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Abstract: Based on a coarsening strategy of adjacency matrix, a new algebraic prolonga-
tion operator is developed for standard V-cycle multigrid method to accelerate the whole
process. An efficient algebraic multigrid (EAMG) method is proposed for solving large-
scale linear systems, arising from finite element (FE) discretization of second order elliptic
boundary value problems. Numerical experiments on polygonal domains are conducted to
demonstrate the EAMG computation is more efficient than standard method.
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1 Introduction

Multigrid (MG) methods [2] are among the most efficient numerical methods for solving the large-scale
linear systems arising from FE or finite difference (FD) discretization of partial differential equations, such
as elliptic equation [7, 11, 12, 18, 19], convection diffusion equation [4, 5, 10, 13, 16], semilinear Poisson
equation [9] and parabolic equation [6]. The MG could be categorized into two groups: Geometry multigrid
and the algebraic multigrid (AMG) methods. Compared to the Geometry multigrid method, the algebraic
multigrid (AMG) method able to the case with complex domain where grid may be highly unstructured or
irregular [1, 15, 17].

In AMG, prolongation operator plays an important role to interpolate the solutions from the coarse to
the fine grids. By using some geometric assumptions and strongly connected component, Chang, Wong and
Fu [3] developed a prolongation operator. Kickinger discussed two simple prolongation operators based on
two simple coarsening with graph of matrix [8]. By combining the linear and higher order FE basis functions,
Shu et al. constructed a prolongation operator for AMG to solve the higher order FE equations [14].

In this paper, we focus on constructing a new prolongation operator, based on a coarsening strategy of
adjacency matrix. Embedding this operator with standard V-cycle multigrid method, an efficient algebraic
multigrid (EAMG) method is established to solve second order elliptic equations in polygonal domains.
Numerical results show that the proposed method is more efficient than the ordinary algebraic multigrid
method.

This paper is organized as follows. Section 2 gives the model problem. A new EAMG method coupled
and a new prolongation operator are developed in the Section 3. Section 3.2 introduces a brief overview of
the coarsening algorithms with graph matrix. Section 3.3 study a new algebraic prolongation operator from
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the residual equation. Section 4 presents the numerical results to show the efficiency and robustness of the
proposed algorithm. Some concluding remarks are given in final section.

2 Model problem

In this paper, we consider the following elliptic boundary value problem −∇ · (α(x, y)∇u) = f , in Ω,
u = 0, on ∂Ω,

(2.1)

where u ∈ H1
0(Ω) is the exact solution, f is a given source function, andΩ is a 2D bounded polygonal domain

with Dirichlet boundary ∂Ω.
The equivalent variational form of the problem (2.1) is as follows: find u ∈ H1

0(Ω) such that

a(u, v) = ( f , v), ∀v ∈ H1
0(Ω), (2.2)

where
a(u, v) =

∫
Ω

α(x, y)∇u · ∇v, f (v) =
∫
Ω

f v. (2.3)

In order to approximate the weak solution u, we consider a unstructured triangulation Th of Ω with mesh-size
h = maxT∈Th diam(T ).

Given the triangulation Th for Ω, the linear finite element space with respect to the triangulation Th is
defined as

Vh = {u ∈ C(Ω̄)| u ∈ P1(T ), ∀T ∈ Th, u|∂Ω = 0}, (2.4)

where P1(T ) is a linear function on the element T . The finite element approximation of the variational
problem (2.2) is: find uh ∈ Vh such that

a(uh, vh) = ( f , vh), ∀vh ∈ Vh. (2.5)

The linear finite element equation could be rewritten as

Ahuh = Fh, (2.6)

here Ah is known as the stiffness matrix with entries ah
i, j, and Fh is the right-hand vector.

3 New algebraic multigrid method

In this section, we focus on develop an efficient algebraic multigrid method for solving (2.6).

3.1 AMG setup phase

To start the process of AMG method, we need the setup phase, which could be described as follows Here,
subscript j indicate level number, L denotes the number of grid levels, and 1 is the finest grid level.

