from -2.0 to -1.5 severe drought (SIII), and 
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≤ -2.00 extreme drought (SIV) (Fig. 1). Ample evidence has shown stomatal sensitivity to high 

atmospheric demand driven by VPD. Consequently, VPD can pose drought-like water stress over 

plants, regardless of the soil water conditions. Therefore, we also calculated the VPD anomaly as 

the individual year’s deviation from the mean of the entire study period (Fig. 1). The VPD was 

calculated as follows:

VPD = 0.611×exp (17.502T/(T+240.97))×(1-RH)         (1)

where T is temperature and RH is relative humidity.

Three soil columns were drilled from the surface to a depth of 400 cm at intervals of 20 cm in

each plot. For each column, three replicates were performed at each depth. The samples of each

layer were divided into three parts. One part of the 12 g soil samples at each layer was sealed in

glass vials with Parafilm and frozen until isotopic analysis. The second part of the same depth was

oven-dried at 105°C for 48 h to obtain the soil water content at the corresponding depths in each

column. The average soil water at the same depth among all three columns was used to represent

the soil water profile of the individual sites. The remaining soil samples were sent to the Beijing

Agricultural  and  Forestry  Academy lab  to  test  the  organic  carbon,  nitrogen,  phosphorus,  and

potassium content (Fig. 1S).

Insert Fig. 1

Tree-ring sampling and measurements

We pooled 10 individuals for tree-ring examination in every sampling plot and retrieved two cores

per tree perpendicularly at diameter at breast height (DBH, cm) with increment borers (Pressler

4.3mm). Finally,  a total  of 540 tree cores were obtained from the 27 plots of all  three vigor
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classes.  The  wood  samples  were  dried  at  room  temperature  (°C)  and  polished  with  fine

sandpapers. In  brief,  we measured the annual tree-ring widths to  the nearest 0.01 mm with a

stereomicroscope  and  the  LINTAB  system. The  data  were  first  processed  with  TSAP-Win

V3.5(Rinntech, Hedelberg, Germany).  Subsequently, COFECHA was used to validate the cross-

dating of tree-ring measurements (Holmes, 1986). The chronologies of the trees from different

vigor classes were determined using the ARSTAN program (Cook, 1985).

The  age  and  radius  expansion  result  in  the  gradual  decreases  of  the  ring  width.  However,

increment in annual basal area (BAI, cm2 year-1) is less dependent on age and thus serves as an

indicator of tree growth with the age effect eliminated  (Battipaglia et al., 2013; Franco  Biondi,

1999). It can increase accuracy in dendrochronological studies(Ding, Xiao, Tian, & Han, 2021)

and climate response(Mohr, Saldana, Angulo, & Chhetri,  2019).  Therefore, BAI is commonly

used as a proxy for growth in ecology (Gómez Guerrero et al., 2013; Silva & Anand, 2013)‐ . BAI

was calculated as follows: 

BAI=π (r t
2
−r t−1

2
)            (2)

where  rt and rt-1 represent  the  radius  at  the  end  and at  the  beginning  of  the  annual  tree-ring

formation,  respectively.  Asymptotical  BAI  increases  indicate  tree  growth  in  good

condition(Franco  Biondi  &  Qeadan,  2008),  while  decreasing  BAI  represents  declining  tree

condition (Bigler & Bugmann, 2003, 2004; Wyckoff & Clark, 2000).

Tree ring chronology of carbon discrimination and iWUE

A scalpel was used to detach the individual rings of the cross-dated wood cores along ring lines

under a stereomicroscope (40× magnification) and the rings of the same year were pooled to form
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a composite sample (Liu et al., 2014; Wu et al., 2015) and represent the plot-aggregated isotopic

composition changes. A strong correlation was found between the carbon sources of the whole

wood and cellulose in terms of variation trends (Loader, Robertson, & McCarroll, 2003; Schleser

& Jayasekera, 1985). Therefore, we used only whole wood for the δ13C analysis as our objective

was to  trace the temporal  tends and responses to climate variables rather than to recreate  the

historic climate  (Sun et al.,  2018). The  composite wood samples were milled and then sieved

through  an  80-mesh  sieve. One  milligram  wood  powder  was  put into  tin  capsules  for δ13C

analyses. δ13C was determined by mass spectrometry (DELTA V Advantage; Thermo Scientific,

