Conclusion:
Identification of infants with intact CAR by assessment of cerebral oxygenation during weaning of supplemental oxygen resulted in easier titration of FiO2. Further studies are needed to confirm the underlying capacity of the preterm infants to compensate for hypoxemia, and to examine the impact of CAR assessment on long-term outcome.
Authors contribution:
Both authors made a substantial contribution to the manuscript and the design of the work: YE was the principal investigator and collected the data, SD helped in data analysis and in writing the manuscript.
Compliance with ethical statement:
Conflict of interest: The authors declare that they have no conflict of interest
Funding: there is no funding source
Ethical approval: The local ethical committee has approved to publish data.
References:
1. van Zanten H a., Tan RNGB, van den Hoogen A, Lopriore E, te Pas AB. Compliance in oxygen saturation targeting in preterm infants: a systematic review. Eur J Pediatr [Internet]. 2015; Available from: http://link.springer.com/10.1007/s00431-015-2643-0
2. The BOOST-II Australia and United Kingdom Collaborative Groups. Outcomes of Two Trials of Oxygen-Saturation Targets in Preterm Infants. N Engl J Med [Internet]. 2016;160210140037001. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa1514212
3. Saugstad OD, Aune D. Optimal oxygenation of extremely low birth weight infants: a meta-analysis and systematic review of the oxygen saturation target studies. Neonatology [Internet]. 2014;105:55–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24247112
4. Killilea DW, Hester R, Balczon R, Babal P, Gillespie MN. Free radical production in hypoxic pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol [Internet]. 2000 Aug;279(2):L408-12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10926565
5. Schmidt B, Whyte RK, Asztalos E V, Moddemann D, Poets C, Rabi Y, et al. Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: a randomized clinical trial. Jama [Internet]. 2013;309(20):2111–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23644995
6. Finer N, Saugstad O, Vento M, Barrington K, Davis P, Duara S, et al. Use of oxygen for resuscitation of the extremely low birth weight infant. Pediatrics. 2010;125(2):389–91.
7. Kenosi M, O’Toole JM, Livingston V, Hawkes GA, Boylan GB, O’Halloran KD, et al. Effects of Fractional Inspired Oxygen on Cerebral Oxygenation in Preterm Infants following Delivery. J Pediatr [Internet]. 2015;167(5):1007-1012.e1. Available from: http://dx.doi.org/10.1016/j.jpeds.2015.07.063
8. Schwartz S, Frantz RA, Shoemaker WC. Sequential hemodynamic and oxygen transport responses in hypovolemia, anemia, and hypoxia. Am J Physiol [Internet]. 1981;241(6):H864-71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7325255
9. Sun L, Macgowan CK, Sled JG, Yoo SJ, Manlhiot C, Porayette P, et al. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation. 2015;131(15):1313–23.
10. Wolff CB. Normal cardiac output, oxygen delivery and oxygen extraction. Adv Exp Med Biol. 2008;599:169–82.
11. Askie LM, Henderson-Smart DJ. Restricted versus liberal oxygen exposure for preventing morbidity and mortality in preterm or low birth weight infants.update of Cochrane Database Syst Rev. 2000;(2):CD001077; PMID: 10796409. Cochrane Database Syst Rev. 2009;1(3):CD001077.
12. Greisen G, Sci M. Cerebral Autoregulation in Preterm Infants. How to Measure It-And Why Care? J Pediatr [Internet]. 2014;165(5):885–6. Available from: http://dx.doi.org/10.1016/j.jpeds.2014.07.031
13. Vesoulis Z a., Liao SM, Trivedi SB, El Ters N, Mathur AM. A Novel Method for Assessing Cerebral Autoregulation in Preterm Infants Using Transfer Function Analysis. Pediatr Res [Internet]. 2015;(November). Available from: http://www.nature.com/doifinder/10.1038/pr.2015.238
14. Chock VY, Ramamoorthy C, Van Meurs KP. Cerebral Autoregulation in Neonates with a Hemodynamically Significant Patent Ductus Arteriosus. J Pediatr [Internet]. 2012 Jan [cited 2012 May 5];160(6):936–42. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022347611012285
15. Riera J, Caba F, Serrano J, Bravo C, Laura S. New Time-Frequency Method for Cerebral Autoregulation in Newborns: Predictive Capacity for Clinical Outcomes. j Pediatr.
