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Abstract

In this paper, a theoretical analysis model and two simulation methods are applied to

characterize the quasi-static and fatigue delamination of composite laminate with uneven

thicknesses. The test data of partially reinforced double-cantilever beam (DCB) were used

as benchmark to verify the analysis model and simulation, and cohesive zone models (CZMs)

and virtual crack closure technique (VCCT) are used in simulation. It’s shown that the par-

tially reinforced DCB has a unique double-peak load-displacement relationship, and produces

instability development during the delamination. By comparing the results of simulation and

experiment, it is found that the simulation based on the exponential CZM can simulate the

delamination process of partially reinforced DCB under both quasi-static and fatigue loading;

while VCCT method will generate a straight delamination front edge in the area of reinforce-

ment, and lost the micro-damage of the previous loading step between load steps, and result

in an incorrect delamination behavior.

Keywords: Delamination; cohesive zone model; virtual crack closure technique; finite element

method

Nomenclature

a Delamination length

a0 Initial crack length

a1 Longitudinal distance between the front of reinforced area and the loading point

A0 Initial loading area

AD Micro-failure loading area

Cf Critical damage loading ratio

CZM Cohesive zone model

∗Corresponding author. give full affiliation and E-mail address: jy2818@163.com
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da/dN Growth rate of a crack

D, Ḋ Damage variable and its derivative

Dc, Ḋc Damage variable caused by cyclic loading and its derivative

DCB Double-cantilever beam

Dm, Ḋm Damage variable caused by monotonic loading and its derivative

e Natural constant

E, G, µ Young’s modulus, shear modulus and Poisson’s ratio of the material

Fii′ , Fjj′ , Vertical internal force on node i and j

G Energy release rate

GI Energy release rate of mode I

GIc Critical energy release rate if mode I

hi,wi Height and width of part i

H(· · · ) Heaviside function

Ii Second moment of inertia in part i

kn Loading/unloading stiffness in element

l Length of the beam

LEFM Liner-elastic fracture mechanics

M Applied moment of the beam

P Loading force in vertical direction on the upper arm of the specimen

q Mode–mixity ratio

R Load ratio

Tn, Tt Normal and shear cohesive tractions

T̄ Resultant traction

TCZ Cohesive traction

u Opening distance of the specimen

UEL A user-defined subroutine

Us Strain energy of the specimen

VCCT Virtual crack closure technique

X1, X2 Length and width coordinates of the delamination

α Contact penalty coefficient

δ0 Cohesive length

δf Initial undamaged cohesive normal strength

δΣ Accumulated cohesive length

∆a, w Element length and width

∆u Separation

∆un, ∆ut Normal and shear separation

∆ū, ∆ ˙̄u Resultant separation and its derivative

σmax Maximum stress that damaged surface can withstand

σmax,0 Initial cohesive strengths under monotonic loading
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1 Introduction

Composite laminates are widely used in modern architecture and mechanical structure due to their light

weight and impressive strength
1
. In the past several years, a large number of key mechanical components

have been replaced by composites and adhesive joints, therefore the delamination of composite laminate,

which is one of the main forms of composite failure, has also received more attention
2–4

.

Liner-elastic fracture mechanics (LEFM)
5,6

and cohesive zone models (CZMs)
7,8

are the two crucial

theories for the delamination failure of composite laminate. The virtual crack closure technique (VCCT)

and the Paris’ law
9

are derived under LEFM, and have already become well-established methods in

computing the energy release rate G and predicting fatigue crack growth for a long time
10

. Meanwhile,

cohesive zone models (CZM) have also been a successful tool for accurately modeling delamination and are

equally popular in the research community as in the industry
11,12

. It’s distinguished from LEFM-based

models by building the relationship between traction and separation near the crack tip
13,14

, and using a

damage variable D to define the damage on both monotonic loading and cyclic loading
15

.