From the Algorithm , all these components (include prolongation P j
j+1, restriction R j

j+1 and hierarchy
matrix A j) could be constructed.
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Algorithm 1 AMG setup phase
1: Input matrix Ah, set A1 ← Ah

2: for j← 1, L − 1 do
3: Coarsening: partition Ω j into disjoint sets C and M
4: Constructing prolongation matrix P j

j+1

5: Taking restriction matrix: R j+1
j ⇐ (P j+1

j )T

6: Computing coarse matrix A j+1 ⇐ R j+1
j A jP

j
j+1

7: Ω j+1 ← C
8: end for

3.2 Coarsening strategy

In this subsection, we introduce a simple coarsening strategy based on the graph associated with the
matrix, which will be employed in EAMG method, to obtain a set of coarse nodes. For convenience to
description, we need the following definition.

Definition 1 [8] Let A = [ai, j]n×n be a n-order square matrix. By the Graph G(A) of the matrix A, we denote
the following :

G(A) = {(i, j)| ai, j , 0}, (3.7)

where i and j are called vertexes, and (i, j) ∈ G(A) are called edges, which going from i to j.

Based on the Definition 1 and matrix graph G(A), we can pick up coarse nodes from the following
coarsening strategy [8] ( Algorithm 2).

Algorithm 2 Coarsening algorithm
1: Input graph G(A) corresponding to matrix A and build up two empty sets C and I.
2: Go through the vertices in G(A) in ascending order.
3: (1) Let i be the actual vertex.
4: (2) If i ∈ G(A) is not visited, put i into C and mark this node in G(A) as visited.
5: (3) Go through the connected vertices of i and let j be the actual vertex with (i, j) ∈ G(A).
6: If this vertex of G(A) is not marked as visited, put (i, j) into I, and mark j in G(A) as visited.
7: Return C and I.

If the set C has be obtained, call it as coarse set, then the other vertexes in graph G(A) can be organized
into f ine set M in ascending order.

To illustrate how to select coarse vertexes in graph G(A), we take a simple graph in Figure 1, as well
as in Ref. [8]. It is shown that all vertexes {1, 2, . . . , 18} are split into two disjoint subsets C and M,
correspond to the coarse points and fine points, respectively. Namely, C = {1, 5, 7, 8, 14, 16} and M =

{2, 3, 4, 6, 9, 10, 11, 12, 13, 15, 17, 18}.

3.3 Prolongation operator

Assume that the coarse set C and fine set M have been obtained. We introduce the following symbols

Ni = { j| ai j , 0, i , j}, NC
i = C ∩ Ni,

NM
i = M ∩ Ni, s = ind(i), i ∈ C,
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Figure 1: Generation of coarse set C

where Ni is the direct neighborhood of a point i, s is the renumbered i in C in ascending order. Let N denote
the number of objects in the coarse set C, we now focus on developing an algebraic prolongation operator
Ph

H (although physical meshes may not be given, we continue to denote fine-grid and coarse-grid quantities
by h and H, respectively).

Consider the residual equation with the approximation v0

AhEh = Rh, (3.8)

where Eh = uh − v0 = [eh
1, e

h
2, . . . , e

h
n]T , Rh = Fh − Ahv0 are error and residual vector, respectively.

If approximation v0 approach to the solution uh, then the right-hand side Rh ≈ 0. Therefore, we have

AhEh ≈ 0. (3.9)

The i−th component of (3.9) could be written in the following form

aiieh
i +
∑
j∈Ni

ai jeh
j ≈ 0. (3.10)

Assume that the coarse grid values EH = [eH
1 , e

H
2 , . . . , e

H
N ]T have been obtained. Some fine grid values

could be constructed as below
eh

i ⇐ eH
s , s = ind(i), ∀ i ∈ C. (3.11)

Applying Ni = NC
i ∪ NM

i in the Eq. (3.10), we have

aiieh
i +
∑
t∈NM

i

aiteh
t ≈ −

∑
j∈NC

i

ai jeH
ind( j). (3.12)

Set
eh

t :≈ eh
i , ∀ t ∈ NM

i , (3.13)

then the (3.12) can be written as
(aii +

∑
t∈NM

i

ait)eh
i ≈ −

∑
j∈NC

i

ai jeH
ind( j). (3.14)
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Since A is a positive definite matrix, we get

(aii +
∑
t∈NM

i

ait) , 0.

