References
[1] Chakrabarti DJ, Laughlin DE. Phase relations and precipitation in Al-Mg-Si alloys with Cu additions. Progress in Materials Science. 2004;49:389-410.
[2] Gupta AK, Lloyd DJ, Couat SA. Precipitation hardening in Al-Mg-Si alloys with and without excess Si. Materials Science and Engineering A. 2001;316:11-17.
[3] Tsao CS, Chen CY, Jeng US, et.al. Precipitation kinetics and transformation of metastable phases in Al-Mg-Si alloys. Acta Materialia. 2006;54:4621-4631.
[4] Esmaelli S, Wang X, Lloyd DJ, et.al. On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111. Metallurgical and Materials Transactions. 2003;34:751-763.
[5] Orowan E. Theory of the fatigue of metals. Proceedings of the Royal Society of London. 1939;171:79-106.
[6] Suresh S. Fatigue of Materials 2nd edition (Cambridge University Press, 1998).
[7] Schijve J. Fatigue of Structures and Materials 2nd edn (Springer, New York, 2009).
[8] Campbell FC. Elements of Metallurgy and Engineering Alloys. (ASM International, 2008).
[9] Lampman SR. ASM Handbook: Volume. 19 Fatigue and Fracture. (ASM International, 1996).
[10] Pan QS, Zhou HF, Lu QH, et.al. History-independent cyclic response of nanotwinned metals. Nature. 2017;551:214-217.
[11] Lipkin J, Swearengen J, Karnes C. Mechanical properties of 6061 Al-Mg-Si alloy after very rapid heating. Journal of the Mechanics and Physics of Solids. 1973;21:91-112.
[12] Srivatsan TS, Sriram S, Daniels C. Influence of temperature on cyclic stress response and fracture behavior of aluminum alloy 6061. Engineering Fracture Mechanics. 1997;56:531-550.
[13] Srivatsan TS, Yamaguchi K, Starke EA. The effect of environment and temperature on the low cycle fatigue behavior of aluminum alloy 2020. Materials Science and Engineering A. 1986;83:87-107.
[14] Abedrabbo N, Pourboghrat F, Carsley J. Forming of aluminum alloys at elevated temperatures - Part 1: Material characterization. International Journal of Plasticity. 2006.
[15] Myhr OR, Grong Ø, Fjær HG, et.al. Modelling of the microstructure and strength evolution in Al-Mg-Si alloys during multistage thermal processing. Acta Materialia. 2004;52:4997-5008.
[16] Minakawa K, Levan G, McEvily AJ. The influence of load ratio on fatigue crack growth in 7090-t6 and in9021-t4 p/m aluminum alloys. Metallurgicall and Materials Transactions A. 1986;17:1787-1795.
[17] Wang L, Sun Z, Kobayashi T, et.al. Cyclic deformation and low cycle fatigue behavior in a 6061Al/22vol% SiC whisker composite. Materials Transactions. 1996;37:762-768.
[18] Chan KS. Roles of microstructure in fatigue crack initiation. International Journal of Fatigue. 2010;32:1428-1447.
[19] Caton M, Jones J, Allison J. The influence of heat treatment and solidification time on the behavior of small-fatigue-cracks in a cast aluminum alloy. Materials Science and Engineering A. 2001;314: 81-85.
[20] Hall JN, Jones JW, Sachdev AK. Particle size, volume fraction and matrix strength effects on fatigue behavior and particle fracture in 2124 aluminum-SiCp composites, Materials Science and Engineering A. 1994;183:69-80.
[21] Wang QY, Berard JY, Rathery S, et.al. High-cycle fatigue crack initiation and propagation behavior of high-strength spring steel wires. Fatigue and Fracture of Engineering Materials and Structures. 1999;22:673-677.
[22] Zhang Q, Zhu YM, Gao X, et.al. Training high-strength aluminum alloys to withstand fatigue, Nature Communications. 2020;11: 5198.
[23] Li H, Zheng ZQ, Wei XY. Effect of aging precipitation on fatigue fracture behavior of 2E12 aluminum alloy. The Chinese Journal of Nonferrous Metals. 2008;18:590-594.
[24] Leng L, Zhang ZJ, Duan QQ, et.al. Improving the fatigue strength of 7075 alloy through aging, Materials Science and Engineering A. 2018;738:24-30.
[25] Shi CX, Zhong QP, Li CG. China Materials Engineering Canon Fundamentals of Materials Engineering, vol. 1, Chemical Industry Press, Beijing. 2005.
[26] Lee YL, Pan J, Hathaway RB, et.al. Fatigue Testing and Analysis (Theory and Practice), Elsevier Butter-worth Heinemann, Amsterdam, Boston, Heidelberg. 2005.
