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Abstract

In this paper, we construct the Riemann-Liouville fractional integral and differential op-
erator of bicomplex order and illustrate some examples to calculate the fractional integration
and differentiation of bicomplex order of some elementary functions. Also, we discuss some
properties of these operators by proving analogues of the Leibniz and chain rules for these
operators.
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1 Introduction

In the last few years, there has been a remarkable development in subject of bicomplex numbers
and fractional calculus. The bicomplex number system has reached different results in complex
number systems and also, the fractional calculus has given many multidimensional and radical
changes in the field of calculus.

Bicomplex number system is a special kind of generalization of complex number system as
they are complex numbers appearing with another imaginary unit whose coefficients are also
complex numbers. Bicomplex numbers were firstly defined by Segre [42] in 1892. Segre described
an infinite set whose elements were later called bicomplex number, tri-complex number, · · · , n-
complex numbers. The bicomplex numbers extend the complex numbers into a four-dimensional
space and can be recognized as four-dimensional vectors, in the similar way that complex numbers
are recognized as two-dimensional vectors. Also, bicomplex numbers can be conceptualized as
ordered pairs of two complex numbers.

The initial development of bicomplex numbers basically rests on the pairs of complex numbers.
The theory of bicomplex numbers has many applications in various branches of science [1, 2, 3,
21]. Goyal et al. [23], extended gamma and beta functions to bicomplex variables. Luna et al.
[16] presented algebra, geometry, and analysis of bicomplex holomorphic functions. Efforts have
been made to define generalized bicomplex Riemann zeta function [31], bicomplex Dirichlet series
[33] and its integral representation [32], some properties of bicomplex numbers [34]. Topological
modules over the ring of bicomplex numbers were developed in [35]. Agarwal et al. [4] generalized
Mellin transform in bicomplex space with application and discussed solution of Maxwell’s equation
in bicomplex space [5]. Fibonacci sequence with coefficients from bicomplex numbers [25] and
bicomplex Fibonacci numbers and their generalization were presented in [24]. Common fixed
point theorems in the frame work of bicomplex valued metric space (X, d) and max function for
the partial order in bicomplex valued metric d were obtained [29].

Recently, the bicomplex version of Enström-Kakeya theorem and some of its consequences was
introduced [11]. The concept of triple Laplace transform in bicomplex space was given in [22].
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Some fractal-type sets in the four dimensional space were constructed [14]. The bicomplex finite
element method that can be applied for wave propagation problems in various environments was
presented [39]. A necessary and sufficient condition for the general principle of convergence of
infinite product of bicomplex number, some of its consequences and validity of the theorems were
given in [13]. Work has been done on some new fixed point theorems for contractive maps that
satisfied Mizoguchi-Takahashi’s condition in the setting of bicomplex-valued metric spaces with
existence and uniqueness of the solution of a non-linear integral equation [26].

With this, if we talk about fractional calculus, then we can say that fractional calculus is
not a new topic. Its history is almost as old as that of classical calculus. Fractional operators
were viewed in their early life by various mathematicians with an inferior view and we can even
say that pure mathematicians have contributed more than applied mathematicians in its early
stages. Applied scientists, mathematicians, and engineers over the last few decades have realized
that differential equations with fractional operators provide a simple framework for discussing the
problems associated with various real life problems, under which the fractional operators exists
such as viscoelastic systems, signal processing, diffusion processes, control processing, fractional
stochastic systems, allometry in biology and ecology and many more [30]. With non-local and non-
singular kernel [7] and without non-singular kernel [43], new fractional derivatives were defined.
Series representations for models of fractional calculus [19] and mean value theorem and Taylor’s
theorem for fractional derivatives [18] and properties of fractional derivatives [17] involving Mittag-
Leffler kernel were given. Many concepts have been proposed via generalized fractional operators
[10, 28].

Some of useful applications of fractional calculus were given in [12]. Incomplete Riemann-
Liouville fractional integral operators and hypergeometric functions were described in [38]. In
[20], A fundamental connection with classical fractional calculus was given. Some applications
of differential equations equipped with fractional operators [6], special functions and solution of
differential equations in frame of fractional calculus [45] were established . Many researcher have
done work in the direction of generalization of a solution for a class of integro-differential equations
with non-separated integral boundary conditions [44]. A new fractional derivative, which is based
on Caputo-type derivative with a smooth kernel was proposed in [40].

Many interesting properties of the incomplete I-functions associated with the Marichev-Saigo-
Maeda fractional operators were investigated [27]. Several other ways have been proposed to define
fractional integral and differential operators. There are many operators among them which are
conform to the definition of Riemann-Liouville fractional operators, while many such operators
have also been defined which do not conform to the definition of Riemann-Liouville fractional
operators. For example, the Grünwald-Letnikov fractional differintegral is defined by the limit of
a convergent series which is equivalent to the definition of Riemann-Liouville fractional operators
[37]; meanwhile, the Caputo fractional derivative is defined by switching the order of the operations
on the right-hand side of (2.19), and it is not equivalent to Riemann-Liouville definition [8, 9].