Waltham, MA, USA; precision 0.1‰). Tree-ring δ13C were corrected (δ13Ccor) to count for the

Suess effect (McCarroll & Loader, 2004) according to the following equation:

δ13Ccor=δ13Ctree -(δ13Ca+6.4)         (3)

where  δ13Ctree represents  tree-ring  δ13C,  δ13Ca is  the  atmospheric  value.  The  Regional  Curve

Standardization  method (RCS) were  used  to  test  and  remove the  age-related  trend  of  δ13C if

proven to exist (e.g. (Esper, Cook, Krusic, Peters, & Schweingruber, 2003; Gagen, McCarroll,

Robertson, Loader, & Jalkanen, 2008). 

The preferential use of  12C over  13C during the process of photosynthesis gives rise to carbon

isotopic discrimination (△) between the plants and atmospheric CO2. △ is determined according

to Farquhar and Richards (1984) as:

∆13C=
（δ 13Ca−δ 13C tree）
（1+δ 13C tree /1000）

           (4)

where δ13Ca and  δ13Ctree represent  the  carbon  isotope  signatures  of  the  air  and  the  plant,

respectively.  △ is  also related to  the ratio  of  intercellular  (Ci)  to  atmospheric (Ca)  CO2 mole

fraction, as follows:
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∆13C=
a+（b−a）C i

Ca
           (5)

where a  is  the constant  fractionation during CO2 diffusion through stomata  (4.4‰)  (O'Leary,

1981) and b is the biochemical fractionation during the Rubisco and PEP carboxylase reaction

(≈27‰)(Farquhar & Richards, 1984). To support the calculation of Eq (4-5), the atmospheric CO2

concentration  and  δ13Ca values  from  1977  to  2003  were  obtained  from  a  published  study

(McCarroll  & Loader,  2004).  For  the  period  from 2004-2016,  the  measurements  of  Ca were

retrieved from the Mauna Loa Observatory (http://cdiac.ornl.gov/trends/co2/sio-mlo.html) and the

δ13Ca values were derived from ice cores. 

iWUE  (μmol mol-1)  was defined as the ratio of carbon assimilation to transpiration. This was

calculated as follows:

iWUE=Ca(b-△13C)/(1.6(b-a))      (6)

Determination of current water source for different vigor classes 

Ten individuals were randomly sampled from each stand. The isotopic campaigns were carried out

twice  every  month  between  08:30  and  11:00  a.m.  from  April  to  September  in  2016.Three

suberized branches were taken as xylem samples and sealed in the vials with Parafilm M® to avoid

evaporation. The samples were immediately placed in a portable fridge box and stored in the lab

fridge at -4°C until isotopic analysis.

Paired with xylem sampling, soil samples were collected simultaneously using ground augers and

sealed as  previously mentioned. A surface layer of approximately 3 cm of the soil sample was

discarded to eliminate the possible evaporative enrichment effect of the uppermost layer. The soil

samples were stored in a refrigerator until isotopic analysis. 
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Precipitation was sampled using three iron buckets in an open field. A tunnel with a table tennis

ball at the collar was mounted on a bucket to reduce evaporative fractionation. The precipitation

samples were collected after each rainfall event, sealed in polyethylene vials with Parafilm M®

and transported back to the laboratory for refrigerated storage until analysis. 

Water from xylem and soil  samples was extracted by using the cryogenic vacuum distillation

technique, and the isotopic compositions of the samples were measured with an analyzer of laser

spectrometry for stable isotopes in liquid water (DLT-100, ABB Inc., USA) in the laboratory. The

isotope ratios of δ18O and δD were expressed as follows:

δ18O or δD (‰)=(Rsa/Rst-1)×1000  (7)

where Rsa and Rst indicate the isotope ratios of the samples relative to the Vienna standard mean

ocean  water  (VSMOW).  The  MixSIAR  Bayesian  mixing  model  was  used  to  determine  the

contributions of potential water sources.