Therefore,

eh
i ≈

1
aii +

∑
t∈NM

i

ait

−∑
j∈NC

i

ai jeH
ind( j)

 , ∀ i ∈ M. (3.15)

we denote this procedure from EH to eh as an algebraic prolongation operator, and call it as Ph
H , i.e.

eh ⇐ Ph
HeH , (3.16)

where

Ph
H = (pi j)n×N =


1, if i ∈ C, j = ind(i),

−aik/(aii +
∑

t∈NM
i

ait), if i ∈ M, k ∈ NC
i , j = ind(k),

0, otherwise,

(3.17)

Once the prolongation operator is specified, the restriction operator could be constructed as below

RH
h ⇐ (Ph

H)T . (3.18)

3.4 Description of the EAMG algorithm

Applying the new prolongation operator for original algebraic multigrid, we shall establish an efficient
algebraic multigrid (EAMG) method as below

Algorithm 3 EAMG
1: Input u0

1, set F̄1 ← Fh

2: for j← 1, L − 1 do
3: Pre-smoothing v1 times: uv1

j ⇐ CGv1 (A j, u0
j , F̄ j) ◃ CG denotes the conjugate gradient method

4: Restricting: F̄ j+1 ⇐ R j
j+1(F̄ j − A ju

v1
j )

5: if j > 1 then
6: u0

j ← 0
7: end if
8: end for
9: Solve the coarsest equation ALuL = F̄L to get u∗L

10: for j← L − 1, 1 do
11: Correcting: ū j ⇐ uv1

j + P j
j+1u∗j+1, ◃ P j

j+1 denotes the proposed prolongator
12: Post-smoothing v2 times: u∗j ⇐ CGv2 (A j, ū j, F̄ j)
13: end for
14: Return u∗1
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4 Numerical examples

In the section, we test the efficiency of the proposed EAMG method for solving elliptic equation of second
order on some typical triangle meshes (see Figure 2 and 3 ). The AMG represent the ordinary AMG method
(AMG) which embedded the coarsening strategy (namely Algorithm 2), conjugate gradient method and the
prolongator [8]

P̄ = ( p̄i j)n×N =


1, if i ∈ C, j = ind(i),

1/m, if i ∈ M, k ∈ NC
i , j = ind(k), m = |NC

i |,
0, otherwise.

(4.19)

Let the number of grids level L = 4, and set the number of pre-smoothing and post-smoothing steps as
v1 = v2 = 3 in the two solvers. The zero vector is taken as the initial guess for AMG and EAMG solvers.
The process of two computations are both start with zero initial guesses and are terminated when the 2-norm
of residual vector on the finest grids is reduced by 10−5. Our codes of the above algorithms are written in
MATLAB and run on a desktop computer with 4GB RAM and Inter (R) Core (TM) i5-6200U CPU.

The ||u− u∗1||∞ and ||u− u∗1||∞ reported are the maximum absolute errors and residual errors over the entire
discretized grid points on the finest grid, respectively. The Time express the computational time (unit:second)
of solvers.

Example 4.1 The first test problem is

− ∆u(x, y) = 6xy(y4 − 1) − 20x3y3(x2 − 1) − 20x3y(y4 − 1), in Ω = [0, 1]2, (4.20)

with the Dirichlet boundary condition

u(0, y) = u(x, 0) = u(1, y) = u(x, 1) = 0. (4.21)

The exact solution of Eq. (4.20) is
u(x, y) = x3y(x2 − 1)(y4 − 1). (4.22)

Example 4.2 We consider the following second-order elliptic problem

−∇ · (α(x, y)∇u(x, y)) = f (x, y)

with variable coefficient α(x, y) = 2 + sin(xy) on the square domain Ω = [0, 1]2. The function f (x, y) and
Dirichlet boundary conditions on ∂Ω are obtained from the analytic solution,

u(x, y) = (1 − exp(sin(πx)))(1 − exp(sin(πy))). (4.23)

Example 4.3 (L - shaped domain)We consider the model problem (2.1) with variable coefficient function

α(x, y) = x2y3 + 2,

on the L - shaped domain Ω = Ω1 ∪ Ω2, where Ω1 = [0, 1] × [−1, 1] and Ω2 = [−1, 0] × [−1, 0], which has
analytic solution

u(x, y) = (exp(sin(xy)) − 1)(1 + cos(πx))(x + 1)(sin(
π

2
y) + 1)(1 − y). (4.24)
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Mesh−a Mesh−b Mesh−c

Figure 2: Some typical triangle meshes on square domain (Examples 4.1 and 4.2)

Figure 3: Unstructured triangle meshes on reentrant domain ( Examples 4.3 and 4.4)

The corresponding right hand side function f (x, y) and Dirichlet boundary conditions on ∂Ω are set to satisfy
the analytic solution.

