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1. Introduction4

The non-conservative hyperbolic system plays an important role in many areas, such as the5

laminar flow in compliant tubes [2], the shallow water [9] and the multiphase flows [13]. The6

main difficulties of the Riemann problem for it are the existence and the uniqueness of the7

solution. In a recent paper [16], the Riemann problem for the isentropic, inviscid, simple flow8

of ideal gas, subjected to transverse magnetic field, in a duct with cross-sectional area a(x) > 09

in magnetogasdynamics, has been studied. It is governed by the hyperbolic system10 
(aρ)t + (aρu)x = 0,

(aρu)t + (a(ρu2 + p+ B2

2µ
))x = (p+ B2

2µ
)ax,

at = 0,

(1.1)

with the Riemann initial data11

(u, ρ, a) =

{
U−(u−, ρ−, a−), x < 0,
U+(u+, ρ+, a+), x > 0,

(1.2)

where a+ > a− > 0, ρ− > 0, ρ+ > 0, u− and u+ are arbitrary constants. Symbols ρ, p, u, B12

and µ are the specific density, the pressure, the velocity, the transverse magnetic field and13

the magnetic permeability, resp., see [15]. The pressure function and the transverse magnetic14

field function are given by p = κργ and B = kρ, resp., where γ ∈ (1, 2), κ, k are positive15

constants. The existence has been obtained for any given initial data. However, for some initial16

data, there exist multi solutions. By introducing the entropy rate admissibility criterion [5],17
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the uniqueness can be guaranteed. In this article, we will select a proper solution mainly by1

the vanishing magnetic field method, motivated by the vanishing viscosity method [3] and the2

vanishing pressure method [4].3

We call a solution of (1.1) is stable in a vanishing magnetic field, provided that the limit of4

it, as k → 0, equals to the solution of5  (aρ)t + (aρu)x = 0,
(aρu)t + (a(ρu2 + p))x = pax,
at = 0,

(1.3)

with the initial data (1.2). System (1.3) describes a compressible polytropic fluid flow in a nozzle6

and has been studied in [12, 17]. The nonisentropic case has been investigated in [1, 7, 18].7

Putting ax = 0, (1.1) can be written in conservation form as8 {
ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p+ B2

2µ
)x = 0,

(1.4)

which describes an unsteady one-dimensional isentropic flow in magnetogasdynamic. The sys-9

tem was studied in [14]. In [6, 11, 19], the authors were concerned with the nonisentropic10

cases.11

This paper is organised as follow. In section 2, the elementary waves and some properties of12

them are collected. In section 3, we present all the solutions of (1.1) and (1.3), for any given13

initial data (1.2). In section 4, the unique solution is determined by choosing the stable solution14

in a vanishing magnetic field, which satisfies the entropy rate admissibility criterion, as it will15

be seen.16

2. Elementary Waves17

System (1.1) has three real eigenvalues18

λ1 = u− ω, λ2 = 0, λ3 = u+ ω,

where ω(ρ) =
√

df
dρ

, and f(ρ) = p+ B2

2µ
. It is strictly hyperbolic in the following three regions19

I = {(u, ρ, a)
∣∣u < −ω}, II = {(u, ρ, a)

∣∣|u| < ω}, III = {(u, ρ, a)
∣∣u > ω}.

The characteristic fields λ1 and λ3 are genuinely nonlinear, and the characteristic field of λ2 is20

linearly degenerate. For convenience, we set Σ = {u = −ω}, Π = {u = ω}, II− = II ∩ {u < 0},21

and II+ = II ∩ {u > 0}. There exist three different elementary waves.22

2.1. Rarefaction waves. Centered rarefaction waves R1(U0, U) and R3(U0, U)(abb. R1(U0)23

and R3(U0), resp.) are24 
R1(U0) : u = u0 −

∫ ρ

ρ0

ω

ρ
dρ, ρ < ρ0,

R3(U0) : u = u0 +

∫ ρ

ρ0

ω

ρ
dρ, ρ > ρ0,

a = a0,

(2.1)
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for any given left hand state U0(u0, ρ0, a0). R1(U0) is convex and monotonic decreasing while1

R3(U0) is concave and monotonic increasing.2

2.2. Shock waves. The Rankine-Hugoniot jump condition of the third equation in (1.1) is3

σ [a] = 0, (2.2)

where σ is the speed of the discontinuity, and [a] = ar − al. The cross-section area a remains4

constant across shock waves S1(U0, U) and S3(U0, U)(abb. S1(U0) and S3(U0), resp.) satisfying5

the Rankine-Hugoniot jump condition6 
−σ [ρ] + [ρu] = 0,

−σ [ρu] + [g(u, ρ)] = 0,

[a] = 0,

(2.3)

for any given left hand state U0(u0, ρ0, a0), where

g(u, ρ) = ρu2 + κργ +
k2

2µ
ρ2.

By Lax entropy conditions [8], Si(U0) can be expressed as7 
S1(U0) : u = u0 −

√
1

ρρ0

[f ] [ρ], σ = u0 + ρ
[u]

[ρ]
, ρ > ρ0, u < u0,

S3(U0) : u = u0 −
√

1

ρρ0

[f ] [ρ], σ = u0 + ρ
[u]

[ρ]
, ρ < ρ0, u < u0,

a = a0.

(2.4)

S1(U0) is convex and monotonic decreasing while S3(U0) is concave and monotonic increasing.8

We obtain the following lemma by direct calculations to (2.4).9

Lemma 2.1. On the shock waves S1(U0)(resp., S3(U0)), it holds that10

(i) dσ
dρ
< 0(resp., dσ

dρ
> 0);11

(ii) u′ < −ω
ρ

(resp., u′ > ω
ρ

);12

(iii) There exists a unique state U ∈ II+(resp., U ∈ I), denoted by S0
1(U0)(resp., S0

3(U0)), such13

that σ(U0, U) = 0 if and only if U0 ∈ III(resp., U0 ∈ II−).14

For any given left hand states U0, we define15

R−i (U0) = Ri(U0) ∩ {λi(U) ≤ 0}, S−i (U0) = Si(U0) ∩ {σ(U0, U) ≤ 0},
R+
i (U0) = Ri(U0) ∩ {λi(U) ≥ 0}, S+

i (U0) = Si(U0) ∩ {σ(U0, U) ≥ 0},
W±
i (U0) = R±i (U0) ∪ S±i (U0), Wi(U0) = Ri(U0) ∪ Si(U0), i = 1, 3.