Data analysis

We used the Mann-Whitney U-test for non-parametric tests to compare the significant differences

in dieback rates between the N and D stands. One-way ANOVA was used to test for significant

differences in measurements among different vigor classes. We conducted Tukey’s HSD test for

post-hoc comparisons among groups. We adopted  an  analysis of covariance (ANCOVA) to test

for differences in slope between two variables among vigor classes. 

Inherent  adaptive capacity  in  terms of  carbon assimilation was interpreted based on the three

theoretical scenarios(Saurer, Siegwolf, & Schweingruber, 2004): (1) ci constant, (2) ci/ca constant,

and (3) ca–ci constant. The scenarios vary in the ci changes with ca, namely: (1) no ci increase, (2)

proportional ci increases with ca and (3) ci increase rate same as ca. 

12

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

23
24



Correlation analysis has been widely used to analyze the influence of climatic variables on tree

physiology (N. G. McDowell et al., 2010; Voltas et al., 2013).  To examine the response of tree-

ring growth to climate variables, Pearson’s correlations were adopted to indicate the influence of

precipitation, VPD and  monthly  temperature  (Tmin,  Tmax and  Taverage)  on  BAI.  We  conducted

correlation assessment from previous July to the current September. A stepwise regression model

was employed to identify the explanatory power of the climatic variables and air CO2 over the tree

ring growth.

Results

Long term growth and iWUE patterns of different vigor classes

Environmental statistics indicated an extremely low rainfall in 1997, amounting to only 245.2 mm.

An  increasing frequency of negative SPEI occurred afterwards (Fig. 1a). Similarly, no obvious

trend was found for VPD, but the VPD anomaly exhibited increasing occurrences of higher VPD

(compared with the average value during 1975-2016) since 1997 (Fig. 1b). When classified into

contrasting SPEI and VPD ranges, BAI and iWUE exhibited significant differences among vigor

classes (Table 2). The BAI of the N stands were always significantly higher than  that of  first-

degree  decline  (DI),  followed  by  second-degree  decline  (DII).  However,  this  sequence  was

reversed in the comparison of iWUE of the three vigor classes. Moreover, the differences become

increasingly significant between the two dieback classes during drought-stressed periods (SPEI≤-

0.5 and VPD>0). 

Insert Fig. 1

Insert Table 2
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Trees in different vigor classes initially showed similar BAI but gradually shifted apart (Fig. 2a).

Compared to the N stands, the significant differentiation of BAI towards lower values in DI and

DII  were  dated  in  1988  (p=0.02,  one-way  ANOVA)  and  1985  (p=0.04,  one-way  ANOVA),

respectively.  Despite the varied BAI, trees of all  vigor classes experienced continuous growth

until around 2000. The maximum BAIs were pinpointed in 2003, 2002, and 1998 for the current

N, DI, and DII classes, respectively. After reaching the growth climax, the BAI of all vigor classes

demonstrated a noticeable decline. Over the whole study period, N stands were characterized by

higher average BAI (mean ± SE=8.30 ± 0.58 cm2 year−1) than in DI (6.18 ± 0.42 cm2 year−1) and

DII ones (4.11 ± 0.31 cm2 year−1). 

Insert Fig. 2

All vigor classes exhibited increased iWUE from 1975 to 2016 (+37.7, +31.3, and +15.5 % for N,

DI,  and  DII  classes,  respectively)  (Fig.  2b). However,  the  stands  of  different  health  statuses

displayed significant differences in the iWUE. DII stands presented the highest iWUE (mean ± SE

=96.38 ± 1.51 μmol mol-1), while N stands showed the lowest iWUE values (78.58 ± 0.60 μmol

mol-1) and DI stands displayed intermediate values (91.16 ± 1.21 μmol mol-1; Fig. 3b).

Insert Fig. 3

Chronologies of δ13C, Ci and △13C

The original (Fig. 3) and the RCS δ13C series (Fig. S2) do not show any increasing trend in the

14

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

27
28



young portion of the trees, indicating no juvenile effect of the carbon isotopic signature of trees in

this area. After the Suess correction, tree-ring δ13C series of the N stands still showed a marked

decline (Fig. 3a). This decreasing trend of δ13C became less significant as the health status of the

trees  deteriorated.  DII  barely  showed  any  temporal  trend  in  δ13C.  The  tree-rings  recorded

consistently higher δ13C values of DII stands than the other two vigor classes, with the DI stands

being the intermediate, and the N stands being the lowest (Fig. 3a; box plot). All stands displayed

increased  Ci  along  the  progression  of  the  year.  However,  the  increasing  trend  became  more

plateau  as  the  health  status  of  the  stands  deteriorated.  Except  for  the  N  stands,  significant

decreases in Δ13C were observed over time for stands of both dieback degrees (Fig. 3c). Moreover,

the decrease in slope became steeper as the tree health status deteriorated. 

