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Abstract

1) Food web models explain and predict the trophic interactions in a food web, and they1

can infer missing interactions among the organisms. The allometric diet breadth model2

(ADBM) is a food web model based on the foraging theory. In the ADBM the foraging3

parameters are allometrically scaled to body sizes of predators and prey. In Petchey4

et al. (2008), the parameterisation of the ADBM had two limitations: (a) the model5

parameters were point estimates, and (b) food web connectance was not estimated.6

2) The novelty of our current approach is: (a) we consider multiple predictions from7

the ADBM by parameterising it with approximate Bayesian computation, to estimate8

parameter distributions and not point estimates. (b) Connectance emerges from the9

parameterisation, by measuring model fit using the true skill statistic, which takes into10

account prediction of both the presences and absences of links.11
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3) We fit the ADBM using approximate Bayesian computation to 16 observed food webs12

from a wide variety of ecosystems. Connectance was consistently overestimated in13

the new parameterisation method. In some of the food webs, considerable variation14

in estimated parameter distributions occurred, and resulted in considerable variation15

(i.e. uncertainty) in predicted food web structure.16

4) We conclude that the observed food web data is likely missing some trophic links that17

do actually occur, and that the ADBM likely predicts some links that do not exist. The18

latter could be addressed by accounting in the ADBM for additional traits other than19

body size. Further work could also address the significance of uncertainty in parameter20

estimates for predicted food web responses to environmental change.21

Keywords connectance · ABC · ADBM · food web · true skill statistic · uncertainty22

1 Introduction23

Knowledge about the trophic interactions among the organisms in a community is crucial for understanding24

the structure and dynamics of ecological communities and for predicting their response to environmental25

change (Dunne, Williams, and Martinez 2002; Tylianakis and Binzer 2014; O’Connor et al. 2009; Bergamino,26

Lercari, and Defeo 2011; Krause et al. 2003; Lurgi, López, and Montoya 2012; Morris, Sinclair, and Burwell27

2015). The network of trophic interactions is often referred to as a food web. The food web structure can28

provide answers to key ecological questions: which species are more vulnerable to environmental changes29

such as temperature (Petchey et al. 1999); how robust a food web is to extinctions (Dunne, Williams, and30

Martinez 2002); and how a food web reacts if the top predators are removed (Knight et al. 2005)?31

Trophic interactions information from multiple sources can be used to infer a food web, e.g. gut contents32

(Peralta-Maraver, López-Rodríguez, and de Figueroa 2017), stable isotope composition of tissues (Layman et33

al. 2007), and experimentation (Warren 1989). Sometimes the methods used to infer the interactions may34

lead to uncertainty in the constructed food web. E.g. In gut content analysis of some fish predators, there35

can be tissues which are not identifiable and cannot be assigned with certainty to a specific prey item (Baker,36

Buckland, and Sheaves 2014). With stable isotope ratios of tissues, uncertainty may be due to factors such37

as variability in the isotopic fractionation values across multiple combinations of diets and tissues/species,38

unquantified temporal or spatial variation in prey isotopic values, and variation caused by routing of particular39

dietary nutrients into particular tissues (Crawford, Mcdonald, and Bearhop 2008). Furthermore, complete40

recording of all interactions usually requires a large sampling effort even at small spatial and temporal scales41

(Hobson, Piatt, and Pitocchelli 1994). Food web structure is very difficult to record at larger spatial and42

temporal scales without losing resolution (spatial, temporal, and taxonomic) (Gravel et al. 2013; Martinez43

1991; Jordán and Osváth 2009). Less than complete sampling of interactions can result in no interaction44
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being observed between a pair of individuals that in fact do interact, which results in missing links in a food45

web. Due to under-sampling, food webs can be poorly understood, which may hinder further advances in the46

field (Martinez et al. 1999).47

When interactions are difficult to observe, and hence well-documented food webs are not available,48

models which predict species interactions may provide a solution (Tamaddoni-Nezhad et al. 2013; Gravel et49

al. 2013; Petchey et al. 2008; Allesina, Alonso, and Pascual 2008; Cohen, Newman, and Steele 1985). A food50

web model can be used to predict missing information about species interactions. For example, Petchey et al.51

(2008) showed how a model of species interactions (and therefore food web structure) could be parameterised52

from data on the known presence and absence of trophic interactions. The model and its parameter values53

encode the rules for occurrence or absence of species interactions to predict food web structure. Observed data54

may be used to select and parameterise the model. Tamaddoni-Nezhad et al. (2013) used large agricultural55

datasets, logic-based machine learning and text mining to assign interactions between nodes to automatically56

construct food webs. Gravel et al. (2013), inspired by the niche model of food web structure developed a57

method that used the statistical relationship between predator and prey body size to infer the food web.58

Food web models are also useful for ecological forecasting. Lindegren et al. (2010) used a stochastic59

food web model driven by regional climate scenarios to produce quantitative forecasts of cod dynamics in the60

twenty-first century. Hattab et al. (2016) forecasted the potential impacts of climate change on the local food61

web structure of the highly threatened Gulf of Gabes ecosystem, located in the south of the Mediterranean62

Sea. Hence, food web models have an important role in filling gaps in knowledge about species interactions,63

including predicting future changes in food web structure.64

The allometric diet breadth model (ADBM) was the first model able to predict food web complexity65

and structure (Beckerman, Petchey, and Warren 2006; Petchey et al. 2008). The ADBM uses foraging theory,66

specifically the contingency model (MacArthur and Pianka 1966), to predict which set of the available prey67

species would be consumed by a predator. This set is the prey species that maximises the energy intake rate68

of the predator. The model requires the foraging related traits of species, such as energy content of a potential69

prey item, the rate of space clearance (also known as attack rate), the density of prey items, and handling70

time (the amount of time required to handle food items). The model is termed “allometric” because each of71

these quantities is derived from the body size of the prey and predator using several allometric relationships.72

The ADBM has also been used to investigate the effect of temperature on an observed food web structure73

(O’Gorman et al. 2019).74

The ADBM had variable success in explaining the structure of 15 different food webs, with the proportion75

of links correctly predicted ranging from 5 % to 65 % (Table 1). The ADBM correctly predicted 65% of the76

presence of links in the Coachella valley food web. The poorest prediction of presence of links was for the77

Grasslands food web with only 7% of the presence of links correctly predicted. When trophic interactions78
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were more strongly dependent on size, the model correctly predicted a greater proportion of links. Indeed,79

constructing a food web based only on body size (i.e. ignoring taxonomy) resulted in almost twice the number80

of correctly predicted links, i.e. 83%, in contrast to taxonomy (Woodward et al. 2010).81

Although Petchey et al. (2008) demonstrated that foraging theory could predict food web structure,82

their implementation of the ADBM included at least two limitations. The parameterisation method provided83

estimates of the parameters with no uncertainty: a single set of parameter values that maximised the84

explanatory power was selected. In other words, the parameterisation method led to point estimates of85

the parameters that predicted a single food web structure (because the ADBM is purely deterministic).86

Moreover, the best predicted food web was not exactly the same as the observed one. In a sense then, the87

parameterisation method used in Petchey et al. (2008) was akin to estimating the intercept and slope of a88

regression line, but not any uncertainty in those parameters. Given that uncertainty is an essential dimension89

in ecological models, and in predictions about the future state of ecological communities (Petchey et al. 2015;90

Carpenter 2016), this is an important limitation.91

The second limitation was in the estimation of the connectance of the food web, which is the number92

of realised trophic links divided by the total number of possible trophic links. Although the ADBM can in93

principle predict connectance, Petchey et al. (2008) prevented the model from doing so. They set the value94

of relevant parameters in the model to instead ensure the predicted connectance was equal to the observed95

connectance. The ADBM was not therefore used to simultaneously predict complexity and structure of food96

webs. Moreover, fixing predicted connectance to be equal to observed connectance does not account for the97

possibility that the observed connectance was imperfectly measured. Indeed, if low effort was used to observe98

the trophic links in a community, the observed connectance are likely to be lower than if all trophic links99

were observed. Connectance is an important driver for the stability and dynamics of a food web (May 1972)100

and most of the structural properties of food webs co-vary with connectance (Dunne, Williams, and Martinez101