2.3. Stationary waves. The jump condition (2.2) also holds when the gas across the discon-16

tinuity, which we call stationary waves,17

W2 :


[aρu] = 0,

[h(u, ρ)] = 0,

σ = 0,

(2.5)
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where1

h(u, ρ) =
u2

2
+

κγ

γ − 1
ργ−1 +

k2

µ
ρ. (2.6)

For any given state U0(u0, ρ0, a0), once we assume that a > a0, there exist two different solutions2

of (2.5), denoted by U0(u0, ρ0, a) and U0(u0, ρ0, a), with3

|u0| > |u0|, ρ0 < ρ0, |u0| < |u0|, ρ0 > ρ0. (2.7)

In particular, when a = a0, the two solutions U0 = U0, U0 ∈ I∪ III if U0 ∈ II, while U0 ∈ II, U0 =4

U0 if U0 ∈ I ∪ III. The fact that there exists no stationary wave solution for (1.4) motivates us5

to suggest the Stability Stationary Wave Condition to remove the unreasonable solution.6

Stability Stationary Wave Condition. The state U(u, ρ, a) is called a stable stationary7

solution of (2.5), if u and ρ are continuous functions of a, and the two states U and U0 satisfy8

the Rankine-Hugoniot jump condition (2.3) when a = a0.9

The Stability Stationary Wave Condition leads to the following lemma.10

Lemma 2.2. For any given U0(u0, ρ0, a0) and a > a0, the two solutions U0(u0, ρ0, a) and11

U0(u0, ρ0, a) of (2.5) satisfy (2.7) and12

(i) U0 ∈ II± is the unique stable stationary solution, if U0 ∈ II±;13

(ii) U0 ∈ I(resp., III) is the unique stable stationary solution, if U0 ∈ I(resp., III);14

(iii) Both U0 ∈ I(resp., III) and U0 ∈ II are the stable stationary solutions, if U0 ∈ Σ(resp., Π).15

For any given left hand state U0 and right hand state U , W 2(U0, U) denotes the stationary16

wave satisfying U = U0, while W2(U0, U) denotes the stationary wave satisfying U = U0.17

It is clear that a changes only when the gas passes across the stationary wave. When there18

exists no confusion, symbols denote the projections of themselves on (u, ρ) plane, either. For19

example, U− denotes both U−(u−, ρ−, a−) and U−(u−, ρ−).20

3. The Riemann Solutions for k ≥ 021

For any given k ≥ 0, Riemann problem (1.1) with (1.2) can be solved constructively by the22

two cases U− ∈ ∆±, which are separated by23

R1(U,O) : u = −
∫ ρ

0

ω(ρ̃)

ρ̃
dρ̃,

see Figure 1 (a).24

Case 1. U− ∈ ∆−. It follows u− ≤ −
∫ ρ−

0
ω(ρ)
ρ

dρ. The curves are defined by25

Σ = {U |U = U0, U0 ∈ Σ}, Σ = {U |U = U0, U0 ∈ Σ}, Σz = {U |U = S0
3(U0), U0 ∈ Σ}.

It can be proved that Σ is on the right of Σz. Thus the solid curves Σz and Σ in Figure 1 (a)26

separate the upper half (u, ρ) plan into three regions, ∆1
−, ∆2

− and ∆3
− (including Σz and Σ).27

The Riemann solutions of (1.1) with (1.2) are illustrated as follows.28

Subcase 1.1. U− ∈ ∆−, U+ ∈ ∆1
−, the solution is unique and structured in29

Q1
− : W−

1 ⊕W−
3 ⊕W2.
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(a) U− ∈ ∆−. (b) U− ∈ ∆+.

-
u
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Figure 1. Different regions separated by the solid curves.

Subcase 1.2. U− ∈ ∆−, U+ ∈ ∆2
−, the solution is unique and structured in1

Q2
− : W−

1 ⊕R−3 ⊕W 2 ⊕W+
3 .

Subcase 1.3. U− ∈ ∆−, U+ ∈ ∆3
−, The solution is not unique. Besides Q1

−, Q
2
−, the other2

solution with two stable stationary waves can be constructed as3

Q3
− : W−

1 ⊕R−3 ⊕W 2(U1, U2)⊕ S3(U2, U3)⊕W2(U3, U+).

The states U1(u1, ρ1, a−), U2(u2, ρ2, a) and U3(u3, ρ3, a) satisfy that4

σ(U2, U3) = 0, u1, u2, u3 < 0, a ∈ [a−, a+].

a = a− holds if and only if U+ ∈ Σ, and then Q3
− = Q1

−. a = a+ holds if and only if U+ ∈ Σz,5

and then Q3
− = Q2

−. When U+ ∈ ∆2
−\(Σz∪Σ), Q3

− is unstable, refer to [10]. Because it contains6

a standing shock wave S3(U2, U3)(σ(U2, U3) = 0), which occurs in contracting duct.7

Case 2. U− ∈ ∆+. It follows u− > −
∫ ρ−

0
ω
ρ
dρ. The solid curves Σ

+

z , Γz, Σ+, Γz, W3(Y ) and8

W3(Z) in Figure 1 (b) separate the upper half (u, ρ) plan into ∆1
+, ∆2

+(including W3(Y )), ∆3
+,9

∆4
+(including W3(Z)) and ∆5

+(including the boundaries). Γ is the part of the curve W1(U−),10

the ends of which are D− ∈ Σ and the one on ρ axis, resp.. Define11

Γ =
{
U |U = U0, U0 ∈ Γ

}
, Γz =

{
U |U = S0

3(U0), U0 ∈ Γ
}
,

Γz = {U |U = S0
3(U0), U0 ∈ Γ} , Γz =

{
U |U = U0, U0 ∈ Γz

}
.