Relationship  between  historical  tree  growth  and  carbon  use  strategy  of  different  vigor

classes

The responses of BAI to iWUE, Ca, and δ13C were demarcated by the year 2000, indicating that

intense frequency of drought occurrence after 2000 had a great impact on the relationship between

carbon use and growth trends for all health classes (Fig. 4). Since the initiation of 2000, stands of

all  health  statuses  showed  a  growth  decline  against  increased  iWUE  (p=0.368,  ANCOVA).

However, compared to the steep decline of the current dieback stands, the N stands maintained

growth by slowing down the decline (Fig. 4a). As for BAI response to  Ca, all stands enhanced

growth  at  increasing Ca before  2000  (p=0.405,  ANCOVA),  but  this  relationship  declined

afterwards (p=0.665, ANCOVA). δ13C exhibited no significant influence on growth in all stands

before 2000 (Fig. 4c). However, stands of different health statuses showed significantly different
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growth responses to δ13C afterwards (p<0.01, ANCOVA). The N stands enhanced their growth at

increased  δ13C (R2=0.27,  p<0.05),  while  the  dieback  stands  displayed  a  growth  decline  with

increased δ13C (R2=0.34, R2=0.18, for DI and DII, respectively, p<0.05).

Insert Fig. 4

Environmental drivers of the health status 

The temporal  trends  of  iWUE for  N stands  followed the  predicted  values  in  the  scenario  of

constant Ci/Ca (Fig. 5a). In contrast, although mainly representing a constant Ci/Ca scenario, iWUE

values of the D sites demonstrated a shifting tendency from the constant Ci/Ca scenario to the Ci

constant scenario, which signified the independent response to Ca, especially after 1997 (Fig. 5b

and c).

Insert Fig. 5

Trees of varied vigor classes exhibited different BAI responses to the monthly climate variables

(Table 3).  Compared with the D stands,  the  BAI of the N stands was more related to climate

factors,  especially  temperature.  The  growing  season  temperature  had  a  significant  positive

influence on the BAI of N and DI stands in both the previous and current years. In contrast, VPD

and precipitation had little  influence on tree growth. Obviously, the growth of the DII  stands

decoupled from climatic influences.

Insert Table 3
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Insert Table 4

Stepwise  regression  analysis  highlighted  the  triggering  effect  of  growth  decline  due  to  the

sustained drought  period  (Table  4).  The regression models  captured  the influence of  climatic

variables on tree growth of all vigor classes (R2>0.8) in the period before 2000 and R2>0.6, in the

period after 2000 when Ca was included. The BAI of all vigor classes showed positive responses

to historical CO2 but changed to negative responses after 2000. In contrast, the sole explanatory

power of cumulative annual temperature and SPEI on BAI was limited and failed to count the BAI

variances of DII stands.  

Variances of soil water and nutrition acquisition of different vigor classes 

The  comparison  of  on-site  soil  water  and  nutritional  sources  revealed  significant  differences

among stands of contrasting health status (Fig. 6 and 7). The stand soil moisture of different vigor

classes was close at the layers above 100 cm but differentiated notably with depth. In particular,

the healthy and DI stands had a much higher soil moisture below 200 cm than the DII stands

(p=0.018, one-way ANOVA). Below 250 cm, the soil water of the DI stands began to decrease

significantly compared to that of the healthy stands (p<0.001, one-way ANOVA). The N stands

showed significantly higher available nitrogen in all soil layers than the dieback counterparts (Fig.

6b).  A  significant difference in available nitrogen was found between the two declined classes

only in the surface layer of 0-40 cm.