Classification of the paper as follows:
In Section 2, we summarize basic facts on bicomplex numbers and fractional calculus according to
our purpose. In Section 3, we define the Riemann-Liouville fractional operators of bicomplex order
and illustrate some examples. In Section 4, we prove an analogue of properties of these operators
including Leibniz and chain rules. In last Section, we conclude the paper.
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2 Preliminaries

2.1 Bicomplex Numbers

The bicomplex number (see, e.g. [16]) defined as

w = z1 + jz2; z1, z2 ∈ C. (2.1)

Let z1 = x1 + iy1 and z2 = x2 + iy2, then (2.1) becomes

w = x1 + iy1 + jx2 + ijy2; x1, y1, x2, y2 ∈ R (2.2)

equipped with the multiplication defined by j2 = −1, ij = ji = k, i2j2 = 1.
Using (2.1) and (2.2), the set of bicomplex numbers C2 can be given as

C2 = {w = z1 + jz2 : z1, z2 ∈ C}, (2.3)

C2 = {w = x1 + iy1 + jx2 + ijy2 : x1, y1, x2, y2 ∈ R}. (2.4)

By manipulating i and j we may have other representations also. Let us consider following sets

C(i) = {z = x+ iy : x, y ∈ R} (2.5)

C(j) = {z = x+ jy : x, y ∈ R} (2.6)

D = {w = x1 + ijy2 : x1, y2 ∈ R}. (2.7)

Both C(i) and C(j) are isomorphic fields of complex numbers and D is set of hyperbolic numbers.
The algebraic operations for bicomplex numbers are exactly the same as the operations for complex
numbers.

2.1.1 Zero Divisors

w = z1 + jz2 6= 0 be a zero divisor if both z1 and z2 are non-zero but the sum z2
1 + z2

2 = 0. In fact,
all zero divisors w = z1 + jz2 in C2 are characterized by the equations z2

1 = −z2
2 , i.e. z1 = ±iz2.

Thus all zero divisors are of the form

w = λ(1± ij) (2.8)

for any λ ∈ C(i) \ {0}. The set of all zero divisors in C2 is said to be null-cone O2 and defined as

O2 = {w = z1 + jz2 ∈ C2 : z1 = ±iz2 ; z2
1 + z2

2 = 0}. (2.9)

By applying simple calculations we can prove that e1 and e2 are two linearly independent zero
divisors, rest are some complex multiple of either e1 or e2 [15], where

e1 =
1 + ij

2
, e2 =

1− ij
2

. (2.10)

2.1.2 Idempotent Representation

An element w is said to be an idempotent element if w2 = w. As we all know that in real and
complex number field there are only two idempotent elements 0 and 1. In bicomplex number
system, rather than these two, e1 and e2 (defined in (2.10)) are also idempotent elements i.e.

e2
1 = e1, e2

2 = e2, (2.11)
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using these two idempotent elements we have a unique representation for every bicomplex number,
known as idempotent representation, and given as

w = z1 + jz2 = (z1 − iz2)e1 + (z1 + iz2)e2 (2.12)

= w1e1 + w2e2.

Infact, for every w ∈ C2 (2.12) can be written as

w = P1(w)e1 + P2(w)e2, (2.13)

where the projections P1,P2 : C2 → C(i) are defined as P1(z1 + jz2) = z1− iz2 and P2(z1 + jz2) =
z1 + iz2.

2.1.3 Bicomplex Differentiation

The definition of differentiability of a bicomplex differentiable function can be seen as similar as
in complex field. But the approaches may different. Let f be a function defined on a set S ⊆ C2,
then the derivative of the function f at a point w0 ∈ S is the limit, if it exists,

lim
w→w0

w−w0 /∈O2

f(w)− f(w0)

w − w0

or lim
Mw→0
Mw/∈O2

f(w+ M w)− f(w)

M w

and we write

f ′(w0) = lim
w→w0

w−w0 /∈O2

f(w)− f(w0)

w − w0

= lim
Mw→0
Mw/∈O2

f(w+ M w)− f(w)

M w
(2.14)

for w in the domain of f such that w − w0 is an invertible bicomplex number.

2.1.4 Bicomplex Integration

Let w = z1 + jz2 ≈ (z1, z2) be a bicomplex number, where z1 and z2 are complex numbers.
Consider a bicomplex function

f(w) = f(z1, z2) = f1(z1, z2) + jf2(z1, z2) = (f1(z1, z2), f2(z1, z2))

and let Υ be a four dimensional piecewise continuously differentiable curve in a set S ⊆ C2 . Then
the bicomplex integration of bicomplex function f is defined as a line integral, that is evaluated
with respect to some four-dimensional curve Υ in C2. More specifically, the bicomplex integration
is defined as ∫

Υ

f(w) · dw; dw = (dz1, dz2). (2.15)

If we represents Υ in parametric form w(t) = (z1(t), z2(t)), where r ≤ t ≤ s . Then (2.15) can be
rewritten as ∫

Υ

f(w) · dw =

∫ s

r

f(w(t)) · w′(t)dt. (2.16)

Here w′(t) may discontinuous at some points. Υ can be taken as a curve made up of two component
curves γ1 and γ2 in C i.e.

Υ = (γ1, γ2). (2.17)
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2.2 Fractional Calculus

Origin of fractional calculus was from a question under which it was asked that can n be any
number: fractional, irrational, or complex in dny

dxn
. The question was answered affirmatively latter.

Leibniz, Euler, Laplace, Lacroix, and Fourier made mention of derivatives of arbitrary order, but
the first use of fractional operations was made by Abel in 1823 [36]. By the time of the 21st

century many different fractional operators have been defined. For example, Riemann-Liouville
operators, Caputo operators, Atangana-Baleanu operators, Prabhakar operators etc. The origin
of the Riemann-Liouville operator is primarily Abel equation based. Defining the operator on the
basis of Abel equation is mentioned in [41] [p. 28-37].