Obviously, D− is an end of Γz and S0
3(D−) is an end of Γz. For convenience, let12

Σ
+

z = Σz ∩ {ρ ≥ ρ(S0
3(D−))}, Σ+ = Σ ∩ {ρ ≥ ρ(D−)},

where ρ(D−) denotes the ρ coordinate at D−, etc. It can be proved that Γz is at the left of Γz,13

and W3(Y ) is at the left of W3(Z). Here,14

Y = S0
1(U−), Z = S0

1(U−),

if U− ∈ III, otherwise,15

Y = D+, Z = S0
1(D+),
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where D+ is the intersection point of Π with W1(U−).1

Subcase 2.1. U− ∈ ∆+, U+ ∈ ∆1
+. The solution is unique and structured in2

Q1
+ : W−

1 ⊕W−
3 ⊕W2.

Subcase 2.2. U− ∈ ∆+, U+ ∈ ∆2
+. The solution is unique and structured in3

Q2
+ : W−

1 (⊕R−3 )⊕W 2 ⊕W+
3 ,

where R−3 appears if and only if U+ is located on the left of W+
3 (D−).4

Subcase 2.3. U− ∈ ∆+, U+ ∈ ∆3
+. The solution is unique and structured in5

Q3
+ : (R−1 ⊕)W2 ⊕ S1 ⊕W 2 ⊕W+

3 ,

where the speeds of both sides of the standing shock wave S1 are positive, so S1 occurs in a6

compacting duct, and R−1 appears if and only if u+ < ω(ρ+).7

Subcase 2.4. U− ∈ ∆+, U+ ∈ ∆4
+. The solution is unique and structured in8

Q4
+ : (R−1 ⊕)W2 ⊕W+

1 ⊕W+
3 ,

where R−1 appears if and only if u+ < ω(ρ+).9

Subcase 2.5. U− ∈ ∆+, U+ ∈ ∆5
+. In this case, solution loses uniqueness. Besides Q1

+ and10

Q2
+, the other solution can be structured in11

Q5
+ : W−

1 (⊕R−3 )⊕W2(U1, U2)⊕ S3(U2, U3)⊕W 2(U3, U+),

where, R−3 appears if and only if U+ is located on the left of W+
3 (D−). The states U1(u1, ρ1, a−),12

U2(u2, ρ2, a) and U3(u3, ρ3, a) satisfy that13

σ(U2, U3) = 0, u1, u2, u3 < 0, a ∈ [a−, a+].

a = a− holds if and only if U+ ∈ Σ
+

z ∪ Γz, and then Q5
+ = Q1

+. a = a+ holds if and only if14

U+ ∈ Σ+ ∪ Γz, and then Q5
+ = Q2

+. Otherwise, similar to Q3
−, the solution Q5

+ will not be15

considered, either.16

The entropy rate admissibility criterion leads to that the unique admissible solutions for (1.1)17

with (1.2) are Q2
± in subcase 1.3 and 2.5 respectively, in which there are multi solutions.18

4. The Behaviour of the Solution As k → 019

It has been declaimed that in subcase 1.3 and 2.5, both Q1
± and Q2

± are the solutions of20

(1.1) for k > 0, respectively. By the entropy rate admissibility criterion, we can construct21

the solution uniquely for any given initial data (1.2). In this section, we will study with any22

initial data (1.2), the limit solutions of (1.1) as k → 0, and compare the limit solutions with23

the solutions of (1.3). We want to check whether the limit solution is the one selected by the24

entropy rate admissibility criterion. The variation of k leads to the changes of the solid curves25

in Figure 1. Thus, the structure of the solution may change if k vanishes for the fixed initial26

data. To study the limit solution for (1.1) with (1.2), we need only to concentrate the case27

where U+ is located on the solid curves when k = 0 in Figure 1. Then our goal is to investigate28
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the behaviour of the solid curves as k → 0. For simplify calculations, we replace k2

µ
with k.1

Then ω, f, g and h are rewritten as2

ω(ρ) =
√
κγργ−1 + kρ, f(ρ) = κργ + k

2
ρ2,

g(u, ρ) = ρu2 + κργ + k
2
ρ2, h(u, ρ) = u2

2
+ κγ

γ−1
ργ−1 + kρ,

respectively, from now on. To be more exactly, ω(ρ) is the abbreviation of ω(ρ, k), etc. We3

define Σ(0) = {U(u, ρ)|u = −ω(ρ, 0) = −
√
κγργ−1}, etc.4

4.1. The behaviour of the solution as k → 0 when U− ∈ ∆−(0). We have the following5

lemma when we investigate the behaviour of Σz and Σ as k → 0.6

Lemma 4.1. There exists a sufficient small constant k0 > 0 such that, for any k ∈ (0, k0),7

(i) Σ is at the left of Σ(0); (ii) Σz is at the left of Σz(0).8

- u

6
ρ

O

Σz Σ Σ Σ

r
rr

U0U0

U0(0)

U0
Uzρu = ρ0(0)u0(0)

a+ρu = a−ρ0u0

r r

Figure 2. Curves, Σz, Σ, Σ and Σ, move to the dotted lines Σz(0), Σ(0), Σ(0)
and Σ(0), resp., from their left as k → 0.

Proof. (i) Assume U0(0) = (u0(0), ρ0(0), a−) ∈ Σ(0) is an arbitrary state. Define U0 =9

(u0, ρ0, a−) ∈ Σ, U0 = (u0, ρ0, a+) ∈ Σ, U0 = (u0, ρ0, a+) ∈ Σ and U z = (uz, ρz, a+) ∈ Σz10

satisfying that11

u2
0 = ω2

0 = κγργ−1
0 + kρ0, (4.1)

h(u0, ρ0) = h(u0, ρ0) = h(u0, ρ0), (4.2)

g(uz, ρz) = g(u0, ρ0), (4.3)

a−ρ0(0)u0(0) = a−ρ0u0 = a+ρ0u0 = a+ρ0u0 = a+ρzuz. (4.4)