Isotope  analysis  of  water  source  contribution  showed  contrasting  water  uptake  distributions

among stands of different health statuses (Fig. 7). N stands  preferred water from deeper layers

(lower than 160 cm). In contrast, the DI stands mainly obtained water from the middle layers of
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120-160 cm, and water from relatively shallow layers of 0-120 cm constituted the major water

sources for the DII stands. Clearly, stands of unfavorable health conditions shifted the depth of

water absorption. 

Insert Fig. 6

Insert Fig. 7

Discussion

4.1 Varied ability to access the deep soil water modulating the growth response of different

vigor classes to climatic influences 

Analyzing the growth-climate relationships may provide us with a perspective in understanding

the varied relationship between iWUE and growth enhancement. A remarkable outcome of this

study  is  that  tree  growth  increasing  decoupled  with  climatic  factors  as  the  health  status

deteriorated. We found a significant correlation between the growth of healthy stands and growing

season temperatures in previous and current years. In contrast, DII stands exhibited no response to

climatic influences.  Insignificant or negative relationships between iWUE and stem growth are

commonly attributed to the predominant influence of stress (Lévesque, Siegwolf, Saurer, Eilmann,

& Rigling, 2014; Liu et al., 2014). However, we found that precipitation and VPD exerted almost

no significant influence on stem growth for all vigor classes, implying a reliance on other water

sources in this area. Ground water has been suggested as an important water source for trees in

this  area  (Sun  et  al.,  2018). Although  groundwater  samples were  not  obtained,  our  isotopic

observation of the water use profile showed a clear pattern of accessing deep layer soil water as

the health status of stands improved. Therefore, soil water supply buffered the health of trees from
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the influence of precipitation and  VPD fluctuations, which  have been regarded as the drivers of

tree decline (Eamus, Boulain, Cleverly, & Breshears, 2013). 

As the increase  in  temperature  would  benefit  tree  growth by prolonging  the  growing season,

access to the deep soil water might also contribute to the positive effects of air temperature on

stem growth in the normal stands. Earlywood formation, which occurs at the beginning of the

growing season, requires carbohydrates stored during the previous growing season (Litton, Raich,

& Ryan, 2007). Therefore, a warmer climate with reduced water stress by the end of the growing

season would result in carbon storage for the following growing season. The effect of deep water

supply in  ameliorating drought stress  on stem growth is  consistent  with that  found in British

Columbia  (Cortini et al.,  2011) the northern Rocky Mountains  (Reed et al., 2018), and Albeta

(Chhin,  Hogg,  Lieffers,  &  Huang,  2008). However,  the  existence  of  calcified  soil  layers  in

declined stands constrains the root  accessibility  to  deep-layer water.  The cumulative effect  of

chronic water shortage would cause the loss of xylem hydraulic function and thus vitality decrease

in response to climatic influences. 

4.2 Physiological mechanism underlying the health status of trees

We found that iWUE at DI and DII responses to atmospheric  Ca increases shift  from

independent from  Ca (Ci constant) to active (Ci/Ca constant). These results indicate that

trees in this area might adopt dynamic leaf gas exchange strategies, which are derived

from different environmental factors, with respect to elevating Ca (Voelker et al., 2016).

Physiological variability (i.e. iWUE,  △13C) translated to variability in growth. In our study, the

iWUE trend of the declined stands gradually shift from the ‘Ci/Ca scenario’ toward ‘constant  Ci

scenario’.  In  both  scenarios,  the  iWUE  in  our  study  area  indicates  the  constrained  stomatal
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conductance as a result of the rising ca, or an increased photosynthesis rate (A) with constant  gs

(Kwak et  al.,  2016).  However,  the switch  between scenarios  indicated a  higher  sensitivity  of

declined stands to  Ca than the healthy ones. The increased physiological sensitivity has further

implications on growth rate, as we found a higher explanatory power of Ca on BAI (Table 4) in

declined stands. Secondary growth can serve as a proxy of net carbon gain(Voltas et al., 2013),

therefore, the trend of increasing  iWUE along with decreasing growth suggests a reduction in

water  loss,  either  through decreased water  absorption or  stomatal  conductance,  rather  than an

increase  in  assimilation  over  time. This  agrees  with  the  results  of  previous  studies  (Linares,

Delgado-Huertas, Camarero, Merino, & Carreira, 2009; Maseyk, Hemming, Angert, Leavitt, &

Yakir, 2011; Voltas et al., 2013). In our study, this realization can be substantiated by the varied

ability to access deep soil water across the vigor classes. Exposed to long-term water limitation,

trees will adopt strict stomatal regulation to maintain the xylem hydraulic function or the stomatal

closure  prevails  due  to  the  loss  of  hydraulic  conductance.  In  either  case,  water  loss  from

transpiration would be greatly reduced, contributing to increased iWUE in all stands. As the water

became more stressed under more declined stands, the stomatal closure became more severe and

led to a steep increase in the iWUE trend.