Nowadays, many studies on delamination of composite laminate have been made, mainly focus on

the analysis of delamination failure process on double-cantilever beam (DCB) specimen
16,17

. Mall S.

et al.
18

carried out a study to compare the experimental and analytical results of an adhesively bonded

composite joint, and characterized both the static and fatigue mechanism under mode I and mixed

I and II mode loadings. Spandan M. et al.
19

proposed a bi-linear cohesive failure model to simulate

fatigue crack propagation in polymeric materials, and a finite element calculation based on the model

was built to prove its accuracy. Roe K.L. et al.
15

studied a new model of cohesive failure under fatigue

loading. Instead of using bi-linear cohesive failure law and Paris equation, a different model based on

exponential cohesive zone law of Xu and Needleman
20

and irreversible constitutive equation for the cyclic

interface traction–separation behavior was proposed. Turon A. et al.
21

conducted a method of determining

constitutive parameters for the simulation of progressive delamination, by considering the size of the

cohesive finite element, the length of the cohesive zone, and the minimum penalty stiffness necessary for

the constitutive equation.

Bi-linear cohesive failure model and exponential cohesive failure model are the two most used model

for cohesive failure calculation. Due to the concise characteristics, bi-linear model has been widely used on

both monotonic loading
22–24

and cyclic loading
25,26

on two or three-dimensional analysis, and embedded in

some finite element programs and softwares. At the same time, the exponential cohesive model, which can

be expressed by a single expression and a continuous curve, is closer to the constitutive of the material, and

therefore shows more accuracy than the bi-linear cohesive model. Fan J. et al.
27

established a subroutine

based on two-dimensional exponential cohesive model and fatigue damage accumulative criterion in the

finite element software, which was found in good accordance with the existing experimental results. Busto

S. et al.
28

considered a user defined two-dimensional element subroutine with general implementation of

cohesive zone models, which enables not only the modeling of crack initiation and growth under both

monotonic and cyclic loading conditions, but also the calculation in conjunction with other damage

development criteria.

The VCCT method has also been widely used
29–31

, due to its simpler structure, fewer input param-
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eters, and was incorporated into many commercial finite element software earlier. Pirondi A. et al.
32

presented a comparison between the bi-linear CZM and VCCT for three-dimensional fatigue debonding,

found the two models are in overall good agreement with each other on DCB and end loaded split (ELS)

geometry. Heidari R.M. et al.
33

conducted another comparison of VCCT, CZM and extended finite ele-

ment method (XFEM) in unidirectional DCB composite samples. The results show that VCCT does not

have ability to accurately model delamination propagation in multilayered DCB composites, and is very

mesh sensitive at the same time. But VCCT is a simple and effective way to predict the delamination

initiation. VCCT and CZM show advantages in different aspects, therefore in recent years, more and

more researches are more inclined to use the method of combining both the models
34–36

.

The above studies are based on the delamination failure calculation of DCB, ELS or other similar

simple standard tests, with composite materials in layered structures and uniform thickness, There are

not many studies on the delamination process of non-uniform materials. Carreras L. et al.
37

provided

a benchmark test for validating 3D simulation methods for delamination growth under quasi-static and

fatigue loading, with a comprehensive benchmark case consisting of a DCB-like specimen and partially

reinforced arms.

This work will be combined with the benchmark test of Carreras, and study the delamination growth

of partially reinforced DCB under static and fatigue loads. The research will combine the models of

VCCT and CZM to compare the effects of different delamination simulation methods on the results

of delamination calculations. At the same time, combined with the analysis model, the delamination

mechanism under different conditions is calculated. The research mainly takes the load-displacement

curve of the specimen and the position and shape of the delamination front as the observation object,

which will provide reference for subsequent researchs and simulations.

2 VCCT and exponential cohesive failure models

2.1 VCCT

VCCT is a well-known technique based on LEFM, which calculates the evaluation of the energy release

rate G and mode–mixity ratio q for cracks in homogeneous materials
32

. VCCT is based on the assumption

that the strain energy released when a crack is extended by a certain amount is the same as the energy

required to close the crack by the same amount, and the stress state at the crack tip is steady during the

crack propagation. The assumption is acceptable if the propagation length being small compared with

the crack length
38

.