2002; Poisot and Gravel 2014), thus this limitation must be addressed.102

In this article we report on how we address these limitations. We removed the first limitation by103

applying approximate Bayesian computation (ABC). The approach originated in population genetics and104

has been used in a wide range of research fields: systems biology (Toni et al. 2009), ecology (Jabot and105

Chave 2009), epidemiology (Shriner et al. 2006) and ecological networks (Ibanez 2012; Poisot and Stouffer106

2016). One of the advantages of ABC is that it does not require a likelihood function. As ADBM is a107

complex deterministic model where the likelihood can not be explicitly evaluated, ABC is a good choice of108

parameterisation.109

We addressed the second limitation by allowing estimation of number of links as well as arrangement of110

links. To accomplish this, we measured model fit by using the true skill statistic, which takes into account111

both the number of presences and absences of links correctly predicted. High values of the true skill statistic112
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occurs when both the predicted arrangement of links and the predicted number of links are close to the113

observed arrangement and number of links, respectively.114
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Table 1: Information about the food webs predicted using the ADBM.

Common food web
name

Predation matrix
source

Body size source General ecosystem Number of species Connectance Body size range
(approximate)

Proportion of
presence of links
correct

Type of
interactions

Benguela Pelagic (Yodzis 1998) (Yodzis 1998) Marine 29 0.23 10−8 to 106 0.57 Predation
Broadstone Stream
(taxonomic aggregation)

(Woodward and
Hildrew 2001;
Woodward et al.
2005)

(Brose et al. 2005) Freshwater 29 0.19 10−6 to 10−2 0.62 Predation

Broom Memmott et al.
2000)

(Brose et al. 2005) Terrestrial 68 0.02 10−6 to 100 0.08 Herbivory,
Parasitism,
Predation,
Pathogenic

Capinteria (Lafferty et al.
2006)

(Reide, unpublished) Marine (Salt Marsh) 72 0.05 10−14 to 105 0.16 Predator-parasite,
Parasite-parasite

Caricaie Lakes (Cattin et al.
2004)

(Brose et al. 2005) Freshwater 158 0.05 10−5 to 105 0.13 Predation,
Parasitism

Coachella Valley (Polis 1991) (Reide, unpublished) Terrestrial (Desert) 26 0.34 10−8 to 104 0.65 Herbivory,
Predation

EcoWEB41 (Cohen 1989) (Jonsson 1998) Marine 19 0.14 10−11 to 106 0.47 Predation
EcoWEB60 (Cohen 1989) (Jonsson 1998) Terrestrial 33 0.06 10−5 to 106 0.24 Predation,

Parasitism,
Herbivory

Grasslands (Dawah et al.
1995)

(Brose et al. 2005) Terrestrial 65 0.03 10−3 to 10−2 0.07 Herbivory,
Parasitism

Mill Stream (Ledger, Edwards,
Woodward
unpublished)

(Brose et al. 2005) Freshwater 80 0.06 10−6 to 10−1 0.37 Herbivory,
Predation

Sierra Lakes (Harper-Smith et
al. 2005)

(Brose et al. 2005) Freshwater 33 0.16 10−4 to 100 0.60 Predation

Skipwith Pond (Warren 1989) (Brose et al. 2005) Freshwater 71 0.07 10−4 to 10−1 0.14 Predation
Small Reef (Opitz 1996) (Reide unpublished) Marine (Reef) 50 0.22 10−11 to 105 0.41 Predation,

Herbivory
Tuesday Lake (Jonsson et al.

2005)
(Brose et al. 2005) Freshwater 73 0.08 10−11 to 103 0.46 Predation

Ythan (Emmerson and
Raffaelli 2004)

(Emmerson and Raffaelli 2004) Marine (Estuarine) 88 0.05 10−12 to 100 0.22 Predation

Broadstone Stream (size
aggregation)

(Woodward et al.
2010)

(Woodward et al. 2010) Freshwater 29 0.24 10−7 to 102 0.83 Predation
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2 Materials and Methods115

In the upcoming sections, we present a detailed account of the application of ABC to parameterise116

the ADBM, the description of the ADBM and of the food web data we used. We explain the117

rejection Monte Carlo ABC method in the main text, and Markov chain Monte Carlo ABC and118

sequential Monte Carlo ABC methods in the Supplementary information (hereafter SI) Section119

S1 (hereafter SI-S1). We computed an accuracy measure known as true skill statistic to assess120

the ADBM’s predictions and calculated different food web properties to compare these predictions121

across food webs.122

2.1 Allometric Diet Breadth Model (ADBM)123

The allometric diet breadth model (ADBM) is based on optimal foraging theory, specifically the124

contingency foraging model (MacArthur and Pianka 1966). The ADBM predicts the set of prey125

species a consumer should feed upon to maximise its rate of energy intake (Petchey et al. 2008)126

(hereafter referred as PBRW study). The species in this set are assumed to have the trophic link127

with the predator. To make these predictions, the model assumes that a foraging predator is in128

one of two exclusive states: searching for prey or handling a prey item. The model requires four129

variables for each potential predator-prey interaction:130

• The energy content of the resources Ei (only prey i specific) (energy).131

• The handling times Hij , which is the time not spent searching caused by consuming a prey132

item (prey i and predator j specific) (time).133

• The space clearance rates Aij (also known as the attack rate; prey i and predator j specific)134

(area or volume per time).135

• The prey densities Ni (only prey i specific) (individuals per area or volume).136

The term “Allometric” in the ADBM refers to the use of four allometric relationships, one137

for each of these four variables, including the body size of the predator Mj and prey Mi (Table 2).138

With these four allometric relationships, and the body size of each of the species in a community,139

we can predict the four variables (energy, handling time, space clearance rate, and prey density),140

and then use the contingency foraging model to predict diets.141
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Table 2: Traits with their allometric function and corresponding parameters in ADBM.

Traits (Unit) Allometric function Parameters Comments
Energy (Joules) Ei = eMi e Arbitrary. No effect on structure
Abundance (individual/m2 or individual/m3) Ni = nMni

i n Connectance affected by the product nah∗

ni Assumed value of −3
4 based on empirical data

Space Clearance Rate (m2/s or m3/s) Aij = aMai
i M

aj

j a Connectance affected by the product nah∗;
Estimated using ABC

ai Estimated using ABC
aj Estimated using ABC

Handling time (s) Hij = h

b− Mi
Mj

if Mi

Mj
< b h Connectance affected by the product nah∗

Hij =∞ if Mi

Mj
≥ b b Estimated using ABC

Each of the four allometric equations has parameters: a constant and/or at least one exponent142

(Table 2). It is the value of some of these parameters that can be estimated to have the predicted143

food web structure match (as closely as possible) the structure of an observed food web. This is144

akin to choosing values of slope and intercept of a linear regression that maximises the fit of the145

regression line to the observed data.146

Because some of the allometric constants and exponents are known, and because others are147

redundant with respect to each other (see Table 2 for details), we estimate only the following148

parameters: a, ai, aj and b in the model (Table 2).149

2.2 Observed food web data150

The observed food webs that we fit the ADBM to belong to marine, freshwater and terrestrial151

ecosystems (Table 1). The observed connectance of these food webs is from 0.02 to 0.34 and there are152

19 to 158 species. The food webs contain primary producers, herbivores, carnivores, parasites, and153

parasitoids. They also contain various types of feeding interactions, including predation, herbivory,154

bacterivory, parasitism, pathogenic, and parasitoid.155

The goodness of fit of the ADBM’s predictions depends on the types of interactions in the156

food webs in the PBRW study. Because some of the interactions are more size structured than other157

interactions. Predacious and aquatic herbivore interactions were predicted better than parasitoid158

and herbivory ones (PBRW study). Moreover, the ADBM’s predictions improve when the species159