See Figure 2. Followed by Lemma 2.2, the following inequalities hold,12

ρz < ρ0 < ρ0 < ρ0, u
2
z > ω2

z, u0
2 > ω0

2, u2
0 < ω2

0,

where ωz = ω(ρz), etc.13

Differentiating (4.4) with respect to k, resp., one gets14

0 = ρ′0u0 + ρ0u
′
0 = ρ0

′u0 + ρ0u0
′ = ρ′0u0 + ρ0u

′
0 = ρ′zuz + ρzu

′
z, (4.5)

here and from now on, ′ = d
dk

. From (4.1), (4.2) and (4.5), we get15

ρ0 =
ω2

0 − u2
0

ρ0

ρ′0 + ρ0 =
ω0

2 − u0
2

ρ0

ρ0
′ + ρ0 =

ω2
0 − u2

0

ρ0

ρ′0 + ρ0, (4.6)
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which follows ρ0
′ < 0. Because the intersection point of Σ with ρu = const. is unique if k is1

fixed. We say Σ is at the left of Σ(0).2

(ii) Differentiating (4.3) with respect to k and from (4.6), we obtain3

(ω2
z − u2

z)ρ
′
z = (ω2

0 − u2
0)ρ′0 +

ρ2
0 − ρ2

z

2
= ρ0ρ0 − ρ2

0 +
ρ2

0 − ρ2
z

2
=

2ρ0ρ0 − ρ2
0 − ρ2

z

2
.

We are about to prove that 2ρ0 > ρ0 + ρz holds at k = 0 for any given state U0(u0, ρ0, a−)4

with 0 < −u0 ≤ ω0. For a ≥ a−, we define U0(u0, ρ0, a) and U z(uz, ρz, a) = S0
3(U0) satisfying5

h0 = h0 g0 = gz a−ρ0u0 = aρ0u0 = aρzuz. (4.7)

It is clear that U0 and U z are functions of a, followed by the stable stationary wave condition.6

The following inequalities hold when a > a−,7

ρz < ρ0 < ρ0, uz < u0 < u0 < 0, u2
z > ω2

z, u2
0 < ω2

0, u2
0 > ω2

0.

We have U0 = U0 and ρ0 ≥ ρz, thus 2ρ0 ≥ ρ0 + ρz, if a = a−. From (4.7), it holds that8

d(ρ0 + ρz)

da
=

ρ0u
2
0

a(ω2
0 − u2

0)
+

2ρzu
2
z − ρ0u

2
0

a(ω2
z − u2

z)

=
ρ0u

2
0

a(ω2
0 − u2

0)(ω2
z − u2

z)

(
ω2
z − u2

z + (2
ρ0

ρz
− 1)(ω2

0 − u2
0)

)
=

ρ0u
2
0

a(ω2
0 − u2

0)(ω2
z − u2

z)

(
κγργ−1

z − ρ0

ρz

f 0 − fz
ρ0 − ρz

+ (2
ρ0

ρz
− 1)(κγργ−1

0 − ρz
ρ0

f 0 − fz
ρ0 − ρz

)

)
=

ρ0u
2
0κρ

γ−1
z

a(ω2
0 − u2

0)(ω2
z − u2

z)

(
γ − αα

γ − 1

α− 1
+ (2α− 1)(γαγ−1 − 1

α

αγ − 1

α− 1
)

)
,

for k = 0, where9

f 0 − fz
ρ0 − ρz

=
κργ0 − κργz
ρ0 − ρz

= κργ−1
z

(ρ0
ρz

)γ − 1
ρ0
ρz
− 1

= κργ−1
z

αγ − 1

α− 1
,

and α = ρ0
ρz
> 1 for a > a−. Therefore, d(ρ0+ρz)

da
has the different sign with the auxiliary function10

M1(α) = γα(α− 1)− α2(αγ − 1) + (2α− 1)(γαγ(α− 1)− αγ + 1)

= αγ+2(2γ − 1)− αγ+1(3γ + 2) + α2(γ + 1) + αγ(γ + 1) + α(−γ + 2)− 1.

It is easy to check that M1(α) > M1(1) = 0 by dM1

dα
(α) > 0. In fact,11

d3M1

dα3
(α) = γ(γ + 1)αγ−3

(
α2(2γ − 1)(γ + 2)− α(3γ + 2)(γ − 1) + (γ − 2)(γ − 1)

)
> 0,

and12

d2M1

dα2
(α) = (γ + 1)

(
αγ(2γ − 1)(γ + 2)− αγ−1(3γ + 2)γ + αγ−2γ(γ − 1) + 2

)
> 0.

Then we obtain13

dM1

dα
(α) = αγ+1(2γ − 1)(γ + 2)− αγ(3γ + 2)(γ + 1) + 2α(γ + 1) + αγ−1(γ + 1)γ + 2− γ

>
dM1

dα
(1) = 0.
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As a result, we have 2ρ0 > ρ0 + ρz holds for any a > a−. Thus1

2ρ0ρ0 − ρ2
0 − ρ2

z > (ρ0 + ρz)ρ0 − ρ2
0 − ρ2

z = ρz(ρ0 − ρz) > 0,

which implies ρ′z(0) < 0. We complete the proof. �2

Corollary 4.1. When the solution loses uniqueness, we choose Q1
±(resp., Q2

±) as the unique3

solution of (1.1) with (1.2) for any k ≥ 0. There exists a k0 > 0, such that, for any k ∈ (0, k0),4

we have:5

(i) U− ∈ ∆− and U+ ∈ ∆3
−, if U− ∈ ∆−(0)\R1(U,O)|k=0 and U+ ∈ Σz(0). Then for (1.2), the6

unique solution of (1.1) is Q1
−(resp., Q2

−), while the unique solution of (1.3) is Q1
−(0)(resp.,7

Q2
−(0)).8

(ii) U− ∈ ∆− and U+ ∈ ∆2
−, if U− ∈ ∆−(0)\R1(U,O)|k=0 and U+ ∈ Σ(0). Then for (1.2), the9