A schematic of elements along the crack tip is illustrated in Figure 1, that the node where the crack

tip located at the beginning is i, and the vertical internal force on node i is Fii′ = F0. When the damage

continues to develop, the force Fii′ decreases linearly to 0, the crack tip advances to node j and Fjj′ = F0,

while node i split into nodes i and i′, with the distance vi at between. Base on the assumption of VCCT

model, the mode I energy release rate GI is:

GI =
viF0

2w∆a
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Figure 1: Schematic of mesh debonding in VCCT model

with ∆a is the element length and w is the element width. Nodes i and i′ will start to release when

f = GI
GIc
≥ 0, GIc is the critical Mode I energy release rate.

2.2 Cohesive Zone Model (CZM)

CZM uses cohesive finite elements to model material discontinuities. A CZM based on Needleman
39

provides exponential cohesive failure relationship between the cohesive traction TCZ , and the material

separation ∆u. Given the normal and shear separation as ∆un, ∆ut, and normal and shear cohesive

tractions as Tn, Tt, the relationship between them under monotonic loading can be expressed as:

Tn = σmax,0 exp

(
1.0− ∆un

δ0

){
∆un
δ0

exp

(
−∆u2

t

δ2
0

)
+ (1.0− q)∆un

δ0

[
1.0− exp

(
−∆u2

t

δ2
0

)]}
(1a)

Tt = 2σmax,0q
∆ut
δ0

(
1.0 +

∆un
δ0

)
exp

(
1.0− ∆un

δ0
− ∆u2

t

δ2
0

)
(1b)

In which, σmax,0 is the initial cohesive strengths under monotonic loading, i.e., the maximum normal

traction a cohesive element can reach; δ0 is the cohesive length, i.e., the normal separation required to

reach the cohesive strength in normal loading. The critical normal energy release rate GIc can be defined

as the area below the curve in Figure 2. The parameter q is the ratio between shear and normal energy

release rate, representing the percentage of separation affected by shear. In pure normal monotonic

loading, q = 0, Tt = 0,

Tn = σmax,0 × e
(1−∆un

δ0
) × ∆un

δ0

Considering the occurrence of micro-failure on the contact surface, a micro-failure with area AD ap-

pears on the surface with initial area A0. In order to establish a fatigue failure model, it is necessary to

introduce a damage variable D that is independent of stress and deformation. D is a state variable repre-

senting the density of micro-fracture on the contact surface, D = (AD/A0). According to the definition of

D, it can also represent the ratio of the maximum stress σmax that a micro-failed surface can withstand,

and the maximum stress σmax,0 that can be withstood without damage, which is σmax = σmax,0(1−D).

Since the failure parameters are independent of stress and deformation, but the accumulation of stress

and deformation caused the development of failure parameters, it’s reasonable to assume that there is

Ḋ = Ḋ(T,∆u,D) with following properties:
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Figure 2: The traction-separation relationship in pure normal loading

1. The damage starts to accumulate only when the deformation or cumulative deformation exceeds a

critical value;

2. The increase in damage is related to the increase in deformation, and the weight is determined by

the average of the loading;

3. There is a load limit value: when the load is lower than this value, the material can circulate

indefinitely without damage.

Therefore, the destruction rate of cyclic load Ḋc can be expressed as follows:

Ḋc =
|∆ ˙̄u|
δΣ

[
T̄

σmax
− Cf

]
H (∆ū− δ0) and Ḋc ≥ 0 (2)

with H designating the Heaviside function. ∆ū is the resultant separation, and ∆ ˙̄u is its increment,

which are defined as follows: ∆ū =
√

∆u2
n + ∆u2

t

∆ ˙̄u = ∆ūt −∆ūt−∆t

T̄ is the resultant traction, which can be defined as:

T̄ =

√
T 2
n +

T 2
t

2eq2

Cf is a parameter to indicate a cyclic load level ratio below which there is no damage initiation. It

is the ratio of cohesive zone endurance limit, σf to the initial undamaged cohesive normal strength,

Cf = σf/σmax,0. δΣ is accumulated cohesive length, which is used to scale the normalized increment of

the effective material separation. It can be considered that when ∆n = δ0, D = 0, the material starts to

damage; when ∆n = δ0 +δΣ, D = 1, the area is completely damaged. δΣ is generally defined as a multiple

of δ0 in calculations.