Example 4.4 (U- shaped domain)We consider the model problem (2.1) with variable coefficient function

α(x, y) = exp(xy) + 1

on the U - shaped domain Ω = Ω1 ∪ Ω2 ∪ Ω3, where Ω1 = [−1,−0.5] × [−0.5, 1] , Ω2 = [−1, 1] × [−1,−0.5]
and Ω3 = [0.5, 1] × [−0.5, 1], which has analytic solution

u(x, y) = cos(
π

2
y2) sin(πx3)(exp(y + 0.5) − 1)(x2 − 0.25). (4.25)

The corresponding right hand side function f (x, y) and Dirichlet boundary conditions on ∂Ω are set to satisfy
the analytic solution.

Table 1: Hierarchy information of EAMG method applied to Example 4.2 with Mesh-c

A j
Number Number of Density Minimum Maximum Average entries Condition
of rows nonzeros (%,full) entries per row entries per row per row number

A1 159105 1111151 0.004% 4 9 7.0 1.46(+5)
A2 39617 276015 0.02% 4 9 7.0 3.64(+4)
A3 9825 68111 0.07% 4 9 6.9 9.03(+3)
A4 2417 16575 0.28% 4 9 6.9 2.22(+3)
A5 585 3911 1.14% 4 9 6.7 4.92(+2)
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Table 2: Hierarchy information of EAMG method applied to Example 4.3

A j
Number Number of Density Minimum Maximum Average entries Condition
of rows nonzeros (%,full) entries per row entries per row per row number

A1 131457 917621 0.01% 4 9 7.0 7.62(+4)
A2 32705 227637 0.02% 4 9 7.0 1.86(+4)
A3 8097 56021 0.09% 4 9 6.9 4.47(+3)
A4 1985 13557 0.34% 4 9 6.8 1.05(+3)
A5 477 3161 1.39% 4 9 6.6 2.37(+2)

Table 3: Properties of hierarchy matrix A j (Hierarchy information of EAMG method applied to Example 4.4

A j
Number Number of Density Minimum Maximum Average entries Condition
of rows nonzeros (%,full) entries per row entries per row per row number

A1 111217 774849 0.01% 4 9 7.0 3.68(+4)
A2 27577 191193 0.03% 4 9 6.9 9.04(+3)
A3 6781 46533 0.10% 4 9 6.9 2.19(+3)
A4 1639 10995 0.41% 4 9 6.7 5.16(+2)
A5 382 2424 1.66% 4 9 6.3 1.10(+2)

Table 4: Numerical results of for Example 4.1 with Mesh-a
Cells Methods ||u − u∗1||∞ ||Fh − Ahu∗1||2 Iterations T ime

8192
AMG 2.50(-4) 7.06(-6) 18 0.13

EAMG 2.51(-4) 9.46(-6) 4 0.05

32768
AMG 6.26(-5) 8.81(-6) 20 0.47

EAMG 6.23(-5) 9.19(-7) 5 0.13

131072
AMG 1.56(-5) 8.45(-6) 22 3.81

EAMG 1.59(-5) 9.56(-6) 4 0.59

524288
AMG 8.45(-6) 8.61(-6) 23 15.8

EAMG 4.11(-6) 7.15(-6) 4 2.88

Table 5: Numerical results of Example 4.1 with Mesh-b
Cells Methods ||u − u∗1||∞ ||Fh − Ahu∗1||2 Iterations T ime

8192
AMG 3.23(-4) 9.23(-6) 14 0.08

EAMG 3.22(-4) 7.19(-6) 5 0.05

32768
AMG 7.93(-5) 6.40(-6) 18 0.47

EAMG 7.87(-5) 1.54(-6) 5 0.09

131072
AMG 2.01(-5) 9.77(-6) 19 3.36

EAMG 1.93(-5) 1.62(-6) 5 0.83

524288
AMG 7.13(-6) 8.46(-6) 21 13.9

EAMG 4.77(-6) 7.50(-7) 5 3.55
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Table 6: Numerical results of Example 4.1 with Mesh-c
Cells Methods ||u − u∗1||∞ ||Fh − Ahu∗1||2 Iterations T ime