(taxonomic) are replaced by size classes (ignoring taxonomy) (Woodward et al. 2010).160

All food webs with one exception (Broadstone Stream) was available only at the species level,161

i.e. with information about interactions between species and the body size of species. We use the162
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term “species” in this study to indicate a “node” in a food web in which nodes are connected by163

trophic interactions, and nodes are a collection of individuals that share links. These species/nodes164

are not always taxonomic species, but can be broader taxonomic ranks.165

In contrast, the Broadstone Stream food web data contained interactions between individuals166

and the individual body sizes. Thus, the Broadstone Stream food web can be constructed by167

aggregating by either taxonomy or size (Woodward et al. 2010). The ADBM can predict the food168

web irrespective of the aggregation method, and aggregation by size, ignoring taxonomy led to169

higher explanatory power i.e. the match between observed and predicted food web structure was170

higher. With aggregation by size, 83% of the links were correctly predicted than with taxonomic171

aggregation where 40% of links were correctly predicted (Woodward et al. 2010).172

2.3 Parameter estimation: Approximate Bayesian Computation173

We used approximate Bayesian computation (ABC) to identify sets of parameter values that resulted174

in predicted food webs that were close in structure to the observed food web. ABC is an approach175

that does not require a likelihood function. Instead, there is a distance function that measures the176

distance between a model’s prediction and the observed data. The approximation of the likelihood177

depends on the ABC method used, which is further discussed below and SI. The model parameter178

values are sampled from a prior distribution. The accepted parameter values form an approximate179

posterior distribution for the model parameter. We implemented three ABC methods to parameterise180

the ADBM: namely rejection Monte Carlo (Fig. 1), Markov chain Monte Carlo, and sequential181

Monte Carlo. The three methods produced very similar results (SI Figs S33-S34) and we therefore182

only include the simplest (rejection) in this main text.183

2.3.1 Prior distribution184

The prior distributions for ai and aj were chosen to be uniform distributions. The range of185

distribution was from -1.5 to 1.5 and 0 to 3 for ai and aj respectively, informed by the estimates186

in Rall et al. (2012). However, we chose a prior range specific to food webs for the parameter b187

because body size varies greatly among the species in the observed food webs. For example: in188

the Benguela Pelagic food web, the body sizes of species range from the order of 10−8 gm to 105189

gm. Hence, the range of prey-predator ratio was from the order of 10−14 to 1014. To take this into190
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Figure 1: Flowchart of rejection approximate Bayesian computation method implemented to
parameterise the ADBM.
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account, we took the prior of log10(b) from a uniform distribution ranging from −15 to 15. In the191

case of parameter a, we chose the prior of log10(a) to be a uniform distribution. However, the prior192

range varied between food webs. For example, the prior range for Benguela Pelagic was chosen to be193

-12 to 10. The method for choosing the specific range of the prior distribution of the a parameter is194

detailed in SI-S4.195

2.3.2 Comparison of observed and predicted196

The difference between the model’s prediction and the observed data (e.g. the sum of squared197

residuals is such a distance in linear regression) is quantified by a distance measure. The distance is198

lower when there is a closer match between the model’s prediction and the observation. A perfect199

match would result in zero distance.200

The magnitude of the distance is used for the acceptance or rejection of a set of parameter201

values. An accepted set of parameter values contributes to the posterior distribution, rejected ones202

do not. This makes the distance measure one of the important features of ABC. A threshold distance203

is chosen, and if the distance for a particular set of parameter values is less than the threshold, then204

that set of parameter values contributes to the posterior distribution. When the distance is greater205

than the threshold, the parameter values do not contribute to the posterior. Hence, the magnitude206

of the distance threshold determines the proportion of a model’s parameters that are accepted. A207

higher threshold causes a high proportion of acceptances but less accuracy with the acceptance208

of some parameter sets that result in predictions quite unlike the observed data. Below, we first209

describe and justify our choice of distance measure, and then our choice of threshold.210

In the PBRW study the measure of distance was equivalent to 1− a/(a+ c), where a is the211

number of observed links that were predicted (the number of true positives) and c is the number of212

observed links that were not predicted (the number of false negatives). A distance of 0 indicates213

that all observed links were correctly predicted. One way for the ADBM to achieve this is to predict214

that every species has a trophic link with every other species including itself – a fully connected215

food web with connectance of 1. The PBRW study prevented this by constraining the number of216

predicted links to be equal to the number of observed links, i.e. the model connectance was fixed217

to be the same as the observed connectance. In this study, we relaxed this constraint, with the218
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number of links as well as the arrangement of links being estimated. The first step was to choose an219

appropriate distance measure.220

The distance measure used in this study is 1 minus the true skill statistic: distance = 1−TSS.221

This distance ranges from 0 to 2.222

TSS is defined as:223

TSS = ad− bc
(a+ c)(b+ d)

where a is the number of observed links that are predicted by the model (true positives), d is the224

number of observed absences of links that are correctly predicted (true negatives), b is the number225

of false positives, and c is the number of false negatives.226

The TSS ranges from −1 to 1, where +1 indicates a perfect prediction. A TSS value of zero227

or less indicates a performance no better than random.228

The inclusion of true and false negatives in the distance measure means that the best theoreti-229

cally possible prediction (smallest distance) is a unique prediction, and specifically the one in which230

the predicted presence and absence of links matches exactly with the observed presence and absence231

of links.232

Food web dynamics and stability are strongly dependent on connectance (May 1972), we233

therefore set the distance threshold (for acceptance) such that the model had a reasonable chance of234

predicting the observed value of connectance.235

To do this, we examined how the predicted connectance varied with the distance threshold.236

An example of this relationship is given in Fig. 2 for the Benguela Pelagic food web. We chose237

the minimum threshold value that gave a range of predicted connectance containing the observed238

connectance.239

Furthermore, it is useful to note that in Fig. 2 there are no connectance values below a distance240

threshold value of less than 0.5 because for this particular food web there were no sets of parameter241

values that achieved a better model fit than is indicated by 1− TSS = 0.5. I.e. it is impossible for242

the ADBM to make better predictions than this. One reason for this is that the ADBM, when body243
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size is the only trait, can only predict contiguous diets in trait space, whereas the observed data244

contains gaps in the diet.245

Figure 2: The prediction interval of the predicted connectance increases with increasing distance
threshold for the Benguela Pelagic food web. The green line and black line represent the observed
connectance and mean of predicted connectance respectively.

2.3.3 The Rejection ABC method246

In the rejection ABC method, a set of parameter values are sampled from the prior distributions.247

This set of parameter values is either accepted, and thereby added to the posterior distribution of the248

parameter values, or it is rejected (based on if the distance 1 - TSS is less than or greater than the249

threshold distance, as mentioned above). This process is repeated until there are enough acceptances250

to give stable (approximate) posterior distributions. In addition, we used a kernel function that251

assigns weight to each set of parameter values, where the weight is inversely proportional to the252

distance (1 - TSS).253

In the upcoming section, we further detail the rejection ABC method.254

Properties:255

• A prior distribution π(θ): π is the uniform distribution for parameters θ = (a, ai, aj , b)256

• A model prediction model(θ): ADBM(θ). This is a predicted food web, xi, given by a257

particular set of parameter values θi. Hence, xi = ADBM(θi)258

• A summary statistic s(x): x is the predation matrix predicted by the ADBM.259

13



A preprint - May 25, 2021

•
A kernel function K(u) : epanechnikov K(u) = 3

4(1− u

tol
) if u ≤ tol

= 0 otherwise
260

where tol is the distance threshold261

• A distance function d(xi, y): d(xi, y) = 1− TSS(xi, y)262

• An observed food web y, in the form of a predation matrix containing zeros and ones.263

Sampling:264

for i = 1 . . . n = 1000265

• Draw a set of parameter values θi from the prior distribution π(θ).266

• Compute the model result xi = model(θi)267

• Compute s(xi) and d(s(xi), s(y))268

• Accept or reject the parameter set probabilistically:269

– Assign a probability pi to θi as per the kernel K; p = K(d), where d is the distance270

evaluated in the previous step.271

– Compute α ∼ U(0, 1)272

– If pi ≤ α, then accept θi and i = i+ 1273

Output:274

An approximate joint posterior distribution using the accepted θ1, . . . , θn.275