Considering that during the loading process, when the resultant separation is greater than the cohesive

length, the damage is mainly affected by monotonic loading, so it is necessary to define the failure

parameters under monotonic loading:

Dm = (∆ūt − δ0)/δΣ
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So there is the following relationship:

Ḋm =
max(∆ūt)−max(∆ūt−∆t)

δΣ
if max(∆ūt) > δ0

Therefore, if the damage rate of the material under monotonic loading and cyclic loading is considered at

the same time, the overall damage parameter of the material can be considered as:

D =

∫
max(Ḋc, Ḋm)dt

In the cyclic loading process of the element, in addition to the traction and separation relationship

of the element during the failure formation process, the behavior of the element during unloading and

reloading also needs to be considered. All loading and unloading processes can be considered as being

enveloped by the traction-separation curve with failure parameter. All loading and unloading below the

envelope curve follow a linear relationship. The slope is equal to the slope of the traction separation

curve at zero separated, with damage parameter D considered. The values of current unloading/loading

stiffness for normal direction, kn, is given by:

kn =
σmaxe

δ0
=
Dσmax,0e

δ0

Therefore, after taking into account the accumulation of damage, the relationship between tension and

separation in the process of unloading and reloading is:

Tn = Tn,max + kn(∆un −∆un,max)

During the cyclic loading process, the schematic diagram of the traction-separation curve of the

cohesive elements can be shown in Figure 3:

Time

Force(N)

1

2

3

a
4

5

(a) Relationship between external loading and

time

∆un

Tn

δ0

σmax,0

δu

1

2

3

a
4

5

δ1
c δ2

c

(b) Traction-separation relationship in cohesive element

Figure 3: The traction-separation relationship in normal cyclic loading

When the external load on the cohesive element is loaded from 1 to 2, (assuming that the separation

of the element under load 2 is greater than the cohesive length δ0), affected by the monotonic damage

Dm, the stress of the element first increases to initial cohesive strengths σmax,0 and then decreases to

position 2. When the external load drops from 2 to 3, cohesive element undergoes stress unloading, and

the slope of the unloading curve is the stiffness for normal direction kn = Dσmax,0e/δ0. In the process of
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cyclic loading, the cyclic loading failure parameter Dc continues to increase. During the loading process of

section 3→ a, the stiffness of the element is lower than the stiffness on section 2-3. Due to the combined

influence of monotonic and cyclic damage parameters, the maximum stress on the element becomes lower,

σmax,a < σmax,0. Assuming that point a reaches the maximum stress, then when the load continues to rise

and the failure continues to develop, the maximum stress of the element decreases, and finally reaches the

position of point 4, σmax,4 < σmax,a. The element unloads along the stiffness, then reaches the position

of point 5 at the end.

As the distance between the upper and lower layers of the composite material increases and decreases

repeatedly during the cyclic loading process, according to the properties of the beam, the contact of

the upper and lower layers needs to be considered to avoid the interference and overlap. A widely used

method is to multiply the basic traction-separation curve in equation 1 with a coefficient α > 1 so that

any value of ∆un < 0 is penalized.

Tn = ασmax,0

(
∆un
δ0

)
exp

(
1− ∆un

δ0

)
if ∆un < 0

In many studies, the stiffness penalizing factor was taken to be α = 10
15,28

.

3 Model description

The model in this study is based on the benchmark test of Carreras L. et al.
37

. A partially reinforced

DCB test with a mid-plane initial defect consisting of a Teflon insert is used, and the dimensions of

the partially reinforced DCB specimen is in Figure 4. According to the article, specimens were made of

Carbon Fibre Reinforced Polymer (CFRP) plies stacked at 0◦. The elastic properties for the unidirectional

laminate material is in table 1.