[27] Paulisch MC, Wanderka N, Haupt M, et.al. The influence of heat treatments on the microstructure and the mechanical properties in commercial 7020 alloys. Materials Science and Engineering A. 2015;626:254-262.
[28] Paulisch MC, Lentz M, Wemme H, et.al. The different dependencies of the mechanical properties and microstructures on hot extrusion and artificial aging processing in case of the alloys Al 7108 and Al 7175. Journal of Materials Processing Technology. 2016;233:68-78.
[29] Holmestad R, Marioara CD, Ehlers FJH, et.al. Precipitation in 6XXX aluminum alloys. Journal of Low Temperature Physics. 2010;171:519-525.
[30] Hasting HS, Frøseth AG, Andersen SJ, et al. Composition of β″ precipitates in Al-Mg-Si alloys by atom probe tomography and first principles calculations. Journal of Applied Physics. 2009;106:691.
[31] Falahati A, Povoden-Karadeniz E, Lang P, et.al. Thermo-kinetic computer simulation of differential scanning calorimetry curves of AlMgSi alloys: Dedicated to Professor Dr. H.-P. Degischer on the occasion of his 65th birthday. International Journal of Materials Research. 2010;101:1089-1096.
[32] Zhang H, Wang Y, Shang SL, et.al. Solvus boundaries of (meta) stable phases in the Al-Mg-Si system: First-principles phonon calculations and thermodynamic modeling. Calphad-Pergamon press.2010.
[33] Sunde JK, Marioara CD, Helvoort ATJ, et.al. The evolution of precipitate crystal structures in an Al-Mg-Si (-Cu) alloy studied by a combined HAADF-STEM and SPED approach. Materials Characterization.2018;142:458-469.
[34] Tóth L, Yarema SY. Formation of the science of fatigue of metals. Part 1. 1825-1870. Materials Science. 2006;42:673-680.
[35] Liu R, Tian YZ, Zhang ZJ, et.al. Exploring the fatigue strength improvement of Cu-Al alloys. Acta Materialia. 2018;144:613-626.
[36] Wang B, Zhang P, Duan QQ, et.al. Optimizing the fatigue strength of 18Ni maraging steel through ageing treatment. Materials Science and Engineering A. 2017;707:674-688.
[37] Zabett A, Plumtree A. Microstructural effects on the small fatigue crack behavior of an aluminum alloy plate. Fatigue and Fracture of Engineering Materials and Structure. 1995;18:801-809.
[38] Browles CQ, Schijve J. The role of inclusions in fatigue crack initiation in an aluminum alloy. International Journal of Fatigue. 1973;9:171-179.
[39] Grosskreutz JC, Shaw GG. Critical Mechanisms in the Development of Fatigue Cracks in 2024-T4 Aluminum. Elementary Engineering Fracture Mechanics. 1968;56:620-629.
[40] Kung CY, Fine ME. Fatigue crack initiation and micro-crack growth in 2024-T4 and 2124-T4 aluminum alloys. Metallurgical Transactions. 1979;10:603-610.
[41] DeBartolo EA, Hillberry BM. Characterization of fatigue crack nucleation sites in 2040-T3 aluminum alloy, Fatigue 99; Proceedings of the Seventh International Fatigue Congress. (Beijing, China, 1999).
[42] Newman JC. Fracture mechanics parameters for small fatigue cracks, In: Small Crack Test Methods, ASTM STP 1149, edited by J. M, Larsen and J. E. Allison (American Society for Testing and Materials, Philadclphia,1992). 6-33.
[43] Zhang ZF, Liu R, Zhang ZJ, et.al. Exploration of unified model for fatigue property prediction of metallic material. Acta Metallurgica Sinica. 2018;54:1694-1704.
[44] Zhang ZJ, An XH, Zhang P. Effects of dislocation slip mode on high-cycle fatigue behaviors of ultrafine-grained Cu-Zn alloy processed by equal-channel angular pressing. Scripta Materialia. 2013;68:389-392.
[45] Zhang ZJ, Zhang P, Zhang ZF. Cyclic softening behaviors of ultra-fine grained Cu-Zn alloys. Acta Materialia. 2016;121:331-342.
[46] Pang JC, Li SX, Wang ZG, et.al. General relation between tensile strength and fatigue strength of metallic materials. Materials Science and Engineering A. 2013;564:331-341.
[47] Zhang ZF, Wang ZG. Grain boundary effects on cyclic deformation and fatigue damage. Progress in Materials Science. 2008;53:1025-1099.
[48] Gong BS, Liu ZJ, Wang YL, et.al. Improving the fatigue strength of A7N01 aluminum alloy by adjusting Si content, Materials Science and Engineering A. 2019;742:15-22.