Stomatal control also leads to iWUE variation by regulation of the photosynthetic process which is

also partially influenced by factors such as Ca (Ainsworth & Long, 2005; Tricker et al., 2005) and

climate (Fernández-de-Uña et al., 2016). Ca elevation leads to a decrease in stomatal conductance

and an increase in photosynthetic assimilation, both of which induce greater iWUE (Battipaglia et

al., 2013). Therefore, compared with the declined stands, the long-term gentle increase of iWUE

in the healthy stands, indicating weak stimulation of photosynthesis under increasing CO 2. This is
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either because of the constraint on photosynthesis from environmental factors other than CO2 or a

less pronounced stomatal conductance decrease under weaker water limitation. In declined stands,

our observations complied with the fact that trees downscaled stomatal conductance under water

stress to minimize water loss through transpiration, and thus lead to increased 13C in plant biomass

and decreased  Δ13C (Scheidegger, Saurer, Bahn, & Siegwolf, 2000). Moreover, as the changing

direction (increasing or decreasing) of Ci indicates stomatal closure, the decreasing Ci as the stand

health status deteriorates also indicates stricter stomatal control in declined stands than in  their

healthy  counterparts.  Severe stomatal  closure may lead  to  higher  leaf  temperatures  and,  thus,

increased respiratory carbon loss (Körner, 2006). Therefore, even without the measurement of 18O

in tree rings, our results support the idea that reduction of stomatal conductance might pose strong

limitations on carbon absorption in trees in our declined stands regardless of increasing Ca.  The

stomatal closure of the declined trees where soil water stress was intense can also explain the

divergent isotope response and growth to climatic factors among stands of different health status.

This  further  supports  the  role  of  local  soil  water  conditions  in  determining  the  physiological

responses of trees to climate warming and changing Ca, and also explained our differences with

other studies where declined trees showed greater  sensitivity  to  climatic  factors  (Macalady &

Bugmann, 2014; N. G. McDowell et al., 2010). 

4.3 Increases in iWUE do not necessarily covert to growth enhancement 

We found  a decoupling between stem growth and  iWUE over a 15-year period of continuous

drought stress (Fig. 3 and Fig. 4a). Similar growth declines accompanied by an increase in iWUE

have  also  been  reported  in  various  ecosystems,  including  arid  and  semiarid  forests  in  the
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Mediterranean (Lévesque  et  al.,  2014),  northwestern  China  (Wu  et  al.,  2015) and  tropical

regions(van der Sleen et al., 2015).  Such decoupling between iWUE and BAI indicates that the

increase in iWUE did not necessarily promote plant growth, and other factors might offset the

stimulating effect of CO2 on growth.

The declining stem growth trends during the recent decade of the study period could be partially

attributed to the aging effect. Populus simonii generally steps into stem growth slowdown around

20 years of age and experiences low annual increments afterwards  (Tang & Zhang, 2000).  The

trees in our study were 40 years old. Therefore, the lack of  iWUE stimulation on stem growth

could be ascribed to the aging process. However, iWUE in the DII stands is constantly higher than

the health stands, indicating that the decoupling between  iWUE and BAI is also the result  of

additional factors other than age.