12.5

35
55

175

1.51

25

60

3.02

7

Figure 4: Dimensions of the partially reinforced DCB specimen (units in mm)

The benchmark test includes both quasi-static cases and fatigue loading cases. Quasi-static tests were

performed with a constant displacement rate of 1 mm/min on four specimens (A, B, C and D). The

fatigue tests consisted of four loading steps (cf. Figure 5):

1. Quasi-static step from the initial unloaded position until 5mm of the prescribed displacement at a

loading rate of 1 mm/min;
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Table 1: Laminate elastic properties of the validation material

Laminate properties Values Units

E11: Longitudinal Young’s modulus 154 GPa

E22 = E33: Transversal Young’s modulus 8.5 GPa

G12 = G13: Shear modulus in longitudinal planes 4.2 GPa

G23: Shear modulus in transversal plane 3.036 GPa

µ12 = µ13: Poisson’s ratio in longitudinal planes 0.35 -

µ23: Poisson’s ratio in transversal plane 0.4 -

2. Fatigue step with a maximum cyclic displacement of 5 mm and a load ratio of R = 0.1;

3. Quasi-static step until 10mm of the prescribed displacement at a loading rate of 1 mm/min;

4. Fatigue step with a maximum cyclic displacement of 10 mmand a load ratio of R = 0.1.

Tn

Step 1 Step 2 Step 3 Step 4

5

10

0.5

1

. . .

. . .420000 cycles

10000 cycles

Figure 5: Loading steps of the fatigue tests

In this study, the relevant theory of the cantilever beam was used to derive the load-distance rela-

tionship of the partially reinforced DCB under quasi-static conditions and the location of delamination.

At the same time, ABAQUS/Standard software was used to perform 3-D FE analysis, and the results of

quasi-static and fatigue delamination of the specimen under VCCT and CZM methods were calculated

respectively. Figure 6 shows the FE model of specimen. The DCB specimens were meshed using 3-D

eight-node brick (C3D8) elements. The VCCT method is implemented by using VCCT to contact bond-

ing conditions and defining keywords; the CZM method is implemented by inserting cohesive elements.

A user-defined subroutine (UEL) is also used to define the cohesive fatigue based on the exponential

cohesive failure model.
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Figure 6: FE model of specimen

4 Analytical model of quasi-static loading

In quasi-static loading, each arm of the test specimen can be simplified into two cantilever beams with

different cross-sections. According to the development of damage, energy release rate of the specimen GI

and the delamination length a, the delamination process of the test piece can be divided into four stages:

1. a = a0, GI ≤ GIc, the delamination area has not developed;

2. a0 < a < a1, GI = GIc, delamination begins to develop in areas without reinforcement;

3. a → +a1, GI ≤ GIc, delamination stops at the connection area of common region and reinforce

region, and strain energy continues to accumulate as the traction force increases;

4. a > a1, GI = GIc, delamination develops in the reinforce area.

The potential energy of the reinforce DCB specimen, Up, is given by:

Up = Us − Pu

where Us is the strain energy of the specimen, P is the loading force in vertical direction on the upper

arm of the specimen, and u is the corresponding opening distance. The strain energy of a bending beam

can be calculated by:

Us =

∫ l

0

M2

2E′I
dx

with length l, applied moment M , elastic modulus E′ and the second moment of inertia I of the beam.

4.1 Delamination develops in region without reinforcement

The specimen can be divided into three free bodies, which are shown in Figure 7. The strain energy of

the whole specimen can be expressed as:

Us =

∫ a

0

(Px)2

2E′I1
dx+

∫ a

0

(Px)2

2E′I2
dx
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Ii is the second moment of inertia in part i of the specimen, I1 = I2 = w1h
3
1/12 = I. Since the displacement

of the fixed arm is 0, according to the Castigliano’s second theorem, the moving distance of the loading

arm can be given by:

u =
∂Us

∂P
=

2Pa3

3E′I

Assuming that the end face of the delamination front is straight, then under this loading condition, the

energy release rate GI can be calculated as:

GI = − 1

w

∂Up

∂a
=
P 2a2

E′Iw

a

h h
1

2 3

Figure 7: Three free bodies the specimen can be divided into

At the beginning of the loading stage, a = a0, GI ≤ GIc, the loading force will increase linearly with

the increase of the separation distance, until GI = GIc, where the loading force reaches the maximum

value. At this stage, loading and separation satisfy the following relationship:

P =
3E′I

2a3
0

u (3)

When a0 < a < a1, GI = GIc, delamination begins to develop in areas without reinforcement. Ac-

cording to the relationship between energy release rate, loading and displacement, the following equations

can be derived:

u =

√
4wa4GIc

9E′I
, P =

√
2

3u
(wGIc)