2.4 Assessment of model fit276

Accuracy is how close the model prediction is to the observation. The ADBM’s prediction is a277

predation matrix that consists of the presence and absence of links thus comparing how close the278

prediction is to the observation is not straightforward as comparing two numerical values. We279

defined the accuracy of the ADBM using true skill statistics to take into account the true and false280

predictions of both the presence and absence of links, which is defined above.281

We examined how closely structural properties of the predicted food web matched those of282

the observed food webs. We evaluated properties such as proportion of basal species, proportion of283
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intermediate species, proportion of top species, proportion of herbivores, mean omnivory, clustering284

coefficient, standard deviation of generality, standard deviation of vulnerability, diet similarity, mean285

path length and nestedness. We did not compute mean trophic level and maximum trophic level286

because their computation did not converge in the R cheddar package (Hudson et al. 2013) for all287

the food webs.288

We investigated the performance of the ADBM parameterised with the ABC by computing289

standardised error of the food web properties, where the standardised error is the absolute raw error290

(the difference between observed and predicted value) divided by the maximum absolute raw error291

for that property. We did not calculate the standardised error for mean omnivory and mean path292

length because it had some NA values and infinite values for all the food webs respectively.293

3 Results294

As an example of the model outcomes, we first present the results for the Benguela food web295

(e.g. predicted food web structure, variation in predicted food web structure, and posterior parameter296

distributions). We chose this food web as it was well explained using the method of Petchey et297

al (2008) (hereafter referred as PBRW study). The results of the other food webs are included in298

the SI Figs S1-S32. We then compare model outcomes across all empirical food webs between the299

PBRW study and our current work. We compare the true skill statistic of the two approaches and300

compare some food web properties, such as proportions of basal, intermediate, and top species.301

The true skill statistic (TSS) of the predicted Benguela Pelagic food web varied between 0.4302

and 0.52. This variation in the TSS is represented in terms of predation matrices displayed in Fig.303

3(a), which overlays 1000 independent predation matrices created from the posterior parameter304

distributions. In all the 1000 independent predation matrices, the predicted links are mostly present305

in the upper triangular portion of the matrix where most of the observed links are also present.306

Links in the upper right triangle of the predation matrix are for predators feeding on prey smaller307

than themselves.308

In the 1000 predicted predation matrices, there predators are sometimes smaller than their309

predicted prey, the links in the lower left triangle of the predation matrix. This is also portrayed310

in the marginal distribution of log10(b) in Fig. 4(d), as it includes values greater than b = 2311
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(log10(b) = 0.3). This is relevant as values of b = 2 make the most profitable prey item equal in size312

to the predator size. Lower values of b make the most profitable prey item smaller than the size of313

the predator.314

There were around 250 potential links in the lower left triangle of the predation matrix that315

were never predicted in any of the 1000 predicted predation matrix (Fig. 3(b)). This strongly316

suggests that the predator-prey size ratio of these links is so small (i.e. very large prey, very small317

predator) that the links cannot occur, given that the preponderance of observed links are predators318

consuming prey smaller than themselves.319

The marginal posterior of parameter b in the Benguela Pelagic food web was more constrained320

than the marginal posterior distribution of the other three allometric parameters (Fig. 4) as the321

posterior range was the narrowest.322

The mean true skill statistic using the ABC approach was higher than the point estimates323

from the PBRW study (Fig. 5(a)) across all food webs except one. Our present approach led to324

estimates of connectance greater than the values of connectance of the PBRW study, which were325

fixed to equal the observed values of connectance.326

We did not find a consistent relationship between the parameters estimated using the current327

approach and those estimated in the PBRW study (Fig. 5(c-f)), except for in the case of parameter328

b. The mean using the ABC approach was always higher than the estimates from the PBRW study329

(Fig. 5(f)) and the 95% credible interval of the posterior of b includes the estimate from the PBRW330

study.331

The marginal posterior of parameter b was more constrained than the other three allometric332

parameters, i.e. the posterior range was the narrowest (SI Figs S17-S32). In most of the food webs,333

the parameter b had a unimodal distribution (SI Figs S17-S32). EcoWEB60 and Grasslands had a334

bimodal distribution and Sierra Lakes had three modes.335

The structural food web properties proportion of intermediate species, mean omnivory, cluster-336

ing coefficient, sd of generality, sd of vulnerability, diet similarity and nestedness estimated from337

the current ABC approach were generally higher than the PBRW study (SI Fig. S36(b, e-j)). The338

properties proportion of basal species, proportion of top species, and proportion of herbivores were339

generally lower (SI Fig. S36(a, c, d)).340
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Figure 3: (a) Observed and predicted predation matrices for Benguela Pelagic food web. Body
size increases from left to right and top to bottom along the predation matrix. Black circles show
where there is an observed trophic link. The intensity of the pink circles shows the proportion of
1000 predicted food webs that had a trophic link between the corresponding species. This type of
overlay is shown for two examples predicted in panel (c). (b) The histogram of the number of times
a link was predicted across 1000 independently predicted food webs. There were 841 species pairs
in this food web. About 150 of these were predicted to have a trophic link in all 1000 predicted
predation matrices. The red bar shows the number of pairs of species for which a trophic link was
never predicted. (c) Two predicted predation matrices for Benguela Pelagic food web corresponding
to the minimum and the maximum value of estimated b, and their sum.
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Figure 4: Marginal prior and marginal posterior distribution of the ADBM parameters for the
Benguela Pelagic food web estimated using rejection ABC.

The real values of the proportion of intermediate species, mean omnivory, clustering coefficient,341

sd of generality, sd of vulnerability and nestedness, were mostly within the lower range of the342

predicted 95% interval. The proportion of basal species, proportion of top species, proportion of343

herbivores were underestimated in comparison to the real values for most of the food webs.344

The ADBM, when parameterised with the ABC, generally better predicted the structural food345

web properties, such as proportion of basal species when the true skill statistics was higher (Fig.346

6(a)) across the 16 food webs. However, the ABC parameterised ADBM less accurately predicted347

food web properties on average than in the PBRW study (Fig. 6(b)).348

Within each food web, we found various relationships between the standardised error and true349

skill statistic (SI Figs S37 and S38). E.g. For Skipwith Pond food web (SI Fig. S37(l)), high values350
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Figure 5: TSS (a), connectance (b) and ADBM parameters (c, d, e, f) computed using the ABC
method compared with the corresponding point estimates from Petchey et al (2008). The red lines
are the 95% credible/prediction intervals and the black filled circles represent the corresponding
means. The grey region represents the intervals of the prior distributions for ai and aj . The grey
lines represent the prior range of the parameters a and b in the log10 scale. The prior range for the
parameter b extends above and below the y-axis limits for some food webs and so the values of the
limits are shown on the plot. The dashed black lines are the 1:1 relationships for reference.
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Figure 6: (a) The mean standardised error of the food web properties predicted from the ADBM
parameterised using rejection ABC plotted against the mean true skill statistic for each food webs.
The vertical and horizontal bars correspond to 95% prediction intervals of the standardised error and
true skill statistic respectively. Solid blue line is linear regression through the means (t = -2.44, df =
14, P = 0.028). (b) The mean standardised error computed from the ABC method plotted against
the mean standardised error from Petchey et al. (2008). The dashed line is the 1:1 relationship for
reference.

of TSS were associated with high error, whereas the opposite was true for other food webs, such as351

Broadstone Stream (SI Fig. S37(b, p)). The other food webs showed more complex relationships.352

4 Discussion353

The ABC parameterisation method employed here improves on the basic parameterisation methods354

applied in Petchey et al. (2008) (PBRW). The ABC method provides uncertainty in parameter355

estimates, and thereby a range of predicted food webs (Fig. 5(c-f)). It also allowed us to estimate356

parameters that were fixed by the PBRW study, and thereby also predicts connectance (Fig.357