Riemann-Liouville operators are the most common way of defining fractional calculus. Now, we
discuss Riemann-liouville operators firstly for complex order and then define for bicomplex order.

2.2.1 Riemann-Liouville Fractional Integral and Derivative of Complex Order

Definition 2.1 ([36]). “ Let α = a+ib ∈ C(i) with Re(α) > 0 and let f(x)be piecewise continuous
on J ′ = (0,∞) and integrable on any finite subinterval of J = [0,∞). Then for t > 0 we call

0D
−α
t f(t) =

1

Γ(α)

∫ t

0

f(x)(t− x)α−1dx (2.18)

the Riemann-Liouville fractional integral of f of order α, where Γ denotes complex gamma func-
tion.

Let us denote C as the class of functions defined in above definition.

Definition 2.2. Let f be a function of class C and β = c+ id ∈ C. Let m = bRe(β)c+ 1, where
bxc denote the greatest integer less or equal to x. Then the fractional derivative of f of order β
is given as

Dβf(t) = Dm{D−vf(t)}, Re(β) > 0, t > 0 (2.19)

Dβf(t) =
1

Γ(v)

dm

dtm

∫ t

0

f(x)(t− x)v−1dx, (2.20)

(if exists) where v = m− β s.t. 0 < Re(v) ≤ 1.

In particular, if Re(β) = c = 0 then (2.19) converted into fractional differentiation of purely
imaginary order. In the case of purely imaginary order the fractional derivatives defined similarly
to (2.20) by the formula

Didf(t) =
1

Γ(1− id)

d

dt

∫ t

0

f(x)(t− x)−iddx. (2.21)

It is worth noting here that fractional integration cannot be defined as in (2.18) in the way that we
have introduced fractional derivative in (2.21) because of the divergence of the integral for α = id.
So the fractional integration is defined as follows

D−idf =
d

dt
D−1−idf.

Therefore,

D−idf(t) =
1

Γ(1 + id)

d

dt

∫ t

0

f(x)(t− x)iddx. (2.22)

Now in order to complete the definition for all complex order we have identity operator as follows

D0f = D−0f = f.” (2.23)
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3 Riemann-Liouville Fractional Integration and Differen-

tiation of Bicomplex Order

In this section, we introduce a new concept of integration and differentiation in which we discuss
Riemann-Liouville fractional operators of bicomplex order.

Let w = z1 + jz2 ∈ C2 ; z1, z2 ∈ C(i), where z1 = x1 + iy1 and z2 = x2 + iy2. Then using
idempotent representation of w, we have

w = (z1 − iz2)e1 + (z1 + iz2)e2

or w = w1e1 + w2e2, (3.1)

where

w1 = z1 − iz2 and w2 = z1 + iz2 (3.2)

⇒ w1 = (x1 + iy1)− i(x2 + iy2) and w2 = (x1 + iy1) + i(x2 + iy2)

⇒ w1 = (x1 + y2) + i(y1 − x2) and w2 = (x1 − y2) + i(y1 + x2),

where e1 and e2 have the same meaning as we introduced in (2.10).
We introduce Riemann-Liouville fractional integration of bicomplex order as

0D
−w
t f(t) =

1

Γ (w)

∫ t

0

f(x)(t− x)w−1dx, (3.3)

where w = z1 + jz2 ∈ C2 with Re(z1) > |Im(z2)| and Γ is bicomplex gamma function [23]. The
definition of Riemann-Liouville fractional integration of bicomplex order is well justified by the
following theorem:

Theorem 3.1. Let w = z1 + jz2 ∈ C2 with Re(z1) > |Im(z2)| and let f be a function of class C.
Then for t > 0,

0D
−w
t f(t) =

1

Γ (w)

∫ t

0

f(x)(t− x)w−1dx. (3.4)

Proof. Consider the Riemann-Liouville fractional integral of f of order α ∈ C(i) as we defined in
(2.18)

0D
−α
t f(t) =

1

Γ(α)

∫ t

0

f(x)(t− x)α−1dx. (3.5)

Now replacing α by w ∈ C2 in the LHS of (3.5) and using representation (3.1), we have

0D
−w
t f(t) = 0D

(−w1e1−w2e2)
t f(t)

= {0D
−w1
t f(t)}e1 + {0D

−w2
t f(t)}e2 (3.6)

=

{
1

Γ(w1)

∫ t

0

f(x)(t− x)w1−1dx

}
e1 +

{
1

Γ(w2)

∫ t

0

f(x)(t− x)w2−1dx

}
e2. (3.7)

Both integrals exist and well define by the hypothesis, because

Re(z1) > |Im(z2)|
⇒ x1 > |y2|
⇒ x1 > y2 and x1 > −y2

⇒ x1 − y2 > 0 and x1 + y2 > 0

⇒ Re(w1) > 0 and Re(w2) > 0.
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Hence, integrals defined in (3.7) are meaningful. Now, using the concept of bicomplex gamma
function [23] in (3.7), we have

0D
−w
t f(t) =

1

Γ (w1e1 + w2e2)

∫ t

0

f(x)(t− x)w1e1+w2e2−1dx

=
1

Γ (w)

∫ t

0

f(x)(t− x)w−1dx.