unique solution of (1.1) is Q2
−, while the unique solution of (1.3) is Q1

−(0)(resp., Q2
−(0)).10

(iii) U− ∈ ∆+ and U+ ∈ ∆5
+ is located on the left of W+

3 (D−), if U− ∈ R1(U,O)|k=0 and U+ ∈11

Σz(0). Then for (1.2), the unique solution of (1.1) is Q1
+(resp., Q2

+ : W−
1 ⊕ R−3 ⊕W2 ⊕W+

3 ),12

while the unique solution of (1.3) is Q1
−(0)(resp., Q2

−(0)).13

(iv) U− ∈ ∆+ and U+ ∈ ∆2
+ is located on the left of W+

3 (D−), if U− ∈ R1(U,O)|k=0 and14

U+ ∈ Σ(0). Then for (1.2), the unique solution of (1.1) is Q2
+ : W−

1 ⊕ R−3 ⊕W2 ⊕W+
3 , while15

the unique solution of (1.3) is Q1
−(0)(resp., Q2

−(0)).16

4.2. The behaviour of the solution as k → 0 when U− ∈ ∆+(0). We have the following17

lemma when we investigate the behaviour of Γz and Γz as k → 0.18

Lemma 4.2. There exists a sufficient small constant k0 > 0 such that, for any k ∈ (0, k0),19

(i) Γz is at the left of Γz(0); (ii) Γz is at the left of Γz(0).20

Proof. (i) Assume U0(0)(u0(0), ρ(0), a−) ∈ Γ(0) is an arbitrary state. Let U0(u0, ρ0, a−) ∈ II21

be the intersection point of ρu = ρ0(0)u0(0) with Γ, Uz(uz, ρz, a+) ∈ I, U0(u0, ρ0, a+) ∈ I,22

and U v(uv, ρv, a+) ∈ I satisfy that σ(U0, Uz) = 0, σ(U0, U v) = 0. More precisely, the following23

equations hold,24

a−ρ0(0)u0(0) = a−ρ0u0 = a−ρzuz = a+ρzuz = a+ρ0u0 = a+ρvuv, (4.8)

g0 = gz, hz = hz, h0 = h0, g0 = gv, (4.9)

with25

u2
0 < ω2

0, uz
2 > ωz

2, u2
0 < ω2

0, u
2
v > ω2

z, u
2
z > ω2

z , ρv < ρz < ρz < ρ0 < ρ0, (4.10)

see Figure 3. Differentiating (4.9) with respect to k, resp., one obtains26

(ω2
0 − u2

0)ρ′0 +
ρ2

0

2
= (ω2

z − u2
z)ρ
′
z +

ρ2
z

2
,

ω2
z − u2

z

ρz
ρ′z + ρz =

ωz
2 − uz2

ρz
ρz
′ + ρz, (4.11)

ω2
0 − u2

0

ρ0

ρ′0 + ρ0 =
ω2

0 − u2
0

ρ0

ρ′0 + ρ0, (ω2
0 − u2

0)ρ′0 +
ρ2

0

2
= (ω2

v − u2
v)ρ
′
v +

ρ2
v

2
. (4.12)

27
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-
u

6

ρ

O

Γz Γz

a+ρu = a−ρ0u0

ρu = ρ0(0)u0(0)

rrr
r rU0

Γ
Γ

Uv

Uz

Uz U0

Figure 3. Γz and Γz move to the dotted lines Γz(0) and Γz(0), resp., from their
left as k → 0.

The sign of ρz
′ can be determined by ρ′0, and the value of ρ′0 can be obtained by the following1

two cases. When U0 ∈ R1(U−), it holds2

u0 = u− −
∫ ρ0

ρ−

ω

ρ
dρ, ρ0 < ρ−.

Associating it with the first equation of (4.8), we have3

u′0 =
u0

ω0 − u0

∫ ρ0

ρ−

1

2ω
dρ, ρ′0 = − ρ0

ω0 − u0

∫ ρ0

ρ−

1

2ω
dρ. (4.13)

Therefore ρ′0 > 0. When U0 ∈ S1(U−), setting ω2
θ = f0−f−

ρ0−ρ− , we achieve ρ− < ρ0 and4

u− − u0 =
(ρ0 − ρ−)ωθ√

ρ−ρ0

, u′0 =
f ′0( 1

ρ−
− 1

ρ0
) + (f0 − f−)

ρ′0
ρ20

2(u0 − u−)
, (4.14)

from (2.3). The speed of the shock wave can be rewritten as5

σ =
ρ0u0 − ρ−u−
ρ0 − ρ−

= u0 + ρ−
u0 − u−
ρ0 − ρ−

= u0 −
√
ρ−
ρ0

ωθ.

Applying (4.14), we have6

(u2
0 − σ2 − ω2

0)ρ′0 =
ρ2

0

2
. (4.15)

From (4.11), determined by7

ωz
2 − uz2

ρz
ρz
′ =

ω2
z − u2

z

ρz
ρ′z + ρz − ρz =

1

2ρz

(
2(ω2

0 − u2
0)ρ′0 + (ρ2

0 + ρ2
z − 2ρzρz)

)
,

ρz
′ < 0 holds when U0 ∈ R1(U−). Since ρ0 ≥ ρz and ρ′0 > 0. When U0 ∈ S1(U−), it holds that8

ωz
2 − uz2

ρz
ρz
′ =

1

2ρz

(
− ω2

0 − u2
0

ω2
0 − u2

0 + σ2
ρ2

0 + ρ2
0 + ρ2

z − 2ρzρz

)
≥ 1

2ρzω2
0

(
−(ω2

0 − u2
0)ρ2

0 + ω2
0ρ

2
0 + ω2

0ρ
2
z − 2ω2

0ρzρz
)

=
1

2ρzω2
0

(
u2

0ρ
2
0 + ω2

0ρ
2
z − 2ω2

0ρzρz
)
>

1

2ρzω2
0

2(ρz − ρz)ρzω2
0 > 0.
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In fact, it is clear that1

ρ2
0u

2
0 − ρ2

zω
2
0 =

κρz
ρ0 − ρz

(ργ+1
0 − ργzρ0 − γργ0ρz + γργ−1

0 ρ2
z)