5(b)). Including uncertainty and predicting connectance are significant advances in ADBM. They358

allow predictions in changes of food web structure caused by environmental changes that include359

uncertainty in the predicted food web structure and including uncertainty in such predictions is360

critical (Petchey et al. 2015; Cressie et al. 2009; Lindegren et al. 2010). A future development361

will be to partition the contribution of different sources of uncertainty such as incomplete sampling362

and model deficiencies to make improvements in the model with the aim of reducing uncertainty.363
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Future research should investigate the functional and dynamical significance of the uncertainty in364

the predicted food web structure. Below we discuss some of the results of our study, and expand on365

these opportunities and priorities for future research.366

In all cases, the predicted connectance was greater than the observed connectance (Fig. 5(b)).367

Why did this occur? Firstly, it is important to recognise that the ADBM (when using only body size368

as a trait) can only predict diets that are contiguous with respect to the size of prey. I.e. it cannot369

predict that a predator will consume prey of size 1 and 3, and not prey of size 2. Such patterns370

can however be predicted if a trait other than size and which is not perfectly correlated with size,371

influences foraging parameters (Petchey et al. 2008). Secondly, it is important to note that the372

observed diets were not contiguous when prey are ordered by their size. The estimation process373

will result in a greater number of predicted links than observed given these features, and the model374

attempts to maximise the coincidence of predicted and observed link presence and absence (i.e. the375

true skill statistic).376

These findings raise the question as to whether the model or the observed data is incorrect.377

We expect that the observed data does not contain some links that would occur in reality. This378

can be possible due to low sampling effort causing some links that do occur to be not observed.379

In this case, the model may correctly predict a link that was not yet observed as the data was380

incorrect. More intensive and more complete sampling of links in food webs has been recognised as381

important, due to the potential that a low sampling effort will influence the perceived food web382

structure (Martinez et al. 1999).383

We expect there are cases where the model incorrectly predicts a feeding link despite no384

possibility that such a link would occur in reality. This may be the case when a trait other than,385

or in addition to, prey size is influential. For example, a particular prey species may have a386

defensive trait that means it takes longer to consume it than an undefended prey of the same size.387

Incorporating traits other than body size in the ADBM would allow for discontiguous diets along388

the size axis. Furthermore, the ADBM’s current form is a biology-only model; it does not include389

an observation process, although this could be included. The model would then be able to predict390

the absence of a link due to incomplete observations.391
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It would be interesting to take a very well sampled food web, and test if the ABC parameter392

estimation applied to a subset of the observed links in a simulated poorly sampled food web predicts393

the connectance of a well sampled food web. Such an outcome would indicate the potential to394

compensate for under-sampling with an appropriate food web model and estimation procedure.395

The ABC parameterisation resulted in a lower prediction accuracy of structural features of the396

food webs (Fig. 6 (b)) due to the overestimation of connectance. This was confirmed by principal397

component analysis of variation in the food web structural properties which revealed a first PC axis398

representing on average 62% of the overall variance, and this first axis was highly correlated with399

connectance, with an average Spearman correlation of 0.87.400

Our parameterisation approach was to maximise the true skill statistic (the coincidence of401

predicted and observed link presences, and the coincidence of predicted and observed link absences).402

The TSS assigns equal importance to the collection of presence and absence of observed links with403

the weight of an observed single presence or absence link being dependent on the connectance of the404

food web. If the connectance is less than 0.5, the TSS assigns more weight to a presence of link405

than to an absence of a link and vice versa.406

Because the connectance of the observed food webs is less than 0.5 (Table 1), the TSS assigned407

more weight to a single presence of link than to a single absence of link. This result is as expected,408

as the chance that a recorded link is a correct is likely to be greater than the chance that a recorded409

absence is correct. This is because the observation of a single feeding interaction is sufficient to410

record the presence of a link. However, this is not true for the absence of links: one observation of a411

predator not consuming a prey does not mean that it never do so. Nevertheless, if we observe no412

interaction between two species during the sampling period, we conclude that there is an absence of413

link.414

To improve our estimation procedure we could quantify the uncertainty in the recorded absence415

of links and include this uncertainty in the parameterisation method. Weight/importance could416

be assigned to true positives, true negatives, false positives and false negatives calculated from417

empirical studies which may be specific to that food web. Alternatively, an observation process418

could be added to the model, such that the biological part of the model can predict that a feeding419

link is possible, but then the observation process in the model leads to that link not being predicted.420
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In the PBRW study, the parameter b played a major role in maintaining the maximum421

predictive power of the ADBM. Indeed, they found that estimating b only, and not estimating either422

ai or aj slightly decreased model performance, and that estimating only b and aj did not decrease423

model performance relative to when all three parameters were estimated.424

We found that the posterior distribution of the parameter b was the most constrained of all425

the parameters (Fig. 4). Parameter b defines the range of prey body size which has a finite handling426

time, and the prey size with the highest energetic profitability. As the parameter b relates to the427

prey-predator body size ratio, the constrained posterior of b (Fig. 4(d)) indicates the importance of428

the ratio of body size of prey and predator in determining the food web structure with the ADBM.429

The marginal posterior of parameter a was right-skewed (Fig. 4(c)). This may be because430

the ABC parameterisation overestimates the connectance, which means that lower values of a are431

preferred over higher values of a (a lower value of a leads to a lower space clearance/attack rate,432

and a lower space clearance rate results in a higher connectance).433

Information about who eats who can be collected from multiple sources, such as gut contents434

of organisms, stable isotope composition of tissues, and experimentation (Peralta-Maraver, López-435

Rodríguez, and de Figueroa 2017; Layman et al. 2007; Warren 1989). Moreover, experimentation436

provides independent estimates of allometric foraging parameters, such as b, ai, and aj (Rall et al.437

2012). Diverse data could be used to parameterise the ADBM’s predictions to test how uncertainty438

in the different datasets influences the ADBM’s predictions using ABC. Appropriate summary439

statistics in the ABC method could be used to address such challenges. We could use, as an example,440

the approximate trophic position inferred from stable isotope ratio data from an individual tissue441

and gut content data of a predator simultaneously to parameterise the ADBM. The trophic position442

and the gut content information would be the summary statistics in this example. A further question443

that could be addressed in future studies is how the quantity of data affects the ADBM’s predictions.444

The outcome of such a study could help food web researchers decide on how much data from a445

specific source is needed to predict the food web structure, and help further optimise the deployment446

of limited sampling resources.447

When only partial food web data is available (Patonai and Jordán 2017), the summary statistics448

in ABC can be used to infer these food web structures from the ADBM. It would be possible to use449
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gut content data of only some of the species in a food web to parameterise the ADBM and predict the450

food web structure. Summary statistics opens up a broad spectrum of possibilities in parameterising451

food web models. There are multiple empirical and theoretical studies on a range of different food452

web properties of food webs across different ecosystems (Williams and Martinez 2000; Goldwasser453

and Roughgarden 1993; Martinez 1991). These can conceivably be used in parameterising food web454

models using ABC to constrain the model predictions.455

5 Acknowledgements456

This work was supported by the University Research Priority Program Global Change and Bio-457

diversity (Grant number: U-704-04-11) of the University of Zurich. We thank the Petchey group458

members for their valuable suggestions in the manuscript. We thank Debra Zuppinger-Dingley for459

proofreading the manuscript.460

6 Author contributions461

Anubhav Gupta: Conceptualization (equal), formal analysis (lead), methodology (lead), software462

(lead), writing – original draft preparation (lead), writing - review and editing (equal). Owen L.463

Petchey: Conceptualization (equal), funding acquisition (lead), methodology (supporting), resources464

(lead), writing – original draft preparation (supporting), writing - review and editing (equal).465

7 Data Accessibility Statement466

All the data used in this study was collected in other studies. We list those studies in Table 1. Some467

of those studies provide open access to their data and others do not. We have permission to use the468

data but do not have permission to distribute it.469

References470

Allesina, Stefano, David Alonso, and Mercedes Pascual. 2008. “A General Model for Food Web471