Remark 3.2. Since the condition Re(z1) > |Im(z2)| can be seen as x1 > |y2|. Hence, for such
w ∈ C2 defined in above theorem let us introduce the set S = {w : Hρ(w) represents a right half
plane x1 > |y2|}, where Hρ(w) := Hyperbolic projection of w. Geometric interpretation is shown
in figure 1.

For simplicity let 0D
−w
t = D−w in our further discussion.

Let us consider different cases :

1. w = z1 + j0 = z1,
in this case (3.4) coincides with the case of complex order (2.18).

2. w = 0 + jz2 = jz2 with Im(z2) 6= 0,
in this case inegration cannot be defined because of the divergence of either integral described
in (3.7) (particularly for y2 ∈ Z.)

3. w = 0 + jz2 = jz2 with Im(z2) = 0,
this case will be define further by help of differential operator.

4. w = x1 + ijy2 ∈ D,
for such w integration (3.4) exists if w ∈ Dw, where the new set Dw can be define as :
Dw = {x1 + ijy2 : x1 > 0, x2

1 − y2
2 > 0} shown in figure 2.
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A bicomplex number defined as w = z1 + jz2 admits several other forms of representations and
based on these representations, we can also demonstrate the condition proposed above in different
ways shown in table 1.

s.n. Bicomplex Number Transformed Condition

1 w = (x1 + iy1) + j(x2 + iy2) = z1 + jz2 Rei(z1) > |Imi(z2)|

2 w = (x1 + jx2) + i(y1 + jy2) = ζ1 + iζ2 Rej(ζ1) > |Imj(ζ2)|

3 w = (x1 + ky2) + i(y1 − kx2) = ρ1 + iρ2 Rek(ρ1) > |Imk(ρ1)|

4 w = (x1 + ky2) + j(x2 − ky1) = σ1 + jσ2 Rek(σ1) > |Imk(σ1)|

5 w = (x1 + iy1) + k(y2 − ix2) = ω1 + kω2 Rei(ω1) > |Rei(ω2)|

6 w = x1 + iy1 + jx2 + ijy2 Rei(w) > |Imij(w)|

Table 1: Conditions for Riemann-Liouville fractional integration according to different way of
writing a bicomplex number.

In table 1, Rel(g) represents real part of g w.r.t. l and Iml(g) represents imaginary part of
g w.r.t. l, where l = i, j, k and g = z1, z2, ζ1, ζ2 · · · etc. Now we introduce Riemann-Liouville
fractional differentiation of bicomplex order as

Dwf(t) =
1

Γ (m− w)

dm

dtm

∫ t

0

f(x)(t− x)m−w−1dx,

where f is a function of class C, w = z1 + jz2 = w1e1 + w2e2 ∈ C2 with Re(z1) > 0, m1 =
bRe(w1)c + 1, m2 = bRe(w2)c + 1, and m = m1e1 + m2e2. The definition of Riemann-Liouville
fractional differentiation of bicomplex order is well justified by the following theorem:
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Theorem 3.3. Let f be a function of class C and let w = z1 + jz2 = w1e1 + w2e2 ∈ C2 with
Re(z1) > 0. Let m1 = bRe(w1)c+1, m2 = bRe(w2)c+1 and m = m1e1 +m2e2. Then the fractional
derivative of f of order w define as

Dwf(t) =
1

Γ (m− w)

dm

dtm

∫ t

0

f(x)(t− x)m−w−1dx. (3.8)

Proof. Replacing β in LHS of (2.19) by w ∈ C2 and using (3.1), we have

Dwf(t) = {Dw1e1+w2e2f(t)}
= {Dw1f(t)}e1 + {Dw2f(t)}e2. (3.9)

We suppose (i) m1 = bRe(w1)c+ 1 and m2 = bRe(w2)c+ 1
. (ii) v1 = m1 − w1 and v2 = m2 − w2 to obtain

Dwf(t) = {Dm1{D−v1f(t)}}e1 + {Dm2{D−v2f(t)}}e2

=

{
1

Γ(v1)

dm1

dtm1

∫ t

0

f(x)(t− x)v1−1dx

}
e1 +

{
1

Γ(v2)

dm2

dtm2

∫ t

0

f(x)(t− x)v2−1dx

}
e2,

(3.10)

which is meaningful since Re(v1) > 0 and Re(v2) > 0 by the definition of v1 and v2. Using
properties of idempotent representation, we can write (3.10) as follows.

Dwf(t) =
1

Γ (v1e1 + v2e2)

d(m1e1+m2e2)

dt(m1e1+m2e2)

∫ t

0

f(x)(t− x)(v1e1+v2e2)−1dx.

Putting values of v1 and v2 and let m = m1e1 +m2e2, we have

Dwf(t) =
1

Γ ((m1 − w1)e1 + (m2 − w2)e2)

d(m1e1+m2e2)

dt(m1e1+m2e2)

∫ t

0

f(x)(t− x)((m1−w1)e1+(m2−w2)e2)−1dx

=
1

Γ ((m1e1 +m2e2)− (w1e1 + w2e2))

d(m1e1+m2e2)

dt(m1e1+m2e2)

∫ t

0

f(x)(t− x)((m1e1+m2e2)−(w1e1+w2e2))−1dx

=
1

Γ (m− w)

dm

dtm

∫ t

0

f(x)(t− x)m−w−1dx.

Let us consider different cases :

1. w = z1 + j0 = z1,
in this case (3.8) coincides with the case of complex order (2.20).