0.75(E′I)0.25 (4)

4.2 Delamination develops in region with reinforcement

When a is close to or greater than a1, due to the change of the cross-sectional shape, the strain energy

calculation formula of the specimen will also change accordingly. Similar to the Section 4.1 , the

specimen can be divided into five free bodies, which are shown in Figure 8. The strain energy of the

whole specimen is:

Us =

∫ a1

0

(Px)2

2E′I1
dx+

∫ a1

0

(Px)2

2E′I2
dx+

∫ a

a1

(Px)2

2E′I3
dx+

∫ a

a1

(Px)2

2E′I4
dx if a ≥ a1

Assume that the cross-section of third and fourth part are shown in Figure 9, the centroid coordinates

and the second moment of inertia in these two parts can be calculated as:

yc =
w2h

2
2 − w1h

2
1

2(w1h1 + w2h2)
, zc = 0, Iyc =

w1h
3
1

12
+ w1h1

(
h1

2
+ yc

)2

+
w2h

3
2

12
+ w2h2

(
h2

2
− yc

)2

11



and I3 = I4 = Iyc . Therefore, the calculation equations for separation displacement and energy release

rate are:

u =
∂Us

∂P
=

2Pa3
1

3E′I
+

2P (a3 − a3
1)

3E′Iyc

GI = − 1

w

∂Up

∂a
=

P 2a2

E′Iycw

a

1

2

3

4 5

Figure 8: Five free bodies the specimen can be divided into

y

z

w1

w2

h1

h2

Figure 9: Cross-section of the specimen arm with reinforcement

When the delamination stops at the connection area of common region and reinforce region, and

strain energy continues to accumulate as the traction force increases, a → +a1, GI ≤ GIc, loading and

separation relationship can be expressed by the following equation:

P =
3E′I

2a3
1

u (5)

When delamination develops in the reinforce area, a > a1, GI = GIc,

u =
2
√
GIcE′Iycw1

3a
×
(
a3

1

E′I
+
a3 − a3

1

E′Iyc

)
P =

√
GIcE′Iycw1/a

(6)

4.3 Damage development analysis

According to the analysis results in Section 4.1 and 4.2 , the development of delamination damage

can be divided into 4 stages, and the values of a and u can be used to judge the stage of delamination.
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At different stages, the relationship between loading force and separation distance is:

stage 1:


P =

3E′I

2a3
0

u

u ≤ u1

stage 2:

 P =

√
2

3u
(wGIc)

0.75(E′I)0.25

u1 ≤ u < u2

stage 3:


P =

3E′I

2a3
1

u

u2 ≤ u < u3

a→ a1

stage 4:


u =

2
√
GIcE′Iycw1

3a
×
(
a3

1

E′I
+
a3 − a3

1

E′Iyc

)
P =

√
GIcE′Iycw1/a

a > a1

The values of u1, u2, and u3 can be calculated by the following equation:

u1 =
2a2

0

3

√
wGIc

E′I
, u2 =

2a2
1

3

√
wGIc

E′I
, u3 =

2a2
1

3

√
wGIc

E′Iyc

According to the above equations, the separation-loading curve during the delamination process of

the specimen is in Figure 10. In the model analysis of the third and fourth stages, the assumption that

the damage front is a straight line is still adopted. However in these two stages, due to the influence of

the strengthening structure, the shape of the failure front edge will be curved. In the initial part of the

third stage, as the separation distance increases, delamination failure will occur in advance in the area

away from the reinforcement. The width of delamination leading edge w > w1, and increases with the

increase of the separation. The loading force required to preform the separation would be lower than the

model with straight front. Therefore, it is necessary to consider an coefficient that increases with u in the

third stage, and to be multiply with the loading force P . The figure also indicated that at the beginning

of the fourth stage, the specimen exhibits unstable delamination propagation. Combining the above two

reasons, the curve of delamination development is shown in dashed lines.