Structure.” Science 320 (5876). American Association for the Advancement of Science: 658–61.472

https://doi.org/10.1126/science.1156269.473

24

https://doi.org/10.1126/science.1156269


A preprint - May 25, 2021

Baker, Ronald, Amanda Buckland, and Marcus Sheaves. 2014. “Fish Gut Content Analysis:474

Robust Measures of Diet Composition.” Fish and Fisheries 15 (1): 170–77. https://doi.org/10.475

1111/faf.12026.476

Beckerman, A. P., O. L. Petchey, and P. H. Warren. 2006. “Foraging Biology Predicts Food477

Web Complexity.” Proceedings of the National Academy of Sciences of the United States of America478

103: 13745–9.479

Bergamino, Leandro, Diego Lercari, and Omar Defeo. 2011. “Food Web Structure of Sandy480

Beaches: Temporal and Spatial Variation Using Stable Isotope Analysis.” Estuarine, Coastal and481

Shelf Science 91 (4): 536–43. https://doi.org/10.1016/j.ecss.2010.12.007.482

Brose, Ulrich, Lara Cushing, Eric L. Berlow, Tomas Jonsson, Carolin Banasek-Richter, Louis-483

Felix Bersier, Julia L. Blanchard, et al. 2005. “Body Sizes of Consumers and Their Resources.”484

Ecology 86 (9): 2545–5. https://doi.org/10.1890/05-0379.485

Carpenter, Stephen R. 2016. “Ecological Futures: Building an Ecology486

of the Long Now.” Ecology, October, 2069–83. https://doi.org/10.1890/0012-487

9658(2002)083[2069:EFBAEO]2.0.CO;2@10.1002/(ISSN)1939-9170.MacArthurAward.488

Cattin, Marie-France, Louis-Félix Bersier, Carolin Banašek-Richter, Richard Baltensperger,489

and Jean-Pierre Gabriel. 2004. “Phylogenetic Constraints and Adaptation Explain Food-Web490

Structure.” Nature 427 (6977, 6977). Nature Publishing Group: 835–39. https://doi.org/10.491

1038/nature02327.492

Cohen, Joel E. 1989. “Just Proportions in Food Webs.” Nature 341 (6238, 6238). Nature493

Publishing Group: 104–5. https://doi.org/10.1038/341104b0.494

Cohen, Joel E., C. M. Newman, and John Hyslop Steele. 1985. “A Stochastic Theory of495

Community Food Webs I. Models and Aggregated Data.” Proceedings of the Royal Society of London.496

Series B. Biological Sciences 224 (1237). Royal Society: 421–48. https://doi.org/10.1098/rspb.497

1985.0042.498

Crawford, Kerry, Robbie A. Mcdonald, and Stuart Bearhop. 2008. “Applications of Stable499

Isotope Techniques to the Ecology of Mammals.” Mammal Review 38 (1): 87–107. https://doi.500

org/10.1111/j.1365-2907.2008.00120.x.501

25

https://doi.org/10.1111/faf.12026
https://doi.org/10.1111/faf.12026
https://doi.org/10.1111/faf.12026
https://doi.org/10.1016/j.ecss.2010.12.007
https://doi.org/10.1890/05-0379
https://doi.org/10.1890/0012-9658(2002)083%5B2069:EFBAEO%5D2.0.CO;2@10.1002/(ISSN)1939-9170.MacArthurAward
https://doi.org/10.1890/0012-9658(2002)083%5B2069:EFBAEO%5D2.0.CO;2@10.1002/(ISSN)1939-9170.MacArthurAward
https://doi.org/10.1890/0012-9658(2002)083%5B2069:EFBAEO%5D2.0.CO;2@10.1002/(ISSN)1939-9170.MacArthurAward
https://doi.org/10.1038/nature02327
https://doi.org/10.1038/nature02327
https://doi.org/10.1038/nature02327
https://doi.org/10.1038/341104b0
https://doi.org/10.1098/rspb.1985.0042
https://doi.org/10.1098/rspb.1985.0042
https://doi.org/10.1098/rspb.1985.0042
https://doi.org/10.1111/j.1365-2907.2008.00120.x
https://doi.org/10.1111/j.1365-2907.2008.00120.x
https://doi.org/10.1111/j.1365-2907.2008.00120.x


A preprint - May 25, 2021

Cressie, Noel, Catherine A. Calder, James S. Clark, Jay M. Ver Hoef, and Christopher K.502

Wikle. 2009. “Accounting for Uncertainty in Ecological Analysis: The Strengths and Limitations of503

Hierarchical Statistical Modeling.” Ecological Applications 19 (3): 553–70. https://doi.org/10.504

1890/07-0744.1.505

Dawah, Hassan Ali, Bradford A. Hawkins, and Michael F. Claridge. 1995. “Structure of the506

Parasitoid Communities of Grass-Feeding Chalcid Wasps.” The Journal of Animal Ecology 64 (6):507

708. https://doi.org/10.2307/5850.508

Dunne, Jennifer A., Richard J. Williams, and Neo D. Martinez. 2002. “Network Structure509

and Biodiversity Loss in Food Webs: Robustness Increases with Connectance.” Ecology Letters 5510

(4): 558–67.511

Emmerson, Mark C., and Dave Raffaelli. 2004. “Predator–Prey Body Size, Interaction512

Strength and the Stability of a Real Food Web.” Journal of Animal Ecology 73 (3): 399–409.513

https://doi.org/10.1111/j.0021-8790.2004.00818.x.514

Goldwasser, Lloyd, and Jonathan Roughgarden. 1993. “Construction and Analysis of a515

Large Caribbean Food Web: Ecological Archives E074-001.” Ecology 74 (4): 1216–33. https:516

//doi.org/10.2307/1940492.517

Gravel, Dominique, Timothée Poisot, Camille Albouy, Laure Velez, and David Mouillot.518

2013. “Inferring Food Web Structure from Predator-Prey Body Size Relationships.” Edited by519

Robert Freckleton. Methods in Ecology and Evolution 4 (11): 1083–90. https://doi.org/10.1111/520

2041-210X.12103.521

Harper-Smith, Sarah, Eric L. Berlow, Roland A. Knapp, Richard J. Williams, and Neo D.522

Martinez. 2005. “COMMUNICATING ECOLOGY THROUGH FOOD WEBS: VISUALIZING523

AND QUANTIFYING THE EFFECTS OF STOCKING ALPINE LAKES WITH TROUT.” In524

Dynamic Food Webs, 407–23. Elsevier. https://doi.org/10.1016/B978-012088458-2/50038-2.525

Hattab, Tarek, Fabien Leprieur, Frida Ben Rais Lasram, Dominique Gravel, François Le526

Loc’h, and Camille Albouy. 2016. “Forecasting Fine-Scale Changes in the Food-Web Structure527

of Coastal Marine Communities Under Climate Change.” Ecography 39 (12): 1227–37. https:528

//doi.org/10.1111/ecog.01937.529

26

https://doi.org/10.1890/07-0744.1
https://doi.org/10.1890/07-0744.1
https://doi.org/10.1890/07-0744.1
https://doi.org/10.2307/5850
https://doi.org/10.1111/j.0021-8790.2004.00818.x
https://doi.org/10.2307/1940492
https://doi.org/10.2307/1940492
https://doi.org/10.2307/1940492
https://doi.org/10.1111/2041-210X.12103
https://doi.org/10.1111/2041-210X.12103
https://doi.org/10.1111/2041-210X.12103
https://doi.org/10.1016/B978-012088458-2/50038-2
https://doi.org/10.1111/ecog.01937
https://doi.org/10.1111/ecog.01937
https://doi.org/10.1111/ecog.01937


A preprint - May 25, 2021

Hobson, Keith A., John F. Piatt, and Jay Pitocchelli. 1994. “Using Stable Isotopes to530