2. w = 0 + jz2 = jz2 with Im(z2) 6= 0,
in this case one component represents integration while other component represents differ-
entiation of complex order in (3.9) and can be solve easily using (2.18) and (2.20).

3. w = 0 + jz2 = jz2 with Im(z2) = 0,
in this case from (3.8), we obtain

Djx2f(t) =
1

Γ (1− jx2)

d

dt

∫ t

0

f(x)(t− x)−jx2dx, (3.11)
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which is conform to (2.21). In this situation we can define integration as follows

D−jx2f =
d

dt
D−1−jx2f.

Therefore,

D−jx2f(t) =
1

Γ (1 + jx2)

d

dt

∫ t

0

f(x)(t− x)jx2dx. (3.12)

4. w = x1 + ijy2 ∈ D,
in this case result can be derived in the similar way as we did for (3.8).

Now, we will state some examples to calculate the fractional integration and differetiation of
bicomplex order.

Example 3.4. Find the Riemann-Liouville fractional integration and differentiation of bicomplex
order of f(t) = tu, where u > −1.

Solution. Integration: Let w = z1 + jz2 = w1e1 +w2e2 ∈ C2 with Re(z1) > |Im(z2)|. On putting
f(t) = tu in (3.6), we have

D−wtu = {D−w1tu}e1 + {D−w2tu}e2. (3.13)

Firstly, we deal with D−w1tu,

D−w1tu =
1

Γ(w1)

∫ t

0

xu(t− x)w1−1dx, w1 ∈ C(i) (3.14)

=
B(u+ 1, w1)

Γw1

tu+w1 [36, p.36] .

=
Γ(u+ 1)

Γ(u+ w1 + 1)
tu+w1 ; (u+ 1) > 0, (3.15)

where B is complex beta function. Similarly, we can find D−w2tu as

D−w2tu =
Γ(u+ 1)

Γ(u+ w2 + 1)
tu+w2 ; (u+ 1) > 0. (3.16)

On substituting values from (3.15) and (3.16) into (3.13) we get

D−wtu =

{
Γ(u+ 1)

Γ(u+ w1 + 1)
tu+w1

}
e1 +

{
Γ(u+ 1)

Γ(u+ w2 + 1)
tu+w2

}
e2

=
Γ (u+ 1)

Γ (u+ w + 1)
tu+w. (3.17)

Where we used concept of bicomplex gamma function given in [23]. In particular, for u = 0 we
have from (3.17)

D−w(1) =
Γ (1)

Γ (w + 1)
tw

=
1

Γ (w + 1)
tw. (3.18)
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Similar to the results obtained for real and complex [36, p.47], here we are also getting the
same kind of surprising results under which the bicomplex fractional integral of a constant is not
a multiple of t.
Differentiation : Let f(t) = tu, where u > −1 and w = z1 + jz2 = w1e1 + w2e2 ∈ C2 with
Re(z1) < |Im(z2)|. Then using (3.9), we have

Dwtu = {Dw1tu}e1 + {Dw2tu}e2 (3.19)

= {Dm1{D−v1tu}}e1 + {Dm2{D−v2tu}}e2,

where m1 = bRe(w1)c+ 1, m2 = bRe(w2)c+ 1, v1 = m1 − w1, and v2 = m2 − w2. Now,

(i) Dw1tu = Dm1{D−v1tu}

= Dm1

{
Γ(u+ 1)

Γ(u+ v1 + 1)
tu+v1

}
(By (3.15))

=
Γ(u+ 1)

Γ(u+ v1 + 1)

dm1

dxm1
tu+v1

=
Γ(u+ 1)

Γ(u+ v1 + 1)
· Γ(u+ v1 + 1)

Γ(u+ v1 −m1 + 1)
t(u+v1−m1)

=
Γ(u+ 1)

Γ(u− w1 + 1)
tu−w1

⇒ Dw1tu =
Γ(u+ 1)

Γ(u− w1 + 1)
tu−w1 . (3.20)

Similarly,

(ii) Dw2tu =
Γ(u+ 1)

Γ(u− w2 + 1)
tu−w2 . (3.21)

Putting values from (3.20) and (3.21) into (3.19), we have

Dwtu =

{
Γ(u+ 1)

Γ(u− w1 + 1)
tu−w1

}
e1 +

{
Γ(u+ 1)

Γ(u− w2 + 1)
tu−w2

}
e2

=
Γ (u+ 1)

Γ (u− w + 1)
tu−w. (3.22)

In particular, for u = 0 we have

Dw(1) =
Γ (1)

Γ (−w + 1)
t−w

=
1

Γ (1− w)
t−w (3.23)

which is of course not zero. Again, we get very different results in which bicomplex fractional
differentiation of a constant is not zero.

Example 3.5. Find the Riemann-Liouville fractional integration and differentiation of f(t) = log t
of bicomplex order.

Solution. Let us start with integration,
Integration: Let w = z1 + jz2 = w1e1 + w2e2 ∈ C2 with Re(z1) > |Im(z2)|.

D−w log t = {D−w1 log t}e1 + {D−w2 log t}e2 (3.24)
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Consider D−w1 log t,

D−w1 log t =
1

Γ(w1)

∫ t

0

log y(t− y)w1−1dy.