=
κργ+1

z ρ0

ρ0 − ρz

((
ρ0

ρz

)γ
− 1− γ

(
ρ0

ρz

)γ−1

+ γ

(
ρ0

ρz

)γ−2
)
> 0,

for ρ0 > ρz. Thus, we also have ρz
′ < 0.2

(ii) When U0 ∈ R−1 (U−), it is apparent that for k = 03

(ω2
v − u2

v)ρ
′
v = (ω2

0 − u2
0)ρ′0 +

ρ2
0

2
− ρ2

v

2
=
ρ0(ω2

0 − u2
0)

ρ0

ρ′0 + ρ0ρ0 − ρ2
0 −

ρ2
v

2
> 0,

followed by (4.12), (4.13) and the proof of Lemma 4.1. Therefore, ρ′v(0) < 0.4

When U0 ∈ S−1 (U−), from (4.12) and (4.15), we have5

(ω2
v − u2

v)ρ
′
v =

ρ0ρ0

2

(
2− ω2

0 − u2
0

ω2
0 − u2

0 + σ2

)
+
−ρ2

0 − ρ2
v

2

≥ 1

2ω2
0

(
(ω2

0 + u2
0)ρ0ρ0 − ω2

0ρ
2
0 − ω2

0ρ
2
v

)
.

To declaim ρ′v(0) < 0, we are about to prove that6

ρ0 >
ρ2

0 + ρ2
v

ρ0

ω2
0

ω2
0 + u2

0

, (4.16)

if α , ρ0
ρv
≤ α0, and7

ρ0 ≥ (ρ0 +
ρv
γ

)
ω2

0

ω2
0 + u2

0

, (4.17)

if α > α0, where α0 > 1 is the root of the equation α2
0 − 2α0 − 1 = 0. Inequality (4.17) implies8

(4.16) when α > α0, since γ < α0.9

For any the given state U0(u0, ρ0, a−), with u0 < 0, u2
0 < ω2

0, we define U0(u0, ρ0, a) and

U v(uv, ρv, a) = S0
3(U0) for a ≥ a−. It is clear that when a = a− and k = 0, it holds that

ρ0 >
ρ2

0 + ρ2
v

ρ0

ω2
0

ω2
0 + u2

0

,

which is equivalence to

ρ2
0u

2
0 = ρ0ρv

κργ0 − κργv
ρ0 − ρv

> ρ2
vκγρ

γ−1
0 .

Since10

1− (
ρv
ρ0

)γ > γ
ρv
ρ0

(1− ρv
ρ0

)

holds when ρ0 > ρv. We have11

d

da

(
ρ2

0 + ρ2
v

ρ0

)
=

(2ρ2
0 − ρ2

0 − ρ2
v)

dρ0
da

+ 2ρ0ρv
dρv
da

ρ2
0

=
(ρ2

0 − ρ2
v)

dρ0
da

+ 2ρ0ρv
dρv
da

ρ2
0

<
(2ρ0ρv − (ρ2

0 − ρ2
v))

ρ2
0

dρv
da

=
−(α2 − 2α− 1)

ρ2
0ρ

2
v

dρv
da

< 0
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for 1 ≤ α < α0. So far, (4.16) has been proved.1

When α ≥ α0, for a = a− and k = 0, it holds that U0 = U0, Uz = Uz = U v. Followed by2

ρ0u
2
0 = ρv

κργ0 − κργv
ρ0 − ρv

> ρvκρ
γ−1
0 ,

we have3

ρ0 ≥ (ρ0 +
ρv
γ

)
ω2

0

ω2
0 + u2

0

.

Direct calculations lead to4

d

da

(
ρ0 +

ρv
γ

)
=

ρ0u
2
0

a(ω2
0 − u2

0)
+

1

γ

2ρvu
2
v − ρ0u

2
0

a(ω2
v − u2

v)

=
ρ0u

2
0κρ

γ−1
v

aγ(ω2
0 − u2

0)(ω2
v − u2

v)

(
γ2 − γαα

γ − 1

α− 1
+ (2α− 1)(γαγ−1 − 1

α

αγ − 1

α− 1
)

)
,

which has different sign with the auxiliary function5

M2(α) = γ2α(α− 1)− γα2(αγ − 1) + (2α− 1)γαγ(α− 1)− (2α− 1)(αγ − 1)

= γαγ+2 − (3γ + 2)αγ+1 + (γ + 1)αγ + (γ2 + γ)α2 + (2− γ2)α− 1.

For γ ∈ (1, 2), the third derivative6

1

γ + 1

d3M2

dα3
(α) = γαγ−3(γ(γ + 2)α2 − (γ − 1)(3γ + 2)α + (γ − 1)(γ − 2))

> γαγ−3(γ2 + 2γ − 3γ2 + γ + 2 + γ2 − 3γ + 2) = γαγ−3(4− γ2) > 0

holds for any α > 1. By using the equation α2
0 − 2α0 − 1 = 0, we have7

1

γ + 1

d2M2

dα2
(α) = (γ + 2)γαγ − (3γ + 2)γαγ−1 + γ(γ − 1)αγ−2 + 2γ ≥ 1

γ + 1

d2M2

dα2
(α0) > 0.

Thus, we get8

dM2

dα
(α) >

dM2

dα
(α0) = −(γ2 + γ + 2)αγ0 + γ(2γ + 2)αγ−1

0 + 2(γ + 1)γα0 + 2− γ2 + γαγ−1
0 .

It holds that9

dM2

dα
(α0) > (2γ2 + 2γ − 5

2
γ2 − 5

2
γ − 5 + 2γ2 + 2γ)αγ−1

0 > 0

if γ2 ≥ 2. Meanwhile10

dM2

dα
(α0) > (2γ2 + 3γ − 5

2
γ2 − 5

2
γ − 5 + 3γ2 + 3γ)αγ−1

0 =
1

2
(5γ2 + 7γ − 10)αγ−1

0 > 0

holds if γ2 < 2. We finally achieve11

M2(α) ≥ M2(α0) = −(γ + 2)αγ+1
0 + (2γ + 1)αγ0 + (γ2 + 2γ + 2)α0 + (γ2 + γ − 1)

> αγ0(−1
2
γ − 4) + (γ2 + 2γ + 2)α0 + (γ2 + γ − 1) ,M3(γ) > 0.