Compared with healthy trees, the declined trees can present either higher BAI with lower iWUE

(Voltas et al., 2013; Zadworny et al., 2019) or lower BAI with higher iWUE (Timofeeva et al.,

2017). The first condition can be explained by the cavitation-susceptible xylem conduits because

of  fast  growth  or  unsustainable  growth  support  from  low-rate  carbon  assimilation  and  other

nutrients (Zadworny et al., 2019). The second condition is mainly caused by water limitations and

depends on different environmental influences (Hereş, Voltas, López, & Martínez-Vilalta, 2014;

N. G. McDowell et al., 2010). At first glance, the effect of precipitation on radial growth in our

case was rather weak (Table 3). However, we observed a downward migration of water absorption

depths as the stands’ health status improved, implying the dominant role of the soil water supply

from deep layers over precipitation in supporting transpiration in our study area.  Therefore, the

inaccessibility of deep water posed water stress for trees and was responsible for the declination of
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stands (DI and DII stand). This conclusion has also been upheld by Sun et al., 2018 who found the

dominant role of groundwater depth on iWUE over other climatic factors in similar areas. In our

case, the contrasting water availability renders trees to face water deficiency of different severities

over time. The more stressed trees experience long-term severe stomatal control to preserve their

xylem hydraulic function at the expense of carbon assimilation. This strategy increases iWUE but

leads to low stem growth. As a result, trees demonstrate growth deviation from a very early age.

The differentiation of the growth status would further exacerbate by triggering events, such as

extremely low supplementation from rainfall and consecutive drought years, such as in 1997 and

continuous dry years in our study. Extreme summer drought has been proven to be responsible for

causing hydraulic failure, dieback, and mortality (Nardini et al., 2016). The timing and severity of

drought add up to the complexity of “legacy effects” on tree stem radial growth and reduce the

resilience of trees (Gao et al., 2018). For example, the carbon sequestration rate in drought-prone

forests  may  not  increase  with  elevated  Ca levels,  as  predicted  by  the  models  and  controlled

experiments  (Nowak,  Ellsworth,  &  Smith,  2004;  Sitch  et  al.,  2008).  Our  evidence  of  the

predominant role of water stress over other stimulating factors on tree growth reinforces the point

that stand-level water limitation may constrain the adaptability of forests to climatic warming in

drought-sensitive areas.

Beside of the soil water, we found significantly lower soil nitrogen content across stands with

varying health  status.  It  has been shown that nutrient  availability,  particularly nitrogen, limits

forest growth under elevated CO2 conditions (Fisher, Badgley, & Blyth, 2012). Even without tree

ring 15N to clarify whether site-specific nutrient availability was limited, our results also indicate

nutrient factors in explaining growth decline, and thus the deviation of growth trend from iWUE.
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Conclusions 

Our study shows that the boosting effect that may have been generated by CO2 elevation, rising 

temperatures, or their synergies on stem growth in the semi-arid cold area, cannot offset the 

existence of soil moisture stress, especially after a series of droughts. Based on the trend of iWUE 

and 13C and the soil water absorption profile, we believe that trees facing chronic soil water stress 

would prevent excessive water loss through stomatal control, leading to rising iWUE. Meanwhile, 

an increase in Ci indicates no apparent limitation on CO2 absorption. This is a direct embodiment 

of the boosting effect of rising Ca concentrations on iWUE. However, the boosting effect cannot 

offset the cumulative soil water stress on growth. High iWUE does not translate to growth or 

increased vigor of trees, especially after a drought series. Compared with precipitation, access of 

deep soil water is associated with health status, implying its importance as the main water resource

of poplar plantations in this area. Therefore, we suggest that soil moisture conditions the iWUE 

and growth sensitivity to global warming and thus portray site-specific decline episodes of 

different degrees in drought-prone areas. 
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Tables

Table 1 Summary of sampling plots of different vigor classes.

Table 2 Comparison of the BAI (cm2 year-1) and iWUE (μmol mol-1) among stands of different

health status in contrasting SPEI and VPD conditions. Values are given as mean ± S.D.

Table 3 Relationship between tree growth and monthly climatic variables.

Table  4 Coefficients  of  predictors  from  the  stepwise  regression  analysis  summary  over  the

relationship between BAI and climatic variables (precipitation, VPD, ca and Tc) in all vigor classes.
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Table 1 Summary of sampling plots of different vigor classes

Vigor

classes

Height (m) DBH (cm)

Sites

(subplots

)

Altitude

range (m)

Density

(ha-1)

Rate of dieback

trees (%)

N 13.88±4.25 22.15±2.25 9(3) 1250-1275 950-1005 0

DI 10.82±2.25 17.62±1.86 9(3) 1238-1285 946-998 20-60

DII 8.95±2.25 13.71±1.64 9(3) 1256-1286 982-1012 >60

Abbreviations: N for normal stands; DI for stands of Dieback I degree; DII for stands of Dieback 

II degree
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Table 2 Comparison of the BAI (cm2 year-1) and iWUE (μmol mol-1) among stands of different 

health status in contrasting SPEI and VPD conditions. Values are given as mean ± S.D.