Determine Seabird Trophic Relationships.” Journal of Animal Ecology 63 (4). [Wiley, British531

Ecological Society]: 786–98. https://doi.org/10.2307/5256.532

Hudson, Lawrence N., Rob Emerson, Gareth B. Jenkins, Katrin Layer, Mark E. Ledger, Doris533

E. Pichler, Murray S. A. Thompson, Eoin J. O’Gorman, Guy Woodward, and Daniel C. Reuman.534

2013. “Cheddar: Analysis and Visualisation of Ecological Communities in R.” Methods in Ecology535

and Evolution 4 (1): 99–104. https://doi.org/10.1111/2041-210X.12005.536

Ibanez, Sébastien. 2012. “Optimizing Size Thresholds in a Plant–Pollinator Interaction537

Web: Towards a Mechanistic Understanding of Ecological Networks.” Oecologia 170 (1): 233–42.538

https://doi.org/10.1007/s00442-012-2290-3.539

Jabot, Franck, and Jérôme Chave. 2009. “Inferring the Parameters of the Neutral Theory of540

Biodiversity Using Phylogenetic Information and Implications for Tropical Forests.” Ecology Letters541

12 (3): 239–48. https://doi.org/10.1111/j.1461-0248.2008.01280.x.542

Jonsson, Tomas. 1998. “Food Webs and the Distribution of Body Sizes.” PhD.543

Jonsson, Tomas, Joel E. Cohen, and Stephen R. Carpenter. 2005. “Food Webs, Body Size,544

and Species Abundance in Ecological Community Description.” In Advances in Ecological Research,545

36:1–84. Elsevier. https://doi.org/10.1016/S0065-2504(05)36001-6.546

Jordán, Ferenc, and Györgyi Osváth. 2009. “The Sensitivity of Food Web Topology to547

Temporal Data Aggregation.” Ecological Modelling 220 (22): 3141–6. https://doi.org/10.1016/548

j.ecolmodel.2009.05.002.549

Knight, Tiffany M., Michael W. McCoy, Jonathan M. Chase, Krista A. McCoy, and Robert550

D. Holt. 2005. “Trophic Cascades Across Ecosystems.” Nature 437 (7060): 880–83. https:551

//doi.org/10.1038/nature03962.552

Krause, Ann E., Kenneth A. Frank, Doran M. Mason, Robert E. Ulanowicz, and William553

W. Taylor. 2003. “Compartments Revealed in Food-Web Structure.” Nature 426 (6964): 282–85.554

https://doi.org/10.1038/nature02115.555

27

https://doi.org/10.2307/5256
https://doi.org/10.1111/2041-210X.12005
https://doi.org/10.1007/s00442-012-2290-3
https://doi.org/10.1111/j.1461-0248.2008.01280.x
https://doi.org/10.1016/S0065-2504(05)36001-6
https://doi.org/10.1016/j.ecolmodel.2009.05.002
https://doi.org/10.1016/j.ecolmodel.2009.05.002
https://doi.org/10.1016/j.ecolmodel.2009.05.002
https://doi.org/10.1038/nature03962
https://doi.org/10.1038/nature03962
https://doi.org/10.1038/nature03962
https://doi.org/10.1038/nature02115


A preprint - May 25, 2021

Lafferty, K. D., A. P. Dobson, and A. M. Kuris. 2006. “Parasites Dominate Food Web Links.”556

Proceedings of the National Academy of Sciences 103 (30): 11211–6. https://doi.org/10.1073/557

pnas.0604755103.558

Layman, Craig A., D. Albrey Arrington, Carmen G. Montaña, and David M. Post. 2007. “Can559

Stable Isotope Ratios Provide for Community-Wide Measures of Trophic Structure?” Ecology 88560

(1): 42–48. https://doi.org/10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2.561

Lindegren, Martin, Christian Möllmann, Anders Nielsen, Keith Brander, Brian R. MacKenzie,562

and Nils Chr. Stenseth. 2010. “Ecological Forecasting Under Climate Change: The Case of563

Baltic Cod.” Proceedings of the Royal Society B: Biological Sciences 277 (1691): 2121–30. https:564

//doi.org/10.1098/rspb.2010.0353.565

Lurgi, Miguel, Bernat C. López, and José M. Montoya. 2012. “Climate Change Impacts on Body566

Size and Food Web Structure on Mountain Ecosystems.” Philosophical Transactions of the Royal567

Society B: Biological Sciences 367 (1605): 3050–7. https://doi.org/10.1098/rstb.2012.0239.568

MacArthur, Robert H., and Eric R. Pianka. 1966. “On Optimal Use of a Patchy Environment.”569

The American Naturalist 100 (916): 603–9.570

Martinez, Neo D. 1991. “Artifacts or Attributes? Effects of Resolution on the Little Rock571

Lake Food Web.” Ecological Monographs 61 (4): 367–92. https://doi.org/10.2307/2937047.572

Martinez, Neo D., Bradford A. Hawkins, Hassan Ali Dawah, and Brian P. Feifarek. 1999.573

“Effects of Sampling Effort on Characterization of Food-Web Structure.” Ecology 80 (3): 1044–55.574

https://doi.org/10.1890/0012-9658(1999)080[1044:EOSEOC]2.0.CO;2.575

May, Robert M. 1972. “Will a Large Complex System Be Stable?” Nature 238 (5364): 413.576

https://doi.org/10.1038/238413a0.577

Memmott, J., N.D. Martinez, and J.E. Cohen. 2000. “Predators, Parasitoids and Pathogens:578

Species Richness, Trophic Generality and Body Sizes in a Natural Food Web.” Journal of Animal579

Ecology 69 (1): 1–15. https://doi.org/10.1046/j.1365-2656.2000.00367.x.580

Morris, Rebecca J., Frazer H. Sinclair, and Chris J. Burwell. 2015. “Food Web Structure581

Changes with Elevation but Not Rainforest Stratum.” Ecography 38 (8): 792–802. https://doi.582

org/10.1111/ecog.01078.583

28

https://doi.org/10.1073/pnas.0604755103
https://doi.org/10.1073/pnas.0604755103
https://doi.org/10.1073/pnas.0604755103
https://doi.org/10.1890/0012-9658(2007)88%5B42:CSIRPF%5D2.0.CO;2
https://doi.org/10.1098/rspb.2010.0353
https://doi.org/10.1098/rspb.2010.0353
https://doi.org/10.1098/rspb.2010.0353
https://doi.org/10.1098/rstb.2012.0239
https://doi.org/10.2307/2937047
https://doi.org/10.1890/0012-9658(1999)080%5B1044:EOSEOC%5D2.0.CO;2
https://doi.org/10.1038/238413a0
https://doi.org/10.1046/j.1365-2656.2000.00367.x
https://doi.org/10.1111/ecog.01078
https://doi.org/10.1111/ecog.01078
https://doi.org/10.1111/ecog.01078


A preprint - May 25, 2021

O’Connor, Mary I., Michael F. Piehler, Dina M. Leech, Andrea Anton, and John F. Bruno. 2009.584

“Warming and Resource Availability Shift Food Web Structure and Metabolism.” Edited by Michel585

Loreau. PLoS Biology 7 (8): e1000178. https://doi.org/10.1371/journal.pbio.1000178.586

O’Gorman, Eoin J., Owen L. Petchey, Katy J. Faulkner, Bruno Gallo, Timothy A. C. Gordon,587

Joana Neto-Cerejeira, Jón S. Ólafsson, Doris E. Pichler, Murray S. A. Thompson, and Guy Woodward.588

2019. “A Simple Model Predicts How Warming Simplifies Wild Food Webs.” Nature Climate Change589

9 (8): 611–16. https://doi.org/10.1038/s41558-019-0513-x.590

Opitz, Silvia. 1996. “Quantitative Models of Trophic Interactions in Caribbean Coral Reefs.”591

Iclarm.592

Patonai, Katalin, and Ferenc Jordán. 2017. “Aggregation of Incomplete Food Web Data593