In fact, M3(γ) is concave in (1, 2), M3(1) > 0 and M3(2) = 0. We complete the proof. �12
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Corollary 4.2. Provided that when the initial data satisfy U− ∈ ∆+ and U+ ∈ ∆5
+, we choose1

Q1
+(resp., Q2

+) as the unique solution of (1.1) with (1.2) for any k ≥ 0. Lemma 4.1 and 4.22

imply that, there exists a k0 > 0, such that, for any k ∈ (0, k0), we have:3

(i) U− ∈ ∆+ and U+ ∈ ∆5
+, if U− ∈ ∆+(0), U+ ∈ Σ

+

z (0) ∪ Γz(0). Then for (1.2), the unique4

solution of (1.1) is Q1
+(resp., Q2

+), while the unique solution of (1.3) is Q1
+(0)(resp., Q2

+(0)).5

(ii) U− ∈ ∆+ and U+ ∈ ∆2
+, if U− ∈ ∆+(0), U+ ∈ Σ+(0) ∪ Γz(0). Then for (1.2), the unique6

solution of (1.1) is Q2
+, while the unique solution of (1.3) is Q1

+(0)(resp., Q2
+(0)).7

To discuss the behaviour of W3(Y ) as k → 0, we consider the Riemann initial data satisfying8

U− ∈ ∆+(0)\III(0), U+ ∈ W3(Y )|k=0 ⊂ ∆2
+(0), (4.18)

see Figure 4(a). Thus, the solution for (1.3) is structured in9

Q2
+(0) : R−1 (U−, Y (0))⊕W2(Y (0), Y (0))⊕W+

3 (Y (0), U+).

More precisely, the following equations hold,10  uy(0) = u− −
∫ ρy

ρ−

√
κργ−1

ρ
dρ, uy(0) = ωy(0),

a−ρy(0)uy(0) = a+ρy(0)uy(0), hy(0) = h1(0).

(4.19)

Here, we use the fact that Y (0) = D+(0) = (uy(0), ρy(0), a−) and Y (0) = (uy(0), ρy(0), a+).11

That whether U+ is located on ∆2
+ or not depends on both U− and U+ for k > 0. Since as we12

will see, the value of duy
dρy
|k=0 changes in13 (
−∞,−uy

ρy

)
∪
(
uy(ω

2
y − u2

y)

ρy(u
2
y − u2

y)
,+∞

)
.

By the definitions of Y and Y , we have14

uy = u− −
∫ ρy

ρ−

ω

ρ
dρ = ωy, a−ρyuy = a+ρyuy, hy = hy. (4.20)

The equations follow that15 
ρ′y =

ωy
∫ ρ−
ρy

1
ω

dρ− ρy
κγργ−2

y (γ + 1) + 3k
,

u′y =
κγργ−1

y (γ + 3) + 5kρy

κγργ−1
y (γ + 1) + 3kρy

∫ ρ−

ρy

1

2ω
dρ− ωy

κγργ−2
y (γ + 1) + 3k

.

(4.21)

Direct calculations to (4.20) and (4.21) yield16 
(ω2

y − u2
y)ρ
′
y = ρy(ρy − ρy) +

ρy
uy

(u2
y − u2

y)

∫ ρ−

ρy

1

2ω
dρ,

duy
dρy

=

uy(ω2
y−u2y)
uy

∫ ρ−
ρy

1
2ω

dρ+ uy(ρy − ρy)
ρy
uy

(u2
y − u2

y)
∫ ρ−
ρy

1
2ω

dρ+ ρy(ρy − ρy)
.
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the value of duy
dρy

depends on U− for the fixed Y . It is no doubt that for k is sufficient small,1

W3(Y ) is always at the right of W3(Y )|k=0, if ρ′y ≤ 0. However, when ρ′y > 0, W3(Y )(at least2

S3(Y )) may be at the left of W3(Y )|k=0. Since the minimum value of duy
dρy

satisfies that3

uy(ω
2
y − u2

y)

ρy(u
2
y − u2

y)
<
uy
ρy

<
ωy
ρy
.

(a) k = 0, Q2
+(0) : R−

1 ⊕W 2 ⊕W+
3 . (b) k > 0, Q3

+ : R−
1 ⊕W2 ⊕ S1 ⊕W 2 ⊕W+

3 .

u

6
ρ

O O

Π(0)

ρ
6

u

--

rrr
U+

r
Y (0)

U−

Y (0)

R−1 (U−)|k=0

W3(Y )|k=0

W3(U2)

W3(Y )

r
rr r r rr

Π
U−

R1(U−)

U+

Y

U1
Uz

U2

a−ρyuy = a+ρu

Y

Figure 4. The Riemann solution for (1.1) with (1.2) satisfying (4.18).

4

Likewise, when the initial data satisfy that5

U− ∈ ∆+(0), U+ ∈ W3(Z)|k=0 ⊂ ∆4
+(0),

the solution of (1.1) with (1.2) may change from Q3
+ to Q4

+(0) as k → 0.6

4.3. The stability of the limit solution. Even though that U+ is located on either ∆2
+ or7

∆3
+ can not be determined, when we discuss the limit solution of (1.1) with (1.2) satisfying8

(4.18), we have the following lemma.9

Lemma 4.3. As k → 0, the limit solution of (1.1) equals to the solution of (1.3), provided the10

initial data (1.2) satisfy the condition (4.18).11

Proof. As an example, we now prove that the solution of (1.1) with (1.2)12

Q3
+ : R−1 (U−, Y )⊕W2(Y, U1)⊕ S1(U1, Uz)⊕W2(Uz, U2)⊕W+

3 (U2, U+),

tends to the solution of (1.3) with (1.2)13

Q2
+(0) : R−1 (U−, Y (0))⊕W2(Y (0), Y (0))⊕ S+

3 (Y (0), U+).
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as k → 0. The situation is that U− ∈ ∆+(0), U+ ∈ S3(Y )|k=0, and for some small k0, U+ ∈ ∆3
+1

if k ∈ (0, k0). More precisely, we have (4.19) and2 

uy = u− −
∫ ρy

ρ−

ω

ρ
dρ = ωy, u+ = u2 −

√
(κργ2 + k

2
ρ2

2 − κρ
γ
+ − k

2
ρ2

+)(ρ2 − ρ+)