If we make the change of variable y = tx, then

D−w1 log t =
tw1

Γ(w1 + 1)
log t+

tw1

Γ(w1)

∫ 1

0

(1− x)w1−1 log xdx. (3.25)

Since ∫ 1

0

pα−1(1− p)β−1 log pdp = B(α, β) [ψ(α)− ψ(α + β)] ; Re(α),Re(β) > 0, (3.26)

where ψ is the complex digamma function. Thus if we let α = 1 in (3.26),∫ 1

0

(1− p)β−1 log pdp = B(1, β) [ψ(1)− ψ(1 + β)]

= B(1, β) [−γ − ψ(1 + β)] , (3.27)

where γ is Euler’s constant. Using (3.27) into (3.25), we have

D−w1 log t =
tw1

Γ(w1 + 1)
[log t− γ − ψ(w1 + 1)] . (3.28)

Similarly, we can find D−w2 log t as

D−w2 log t =
tw2

Γ(w2 + 1)
[log t− γ − ψ(w2 + 1)] . (3.29)

Substituting (3.28) and (3.29) into (3.24), we have

D−w log t =

{
tw1

Γ(w1 + 1)
[log t− γ − ψ(w1 + 1)]

}
e1 +

{
tw2

Γ(w2 + 1)
[log t− γ − ψ(w2 + 1)]

}
e2

=
tw

Γ (w + 1)
[log t− γ −Ψ(w + 1)] , (3.30)

where Ψ is bicomplex digamma function.
Differentiation :
In the similar manner for w = z1 + jz2 = w1e1 + w2e2 ∈ C2 with Re(z1) < 1 − |Im(z2)|, we can
obtain

Dw log t =
t−w

Γ (1− w)
[log t− γ −Ψ(1− w)]. (3.31)

Riemann-Liouville integration and differentiation of appropriate bicomplex order of some elemen-
tary functions are given in table 2.

Remark 3.6. For Et(w, a), Ct(w, a), and St(w, a) see e.g. [36, p.314-320].

Remark 3.7. For Et(−w, a), Ct(−w, a), and St(−w, a) see e.g. [36, p.48-49].
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S.N. Function D−w Integration Dw Differentiation

1 tu log t
Γ (u+1)tw+u

Γ (u+w+1)
[log t

+Ψ(u+ 1)−Ψ(u+ w + 1)]

Γ (u+1)
Γ (u−w+1)

tu−w[log t

+Ψ(u+ 1)−Ψ(u− w + 1)]

2 eat, a ∈ R D−weat = tweatγ∗(w, at)
= Et(w, a)

Dweat = Et(−w, a)

3 cos at, a ∈ R
D−w cos at = Ct(w, a)

= 1
Γ (w)

∫ t
0
x(w−1) cos a(t− x)dx

Dw cos at = Ct(−w, a)

4 sin at, a ∈ R
D−w sin at = St(w, a)

= 1
Γ (w)

∫ t
0
x(w−1) sin a(t− x)dx

Dw sin at = St(−w, a).

Table 2: Riemann-Liouville integration and differentiation of bicomplex order of some elementary
functions.

4 Some Properties of Riemann-Liouville Fractional Oper-

ators of Bicomplex Order:

In this section, we discuss some useful properties viz. the law of exponent and Leibniz rule for
Riemann-Liouville integral and differential operators.

Theorem 4.1. Let f(t) and g(t) be piecewise continuous functions on J ′ = (0,∞) and integrable
on any finite subinterval of J = [0,∞) and w = z1 + jz2 = w1e1 + w2e2 ∈ C2 with Re(z1) > 0.
Then for t > 0,

Dw(f(t) + g(t)) = Dwf(t) +Dwg(t).

Proof.

Dw(f(t) + g(t)) = D(w1e1+w2e2)(f(t) + g(t))

= {Dw1(f(t) + g(t))}e1 + {Dw2(f(t) + g(t))}e2

= {Dm1{D−v1(f(t) + g(t))}}e1 + {Dm2{D−v2(f(t) + g(t))}}e2

= {{Dm1{D−v1f(t)}}+ {Dm1{D−v1g(t)}}}e1

+ {{Dm2{D−v2f(t)}}+ {Dm2{D−v2g(t)}}}e2

= {{{Dm1{D−v1f(t)}}e1 + {{Dm2{D−v2f(t)}}e2}
+ {{{Dm1{D−v1g(t)}}e1 + {{Dm2{D−v2g(t)}}e2}

= {{Dw1f(t)}e1 + {Dw2f(t)}e2}+ {{Dw1g(t)}e1 + {Dw2g(t)}e2}
= D(w1e1+w2e2)f(t) +D(w1e1+w2e2)g(t)

= Dwf(t) +Dwg(t).

where m1, m2, v1, and v2 are same as taken before.

Theorem 4.2. Let f(t) and g(t) be piecewise continuous functions on J ′ = (0,∞) and integrable
on any finite subinterval of J = [0,∞) and w = z1 + jz2 ∈ C2 with Re(z1) > |Im(z2)|. Then for
t > 0

D−w(f(t) + g(t)) = D−wf(t) +D−wg(t).
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Theorem 4.3 (The law of exponents for integration). Let f be a piecewise continuous function
on J. Let w = z1 + jz2 = w1e1 + w2e2 ∈ C2 and ξ = z3 + jz4 = ξ1e1 + ξ2e2 ∈ C2 with
Re(w1),Re(w2),Re(ξ1),Re(ξ2) > 0 and Re(w1 + ξ1),Re(w2 + ξ2) > 0. Then

D−w[D−ξf(t)] = D−(ξ+w)f(t) = D−ξ[D−wf(t)]. (4.1)

Proof. By applying definition of integration :