16. Poets CF, Roberts RS, Schmidt B, Whyte RK, Asztalos E V., Bader D, et al. Association Between Intermittent Hypoxemia or Bradycardia and Late Death or Disability in Extremely Preterm Infants. Jama [Internet]. 2015;314(6):595. Available from: http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2015.8841
17. Ali YH, Elsayed Y, Srinivasan G, Seshia MK, Al-Ethawi Y, Baier R. The impact of different modes of noninvasive ventilation on hemodynamics and regional cerebral and splanchnic oximetry in the premature newborn. J Clin Neonatol [Internet]. 2016;5(3):179. Available from: http://www.jcnonweb.com/text.asp?2016/5/3/179/191256
18. Elsayed YN, Amer R, Seshia MM. The impact of integrated evaluation of hemodynamics using targeted neonatal echocardiography with indices of tissue oxygenation: a new approach. J Perinatol. 2017;
19. Amer R, Kalash R, Seshia MM, Elsayed YN. The Impact of Integrated Evaluation of Hemodynamics on Management of Preterm Infants with Late-Onset Compromised Systemic Circulation. Am J Perinatol. 2017;
20. Elsayed YN, Fraser D. Integrated evaluation of neonatal hemodynamics, part 2: Systematic bedside assessment. Neonatal Netw. 2016;35(4).
21. Elsayed YN, Fraser D. Integrated evaluation of neonatal hemodynamics program optimizing organ perfusion and performance in critically ill neonates, part 1: Understanding physiology of neonatal hemodynamics. Neonatal Netw. 2016;35(3).
22. Petrova A, Mehta R. Near-infrared spectroscopy in the detection of regional tissue oxygenation during hypoxic events in preterm infants undergoing critical care. Pediatr Crit Care Med. 2006;7(5):449–54.
23. Pichler G, Binder C, Avian A, Beckenbach E, Schmölzer GM, Urlesberger B. Reference ranges for regional cerebral tissue oxygen saturation and fractional oxygen extraction in neonates during immediate transition after birth. J Pediatr. 2013;163(13228):1558–63.
24. Greisen G, Leung T, Wolf M. Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infants undergoing intensive care? Philos Trans R Soc A Math Phys Eng Sci. 2011;369:4440–51.
25. Rawat M, Chandrasekharan PK, Williams A, Gugino S, Koenigsknecht C, Swartz D, et al. Oxygen saturation index and severity of hypoxic respiratory failure. Neonatology. 2015;107(3):161–6.
26. Alderliesten T, Lemmers PMA, Smarius JJM, Baerts W, Bel F Van. Cerebral Oxygenation, Extraction, and Autoregulation in Very Preterm Infants Who Develop Peri-Intraventricular Hemorrhage. 2013;
27. Chock VY, Kwon SH, Ambalavanan N, Batton B, Nelin LD, Chalak LF, et al. Cerebral Oxygenation and Autoregulation in Preterm Infants (Early NIRS Study). J Pediatr. 2020;227:94-100.e1.
28. Vesoulis Z a, Lust CE, Liao SM, Trivedi SB, Mathur a M. Early hyperoxia burden detected by cerebral near-infrared spectroscopy is superior to pulse oximetry for prediction of severe retinopathy of prematurity. J Perinatol [Internet]. 2016;36(April):1–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27559717
29. Lakshminrusimha S, Manja V, Mathew B, Suresh GK. Oxygen targeting in preterm infants: a physiological interpretation. J Perinatol [Internet]. 2014;35(August):8–15. Available from: http://www.nature.com/doifinder/10.1038/jp.2014.199
30. Lakshminrusimha S, Konduri GG, Steinhorn RH. Considerations in the management of hypoxemic respiratory failure and persistent pulmonary hypertension in term and late preterm neonates. J Perinatol [Internet]. 2016;36(s2):S12–9. Available from: http://www.nature.com/doifinder/10.1038/jp.2016.44
31. Wardle SP, Yoxall CW, Weindling a M. Determinants of cerebral fractional oxygen extraction using near infrared spectroscopy in preterm neonates. J Cereb Blood Flow Metab. 2000;20(2):272–9.
32. Noori S, McCoy M, Anderson MP, Ramji F, Seri I. Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants. J Pediatr [Internet]. 2014;164(2):264-70.e1-3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24183212
33. Takami T, Sunohara D, Kondo A, Mizukaki N, Suganami Y, Takei Y, et al. Changes in cerebral perfusion in extremely LBW infants during the first 72 h after birth. Pediatr Res. 2010;68(5):435–9.