19968
AMG 7.28(-5) 8.95(-6) 11 0.14

EAMG 6.92(-5) 1.51(-6) 5 0.08

79872
AMG 2.36(-5) 5.24(-6) 12 0.64

EAMG 2.13(-5) 3.13(-6) 5 0.25

319488
AMG 9.55(-6) 9.82(-6) 11 4.42

EAMG 6.31(-6) 3.05(-6) 5 1.63

Table 7: Numerical results of Example 4.2 with Mesh-a
Cells Methods ||u − u∗1||∞ ||Fh − Ahu∗1||2 Iterations T ime

8192
AMG 5.51(-3) 9.91(-6) 27 0.17

EAMG 5.51(-3) 6.86(-6) 6 0.02

32768
AMG 1.35(-3) 8.72(-6) 31 0.67

EAMG 1.35(-3) 8.15(-6) 6 0.13

131072
AMG 3.35(-4) 9.31(-6) 33 5.95

EAMG 3.34(-4) 1.39(-6) 7 1.23

524288
AMG 8.34(-5) 8.25(-6) 36 23.6

EAMG 8.32(-5) 1.35(-6) 7 4.48

Table 8: Numerical results of Example 4.2 with Mesh-b
Cells Methods ||u − u∗1||∞ ||Fh − Ahu∗1||2 Iterations T ime

8192
AMG 2.99(-3) 6.07(-6) 22 0.14

EAMG 2.99(-3) 4.70(-6) 7 0.03

32768
AMG 7.24(-4) 7.35(-6) 27 0.70

EAMG 7.24(-4) 1.14(-6) 7 0.19

131072
AMG 1.78(-4) 9.30(-6) 30 5.23

EAMG 1.78(-4) 7.07(-6) 6 1.14

524288
AMG 4.42(-5) 8.32(-6) 33 21.9

EAMG 4.41(-5) 8.81(-7) 7 4.19

Table 9: Numerical results of Example 4.3
Cells Methods ||u − u∗1||∞ ||Fh − Ahu∗1||2 Iterations T ime

16512
AMG 3.63(-4) 6.33(-6) 13 0.13

EAMG 3.61(-4) 6.13(-6) 5 0.05

66048
AMG 1.00(-4) 4.94(-6) 14 0.58

EAMG 9.97(-5) 4.65(-6) 5 0.16

264192
AMG 2.79(-5) 4.96(-6) 14 2.73

EAMG 2.74(-5) 4.02(-6) 5 1.05
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Table 10: Numerical results of Example 4.4
Cells Methods ||u − u∗1||∞ ||Fh − Ahu∗1||2 Iterations T ime

14016
AMG 1.76(-3) 5.16(-6) 18 0.16

EAMG 1.76(-3) 2.63(-6) 8 0.06

56064
AMG 5.20(-4) 8.83(-6) 19 0.59

EAMG 5.20(-4) 4.38(-6) 8 0.25

224256
AMG 1.50(-4) 8.27(-6) 19 2.72

EAMG 1.50(-4) 7.60(-6) 8 1.14

From Tables 1, 2 and 3, the number of rows and the number of nonzero entries both decreases with the
rate 1

4 (see the second and the third columns). The minimum, maximum and average entries per row keep
stability, the condition number of hierarchy matrix reduced. Therefore, those equations on auxiliary coarse
grids are convenient to compute and store.

The computational results of AMG and EAMG methods with some nonuniform meshes (see Figure 2 and
3 ) for the four examples are listed in Tables 4-10. Compared with computational cost of the existing AMG
method, fewer number of iterations of the proposed method are required on the finest grid. Therefore, the
EAMG method is faster than classical AMG method. When a larger scale grid is required, the superiority
of the proposed method is more obvious. In the respect of precision, the two methods are able to obtain a
desired accuracy approximation solutions. Particularly, the residual norm ||Fh−Ahu∗1||2 of the EAMG method
is a little bit more accurate than that of the compared method.

To sum up the above arguments, the proposed EAMG method keeps the scalability and efficiency.

5 Conclusion

We presented an efficient algebraic multigrid (EAMG) method embedding with a new algebraic prolongation
operator based on coarsening strategy of adjacency matrix. Numerical results show that our EAMG method
could achieve desired approximation solutions fast than the original AMG method. The present method is
more suitable to computationally second order elliptic equations on polygonal domains.
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