(i) D−w[D−ξf(t)] =
1

Γ (w)

∫ t

0

(t− x)w−1

[
1

Γ (ξ)

∫ x

0

(x− y)ξ−1f(y)dy

]
dx

=
1

ΓwΓξ

∫ t

0

(t− x)w−1dx

∫ x

0

(x− y)ξ−1f(y)dy

=

{
1

Γw1Γξ1

∫ t

0

(t− x)w1−1dx

∫ x

0

(x− y)ξ1−1f(y)dy

}
e1

+

{
1

Γw2Γξ2

∫ t

0

(t− x)w2−1dx

∫ x

0

(x− y)ξ2−1f(y)dy

}
e2. (4.2)

Now,

1

Γw1Γξ1

∫ t

0

(t− x)w1−1dx

∫ x

0

(x− y)ξ1−1f(y)dy =
1

Γw1Γξ1

∫ t

0

∫ x

0

(t− x)w1−1(x− y)ξ1−1f(y)dxdy

=
1

Γw1Γξ1

∫ t

0

∫ t

y

(t− x)w1−1(x− y)ξ1−1f(y)dydx

=
1

Γw1Γξ1

∫ t

0

f(y)dy

∫ t

y

(t− x)w1−1(x− y)ξ1−1dx

=
1

Γw1Γξ1

B(w1, ξ1)

∫ t

0

(t− y)w1+ξ1−1f(y)dy

=
1

Γ(w1 + ξ1)

∫ t

0

(t− y)w1+ξ1−1f(y)dy, (4.3)

where B is complex beta function. Similarly,

1

Γw2Γξ2

∫ t

0

(t− x)w2−1dx

∫ x

0

(x− y)ξ2−1f(y)dy =
1

Γ(w2 + ξ2)

∫ t

0

(t− y)w2+ξ2−1f(y)dy. (4.4)

Using (4.3) and (4.4) into (4.2), we have

D−w[D−ξf(t)] =

{
1

Γ(w1 + ξ1)

∫ t

0

(t− y)w1+ξ1−1f(y)dy

}
e1 +

{
1

Γ(w2 + ξ2)

∫ t

0

(t− y)w2+ξ2−1f(y)dy

}
e2

=
1

Γ (w + ξ)

∫ t

0

(t− y)w+ξ−1f(y)dy

= D−ξ[D−wf(t)].

Hence,

D−w[D−ξf(t)] =
1

Γ (ξ + w)

∫ t

0

(t− y)ξ+w−1f(y)dy = D−ξ[D−wf(t)] (4.5)

(ii) D−(ξ+w)f(t) =
1

Γ (ξ + w)

∫ t

0

(t− y)ξ+w−1f(y)dy. (4.6)

(4.5) and (4.6) now implies the truth of (4.1) .
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The similar property can be proved for differentiation by imposing some additional restrictions
on f. Before this let us define a new class of functions Ć which contains all the functions f(t) of
the form

tλη(t) or tλ log(t)η(t) (4.7)

where λ > −1 and η(t) =
∑∞

n=0 ant
n has a radius of convergence R > 0.

Theorem 4.4 (The law of exponents for differentiation). Consider w = w1e1 + w2e2 ∈ C2 and
ξ = ξ1e1 + ξ2e2 ∈ C2 with Re(w1),Re(w2),Re(ξ1),Re(ξ2) < λ+ 1 and Re(w1 + ξ1) < λ+ 1,Re(w2 +
ξ2) < λ+ 1. Let f(t) be of class Ć and X be a positive number less than R. Then

Dw
[
Dξf(t)

]
= D(w+ξ)f(t) = Dξ [Dwf(t)] (4.8)

for all t ∈ (0, X] .

Proof. If f(t) = tλη(t), then from (3.22)

Dξf(t) = tλ−ξ
∞∑
n=0

an
Γ (n+ λ+ 1)

Γ (n+ λ+ 1− ξ)
tn, (4.9)

and if f(t) = tλ log(t)η(t), then from table 2,

Dξf(t) = tλ−ξ(log t)
∞∑
n=0

an
Γ (n+ λ+ 1)

Γ (n+ λ+ 1− ξ)
tn

+ tλ−ξ
∞∑
n=0

an [Ψ(n+ λ+ 1)−Ψ(n+ λ+ 1− ξ)]× Γ (n+ λ+ 1)

Γ (n+ λ+ 1− ξ)
tn. (4.10)

Since, by hypothesis Re(ξ1),Re(ξ2) < λ+ 1, Dξf(t) ∈Ć in both cases.
Thus, from (4.9)

Dw
[
Dξf(t)

]
=
∞∑
n=0

an
Γ (n+ λ+ 1)

Γ (n+ λ+ 1− ξ)
×
[

Γ (n+ λ+ 1− ξ)
Γ (n+ λ+ 1− ξ − w)

]
tn+λ−ξ−w

=
∞∑
n=0

an
Γ (n+ λ+ 1)

Γ (n+ λ+ 1− (ξ + w))
tn+λ−(ξ+w) (4.11)
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which is precisely Dw+ξf(t). From (4.10) and then using table 2, we have

Dw
[
Dξf(t)

]
=
∞∑
n=0

an
Γ (n+ λ+ 1)

Γ (n+ λ+ 1− ξ)
Γ (n+ λ+ 1− ξ)

Γ (n+ λ+ 1− ξ − w)

× [log t+ Ψ(n+ λ+ 1− ξ)−Ψ(n+ λ+ 1− (ξ + w))] tn+λ−(ξ+w)