Periods

BAI iWUE

N DI DII N DI DII

Annual SPEI>-0.5 7.63±3.58a 5.93±5.93b 4.17±4.17 b 77.60±3.92 a 90.713±8.25 b 95.78±10.21 c

Annual SPEI≤-0.5 8.83±4.14 a 6.25±2.71 b 3.78±1.85c 80.65±8.94 a 92.61±6.25 b 98.33±3.78 c

Growing season SPEI>-0.5 7.79±3.61 a 6.02±2.82 b 4.18±2.15 b 77.77±3.94 a 90.84±8.12 b 95.85±8.69 c

Growing season SPEI≤-0.5 8.73±4.21 a 6.09±2.74 b 3.74±1.91 c 80.55±4.96 a 92.50±7.09 b 98.36±9.02 c

Non-growing season SPEI>-0.5 8.25±3.61 a 6.30±2.70 b 4.20±2.11 b 78.13±4.34 a 90.23±8.02 b 96.30±9.18 c

Non-growing season SPEI≤-0.5 7.95±4.25 a 5.75±2.68 b 3.83±2.05 b 79.39±4.63 a 92.77±7.36 b 97.18±10.41 c

VPD anomaly >0 9.02±3.43 a 6.69±2.53 b 4.419±1.86 c 79.18±4.65 a 92.00±7.49 b 98.79±9.58 c

VPD anomaly≤0 7.46±3.97 a 5.59±2.87 b 3.75±2.19 b 78.39±4.40 a 90.98±8.07 b 95.24±9.63 c

Colors in the column head from dark to light indicated decreasing trend of values of 

corresponding vigor class

The growing season expanded through April to September, and the non-growing season was 

defined as the period from previous October to the end of March in current year.

VPD anomaly was calculated as deviation of individual annual VPD value to the mean of the 

study period.

Different lower-case letters indicate significantly different means among vigor classes.

Abbreviations of health status: N: normal stands (no dieback tree); DI: stands of Dieback I degree 

(20-60% dieback trees); DII: stands of Dieback II degree (>60% dieback trees)
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Table 3 Relationship between tree growth and monthly climatic variables

Growth

variable

Vigor

class

Climatic

predictor

Previous year Current year Spectrum 

scale of 

Pearson 

coefficients

Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep.

BAI

N

VPD

T

P

DI

VPD

T

P

DII

VPD

T

P

Pearson coefficients were reproduced to corresponding colors for the sake of clarity. Significant 

correlation was highlighted with black frames.

Abbreviations of health status: N: normal stands (no dieback tree); DI: stands of Dieback I degree 

(20-60% dieback trees); DII: stands of Dieback II degree (>60% dieback trees)
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Table 4  Coefficients of predictors from the stepwise regression analysis summary over the

relationship between BAI and climatic variables (precipitation, VPD, ca and Tc) in all vigor classes.

Dependent measure and

factors entered

Ante-1997 Post-1997

N DI DII N DI DII

Model

included Ca

Constant -124.758 -97.922 -69.33 57.467 55.156 54.395

VPD -0.367

ca 0.374 0.295 0.21 -0.121 -0.124 -0.131

Total R2 0.974 0.97 0.864 0.628 0.726 0.718

Model

excluded Ca

Constant -2.946 -2.401 -0.985 9.688 6.347

Tc 0.237 0.198 0.131

SPEI -1.794 -1.389

Total R2 0.308 0.31 0.248 0.429 0.282

*p<0.05; **p<0.01

Abbreviations of health status: N: normal stands (no dieback tree); DI: stands of Dieback I degree 

(10-40% dieback trees); DII: stands of Dieback II degree (>40% dieback trees). Tc: cumulative 

annual temperature

Ante- and Post-2000 stand for the study period before and after the year 2000, respectively.

publicity
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