ρ2ρ+

,

a−ρyuy = aρ1u1 = aρzuz = a+ρ2u2, hy = h1, g1 = gz, hz = h2,

u+ = uy(0)−

√
(κργy(0)− κργ+)(ρy(0)− ρ+)

ρy(0)ρ+

, a ∈ (a−, a+),

(4.22)

see Figure 4. Our problem reduces to prove that ρy → ρy(0), uy → uy(0), ρ2 → ρ2(0) = ρy(0),3

u2 → u2(0) = uy(0), a→ a− as k → 0. To this end, we now show that ρ′y(0), u′y(0), ρ′2(0) and4

u′2(0) are finite. Direct calculations to (4.22) yield that5

a+ρ
′
2u2 + a+ρ2u

′
2 = a−ρ

′
yuy + a−ρyu

′
y = −a−ρy

∫ ρy

ρ−

1

2ω
dρ,

0 = u′2 + ρ′2

(
ω2

2

2(u+ − u2)

ρ2 − ρ+

ρ+ρ2

+
(u+ − u2)ρ+

2ρ2(ρ2 − ρ+)

)
+

ρ2
2 − ρ2

+

4(u+ − u2)
(

1

ρ+

− 1

ρ2

)

where u′y and ρ′y are given by (4.21), resp., which are finite at k = 0+ for the given state6

U− ∈ ∆+. Thus7

ρ′2

(
ω2

2

2(u+ − u2)

ρ2 − ρ+

ρ+ρ2

+
(u+ − u2)ρ+

2ρ2(ρ2 − ρ+)
− u2

ρ2

)
=
a−ρy
a+ρ2

∫ ρy

ρ−

1

2ω
dρ−

ρ2
2 − ρ2

+

4(u+ − u2)

ρ2 − ρ+

ρ+ρ2

,

which implies that ρ′2(0) is finite, and so is u′2(0). Because the coefficient of ρ′2(0) is not8

greater than −ω2+u2
ρ2

< 0. Hence we have hy → hy(0) and h2 → h2(0) as k → 0. From9

hy(0) = hy(0) = h2(0), h1 = hy, we notice that h1 → hy(0) and hz → h2(0) as k → 0.10

Associating with g1 = gz, ones obtain ρ1 → ρz, u1 → uz and a → a− as k → 0. For the other11

cases, the lemma can be obtained similarly. We complete the proof. �12

A similar argument shows that, the limit solution for (1.1) as k → 0 equals to the solution13

for (1.3), with (1.2) satisfying neither U+ ∈ Σ(0) when U− ∈ ∆−(0) nor U+ ∈ Σ+(0) ∪ Γz(0)14

when U− ∈ ∆+(0), by Corollary 4.1 and Corollary 4.2. We achieve the following two theorems.15

Theorem 4.3. The solution for (1.1) with (1.2) is stable in a vanishing magnetic field, provided16

that, the unique solution is defined as Q2
−(resp., Q2

+), when U− ∈ ∆− and U+ ∈ ∆3
−(resp.,17

U− ∈ ∆+ and U+ ∈ ∆5
+).18

Theorem 4.4. The solution for (1.1) with (1.2) is unstable in a vanishing magnetic field,19

provided that, the unique solution is defined as Q1
−(resp., Q1

+), when U− ∈ ∆− and U+ ∈20

∆3
−(resp., U− ∈ ∆+ and U+ ∈ ∆5

+).21

Proof. When the initial data satisfy U− ∈ ∆−(0) and U+ ∈ Σ(0), the solution for (1.3) is22

Q1
−(0) : W−

1 (U−, U2)⊕R3(U2, D2)⊕W2(D2, U+),
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where D2(uD2 , ρD2) ∈ Σ(0). By Corollary 4.2, we know that U+ ∈ ∆3. Similar as we have done1

in Lemma 4.3, as k → 0, the limit solution of (1.1) with (1.2) is2

Q2
−(0) : W−

1 (U−, U1)⊕R3(U1, D1)⊕W2(D1, D1)⊕ S+
1 (D1, U+),

where D1(uD1 , ρD1) ∈ Σ(0), D1(uD1
, ρD1

, a+) ∈ Σ(0). Figure 5 shows the two solutions in (u, ρ)3

plane, and Figure 6 shows them in (x, t) plane.

-
u

6

ρ

O

Σz(0) Σ(0) Σ(0) Σ(0)

-
W1(U−)

U1

R−3 (U1)|k=0
U+

a+ρu = a−ρD1
uD1

D1

rr
r r

R−3 (U2)|k=0

D2 r
D1

U2
r

Σ

Figure 5. The Riemann solutions in (u, ρ) plane. The dotted line is S+
3 (D1)|k=0.

a. Solution Q1
−(0). b. The limit solution Q2

−(0).

--
x x

66
tt

OO

W 2W2

D1
W−1W−1

U1U2

U−U− U+ U+

R3(U2, D2) R3(U1, D1)
S+
1

Figure 6. The Riemann solutions in (x, t) plane.
4

It holds that5

a+ρ+u+ = a−ρD2uD2 , h+ = hD2 , σ(D1, U+) =
ρ+u+ − ρD1

uD1

ρ+ − ρD1

> 0.

In fact, by the definition of Σz, the unique state S0
3(D1) is on the curve Σz(0), which is located6

on the left of Σ(0). Thus7

a−ρD2uD2 = a+ρ+u+ < a+ρD1
uD1

= a−ρD1uD1 ,

which imply that ρD2 > ρD1 since both D1 and D2 are on the curve Σ(0). It is clear that8

ρ2 > ρ1 and λ3(U1) > λ3(U2). As far, we have proved that Q1
−(0) and Q2

−(0) are totally9

different. Likewise, the case where the initial data (1.2) satifying10

U− ∈ ∆+(0), U+ ∈ Σ+(0) ∪ Γz(0),

shows the solution for (1.1) is unstable in a vanishing magnetic field. We complete the proof. �11
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