May Help to Suggest Sampling Strategies.” Ecological Modelling 352 (May): 77–89. https:594

//doi.org/10.1016/j.ecolmodel.2017.02.024.595

Peralta-Maraver, I., M. J. López-Rodríguez, and J. M. Tierno de Figueroa. 2017. “Structure,596

Dynamics and Stability of a Mediterranean River Food Web.” Marine and Freshwater Research 68597

(3). CSIRO PUBLISHING: 484–95. https://doi.org/10.1071/MF15154.598

Petchey, Owen L, Andrew P Beckerman, Jens O Riede, and Philip H Warren. 2008. “Size,599

Foraging, and Food Web Structure.” Proceedings of the National Academy of Sciences 105 (11).600

National Acad Sciences: 4191–6.601

Petchey, Owen L., P. Timon McPhearson, Timothy M. Casey, and Peter J. Morin. 1999.602

“Environmental Warming Alters Food-Web Structure and Ecosystem Function.” Nature 402 (6757):603

69–72. https://doi.org/10.1038/47023.604

Petchey, Owen L., Mikael Pontarp, Thomas M. Massie, Sonia Kéfi, Arpat Ozgul, Maja605

Weilenmann, Gian Marco Palamara, et al. 2015. “The Ecological Forecast Horizon, and Examples606

of Its Uses and Determinants.” Ecology Letters 18 (7): 597–611. https://doi.org/10.1111/ele.607

12443.608

Poisot, Timothée, and Dominique Gravel. 2014. “When Is an Ecological Network Complex?609

Connectance Drives Degree Distribution and Emerging Network Properties.” PeerJ 2 (February).610

PeerJ Inc.: e251. https://doi.org/10.7717/peerj.251.611

29

https://doi.org/10.1371/journal.pbio.1000178
https://doi.org/10.1038/s41558-019-0513-x
https://doi.org/10.1016/j.ecolmodel.2017.02.024
https://doi.org/10.1016/j.ecolmodel.2017.02.024
https://doi.org/10.1016/j.ecolmodel.2017.02.024
https://doi.org/10.1071/MF15154
https://doi.org/10.1038/47023
https://doi.org/10.1111/ele.12443
https://doi.org/10.1111/ele.12443
https://doi.org/10.1111/ele.12443
https://doi.org/10.7717/peerj.251


A preprint - May 25, 2021

Poisot, Timothée, and Daniel B. Stouffer. 2016. “How Ecological Networks Evolve.” Preprint.612

Ecology. https://doi.org/10.1101/071993.613

Polis, Gary A. 1991. “Complex Trophic Interactions in Deserts: An Empirical Critique of614

Food-Web Theory.” The American Naturalist 138 (1): 123–55.615

Rall, B. C., U. Brose, M. Hartvig, G. Kalinkat, F. Schwarzmuller, O. Vucic-Pestic, and O. L.616

Petchey. 2012. “Universal Temperature and Body-Mass Scaling of Feeding Rates.” Philosophical617

Transactions of the Royal Society B: Biological Sciences 367 (1605): 2923–34. https://doi.org/618

10.1098/rstb.2012.0242.619

Shriner, Daniel, Yi Liu, David C. Nickle, and James I. Mullins. 2006. “Evolution of Intrahost620

Hiv - 1 Genetic Diversity During Chronic Infection.” Evolution 60 (6): 1165–76. https://doi.org/621

10.1111/j.0014-3820.2006.tb01195.x.622

Tamaddoni-Nezhad, Alireza, Ghazal Afroozi Milani, Alan Raybould, Stephen Muggleton,623

and David A. Bohan. 2013. “Construction and Validation of Food Webs Using Logic-Based624

Machine Learning and Text Mining.” In Advances in Ecological Research, 49:225–89. Elsevier.625

https://doi.org/10.1016/B978-0-12-420002-9.00004-4.626

Toni, Tina, David Welch, Natalja Strelkowa, Andreas Ipsen, and Michael P.H. Stumpf. 2009.627

“Approximate Bayesian Computation Scheme for Parameter Inference and Model Selection in628

Dynamical Systems.” Journal of the Royal Society Interface 6 (31): 187–202. https://doi.org/10.629

1098/rsif.2008.0172.630

Tylianakis, Jason M., and Amrei Binzer. 2014. “Effects of Global Environmental Changes631

on ParasitoidHost Food Webs and Biological Control.” Biological Control 75 (August): 77–86.632

https://doi.org/10.1016/j.biocontrol.2013.10.003.633

Warren, Philip H. 1989. “Spatial and Temporal Variation in the Structure of a Freshwater634

Food Web.” Oikos 55 (3): 299. https://doi.org/10.2307/3565588.635

Williams, Richard J., and Neo D. Martinez. 2000. “Simple Rules Yield Complex Food Webs.”636

Nature 404 (6774, 6774). Nature Publishing Group: 180–83. https://doi.org/10.1038/35004572.637

Woodward, Guy, Julia Blanchard, Rasmus B. Lauridsen, Francois K. Edwards, J. Iwan Jones,638

David Figueroa, Philip H. Warren, and Owen L. Petchey. 2010. “Chapter 6 - Individual-Based Food639

30

https://doi.org/10.1101/071993
https://doi.org/10.1098/rstb.2012.0242
https://doi.org/10.1098/rstb.2012.0242
https://doi.org/10.1098/rstb.2012.0242
https://doi.org/10.1111/j.0014-3820.2006.tb01195.x
https://doi.org/10.1111/j.0014-3820.2006.tb01195.x
https://doi.org/10.1111/j.0014-3820.2006.tb01195.x
https://doi.org/10.1016/B978-0-12-420002-9.00004-4
https://doi.org/10.1098/rsif.2008.0172
https://doi.org/10.1098/rsif.2008.0172
https://doi.org/10.1098/rsif.2008.0172
https://doi.org/10.1016/j.biocontrol.2013.10.003
https://doi.org/10.2307/3565588
https://doi.org/10.1038/35004572


A preprint - May 25, 2021

Webs: Species Identity, Body Size and Sampling Effects.” In Advances in Ecological Research, edited640

by Guy Woodward, 43:211–66. Integrative Ecology: From Molecules to Ecosystems. Academic641

Press. https://doi.org/10.1016/B978-0-12-385005-8.00006-X.642

Woodward, Guy, and Alan G. Hildrew. 2001. “Invasion of a Stream Food Web by a New Top643

Predator.” Journal of Animal Ecology 70 (2): 273–88. https://doi.org/10.1111/j.1365-2656.644

2001.00497.x.645

Woodward, Guy, Dougie C. Speirs, and Alan G. Hildrew. 2005. “Quantification and Resolution646

of a Complex, Size-Structured Food Web.” In Advances in Ecological Research, 36:85–135. Elsevier.647

https://doi.org/10.1016/S0065-2504(05)36002-8.648

Yodzis, Peter. 1998. “Local Trophodynamics and the Interaction of Marine Mammals649

and Fisheries in the Benguela Ecosystem.” Journal of Animal Ecology 67 (4): 635–58. https:650

//doi.org/10.1046/j.1365-2656.1998.00224.x.651

31

https://doi.org/10.1016/B978-0-12-385005-8.00006-X
https://doi.org/10.1111/j.1365-2656.2001.00497.x
https://doi.org/10.1111/j.1365-2656.2001.00497.x
https://doi.org/10.1111/j.1365-2656.2001.00497.x
https://doi.org/10.1016/S0065-2504(05)36002-8
https://doi.org/10.1046/j.1365-2656.1998.00224.x
https://doi.org/10.1046/j.1365-2656.1998.00224.x
https://doi.org/10.1046/j.1365-2656.1998.00224.x

	Introduction
	Materials and Methods
	Allometric Diet Breadth Model (ADBM)
	Observed food web data
	Parameter estimation: Approximate Bayesian Computation
	Prior distribution
	Comparison of observed and predicted
	The Rejection ABC method

	Assessment of model fit

	Results
	Discussion
	Acknowledgements
	Author contributions
	Data Accessibility Statement
	References