+
∞∑
n=0

an [Ψ(n+ λ+ 1)−Ψ(n+ λ+ 1− ξ)]× Γ (n+ λ+ 1)

Γ (n+ λ+ 1− ξ)

×
[

Γ (n+ λ+ 1− ξ)
Γ (n+ λ+ 1− (ξ + w))

tn+λ−(ξ+w)

]
=
∞∑
n=0

an
Γ (n+ λ+ 1)

Γ (n+ λ+ 1− (ξ + w))

× [log t+ {Ψ(n+ λ+ 1− ξ)−Ψ(n+ λ+ 1− (ξ + w))} (4.12)

+ {Ψ(n+ λ+ 1)−Ψ(n+ λ+ 1− ξ)}]× tn+λ−(ξ+w)

= tλ−(ξ+w)(log t)
∞∑
n=0

an
Γ (n+ λ+ 1)

Γ (n+ λ+ 1− (ξ + w))
tn + tλ−(ξ+w)

×
∞∑
n=0

an
Γ (n+ λ+ 1)

Γ (n+ λ+ 1− (ξ + w))
× [Ψ(n+ λ+ 1)−Ψ(n+ λ+ 1− (ξ + w))] tn,

(4.13)

which is again precisely Dξ+wf(t). In the similar manner we can prove another equality
D(w+ξ)f(t) = Dξ [Dwf(t)] . Thus the proof is complete.

Theorem 4.5 (Leibniz rule for integration). Let f be continuous on [0, X] and let g be analytic
at a for all a ∈ [0, X]. Then for w = z1 + jz2 = w1e1 +w2e2 ∈ C2 with Re(z1) > 1 + |Im(z2)| and
0 < t ≤ X ,

D−w [f(t)g(t)] =
∞∑
k=0

(
−w
k

)[
Dkg(t)

] [
D−w−kf(t)

]
. (4.14)

Proof. Firstly, we see that if f is continuous on [0, X] and g is analytic at a for all a ∈ [0, X],
then fg is certainly of class C and for Re(z1) > 1 + |Im(z2)| , the fractional integral

D−w [f(t)g(t)] =
1

Γw

∫ t

0

(t− x)w−1f(x)g(x)dx exists. (4.15)

Since g is analytic function, we may write its Taylor series as

g(x) =
∞∑
k=0

(−1)k
Dkg(t)

k!
(t− x)k

= g(t) +
∞∑
k=1

(−1)k
Dkg(t)

k!
(t− x)k. (4.16)

The series (4.16) converges for all x in an interval that properly contains [0, t] and hence uniformly
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on [0, t] . Substituting (4.16) into (4.15) we have

D−w [f(t)g(t)] =
1

Γw

∫ t

0

(t− x)w−1f(x)

{
g(t) +

∞∑
k=1

(−1)k
Dkg(t)

k!
(t− x)k

}
dx

= g(t)

{
1

Γw

∫ t

0

(t− x)w−1f(x)dx

}
+

1

Γw

∫ t

0

(t− x)w−1f(x)×
∞∑
k=1

(−1)k
Dkg(t)

k!
(t− x)kdx.

= g(t)D−wf(t) +
1

Γw

∫ t

0

(t− x)w−1f(x)×
∞∑
k=1

(−1)k
Dkg(t)

k!
(t− x)kdx. (4.17)

Since f is continuous on [0, X] and Re(z1) > 1 + |Im(z2)|, therefore, (t − x)w−1f(x) is bounded
on [0, t] . Hence we may interchange the order of integration and summation in (4.17) to obtain

D−w [f(t)g(t)] =
∞∑
k=0

(−1)k
Dkg(t)

k!

∫ t

0

(t− x)w+k−1f(x)dx

=
∞∑
k=0

(−1)k
Γ (w + k)

k!Γ (w)

[
Dkg(t)

] [
D−w−kf(t)

]
=
∞∑
k=0

(
−w
k

)[
Dkg(t)

] [
D−w−kf(t)

]
[36, p.298] (4.18)

Remark 4.6. The only reason we assumed g analytic for all points a in [0, X] was to guarantee
the uniform convergence of series (4.16) for x ∈ [0, X] .

Now we shall attempt to prove analogous results for fractional derivatives.

Theorem 4.7 (Leibniz rule for differentiation). Let f and g be two functions of the class Ć. Then
for w = z1 + jz2 = w1e1 + w2e2 ∈ C2 with Re(z1) > |Im(z2)|

Dw [f(t)g(t)] =
∞∑
k=0

(
w

k

)[
Dkg(t)

] [
Dw−kf(t)

]
. (4.19)

Proof. If f, g ∈ Ć then by replacing −w with w in (4.18) , we obtain the Leibniz rule for
differentiation.

Apart from these, there are some other properties which we can get from mere observation.
Some of these are as follows :

• Both fractional integral and differential operators are non-local operator (as it is defined on
an interval).

• Calculating time-fractional derivative of a function f(t) at some t = t1 requires all the past
history, i.e. all f(t) from t = 0 to t = t1 .

• Calculating space-fractional derivative of a function f(x) at x = x0 requires all non-local
values of f(x).
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5 Conclusion

In this paper, we have performed some detailed analysis of the Riemann-Liouville fractional inte-
gral and differential operators of bicomplex order. We demonstrated these operators by calculating
some examples. We established some important properties of these operators including Leibniz
and chain rules.
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