0 2 4 6 8 10 12 14

0

100

200

300

U3(mm)

F
(N

)

Straight front
Curved front

Figure 10: Load-displacement curves based on analytical model

13



5 Results and discussion

5.1 Quasi-static loading

The results of the analysis, the experiment, and the simulation of both VCCT and cohesive elements are

shown in Figure 11. The results show that the load-displacement cruves obtained by the four methods can

obviously be divided into four parts, corresponding to the four stages of delamination development. The

simulation results of the VCCT and cohesive elements are close to the experiment results, especially in the

first and third stages. In the second and fourth stages, the results of VCCT and cohesive simulation have

a certain lag compared to the experiment. According to the literature
40

, this is related to the damping

defined in simulation process in order to avoid non-linearity, which may cause simulation to diverge. In

the fourth stage, under the influence of both the increase of the delamination distance a and the increase

of the geometric stiffness of the specimen’s arm, the delamination develops faster, thus the lagging of the

curve is more obvious.

The curve of the analytical model shows greater rigidity. This is due to the delamination area has

been treated as a simple cantilever beam during the whole analysis process, and the influence of the

uneven front edge of the delamination on the result is ignored. Since in both experiment and simulation,

the stiffness and energy release rate are lower than the analytical model, the loading force at each stage

are also smaller than the analytical model.
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Figure 11: Load-displacement under quasi-static loading

Figure 12 shows the delamination front positions of analysis, experiment, and the VCCT/cohesive

elements simulations under quasi-static loading. No significant differences were found between the exper-

imental results and the simulation, and the delamination length of the analysis model is close to the other

three results, but due to the assumption that damage front is straight, the shape of the damage front in

analysis model is different from the experiments and simulations.

By comparing the simulated delamination front position with the experiment, it can be found that the

delamination of the simulation and the test results are pretty similar before the damage front enters the
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partially reinforced region. But after the crack front develops close to the reinforced region, the damage

at both ends of the crack front will continue to advance around the region, while the middle section moves

much slower. However, when the delamination front move gradually forward, until it completely invades

the reinforced region, the unsteady damage development discussed in Section 4.3 occurs: delamination

front of the reinforced area advances suddenly, from lagging behind the non-reinforced area to rapidly

developing ahead of the unreinforced area.

The shapes of the damage front of the cohesive elements in the reinforced region are very similar to

the experimental results at most part, but slightly lags behind the in the later stage, resulting in a larger

overall stiffness of the test piece. Therefore, at the end of Figure 11, the loading force at cohesive elements

model is greater than that of the test. The VCCT method keeps the failure front straight in the area

with the reinforcement, which is related to the characteristic of the VCCT model that energy release rate

is calculated based on the local thickness. This characteristic of VCCT results in the shape distortion of

the failure front edge in the reinforced region, therefore the contact surface is released prematurely, which

causes the failure front edge to be more advanced than the other results, and the structural rigidity of the

specimen decreases. Therefore, at the end of Figure 11, The delamination loading force of VCCT model

is less than the test results.
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Figure 12: Delamination front position in quasi-static loading

5.2 fatigue loading

The load-displacement relationship of the experiment and VCCT/CZM simulation are presented in Figure

13. It is apparent from this figure that the cohesive element model are relatively close to the experiment,

and correspond to the experimental displacement-load curves in all four loading steps. while the calcu-

lation results of the VCCT model can correspond in the first and second loading steps, but a significant

difference is shown in the third analysis step between the VCCT model and the experimental or cohesive

elements results. The reason is that in second loading step, the VCCT model uses the low-cycle fatigue
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failure criterion which based on Paris’s law to calculate the separation conditions of the nodes at damage

front; at the end of a loading with 45,000 cycles, some micro-damages have occurred in the material at

the failure front edge. and they will be the foundation of further dameges. However in the third step of

loading, the VCCT model switches to the standard VCCT criterion to determine the separation condi-

tions of the nodes, and the micro-damage caused by fatigue has no effect on this loading step. Therefore

the continued delamination of the VCCT model is consistent with the trend in Figure 11, which is greater

than the experimental data or the cohesive elements results. The fourth loading step continues to cal-

culate the fatigue failure based on the results of the third loading step, but let aside the micro-damage

caused at this step. Affected by the third loading step, its load value is also greater than the test data

and the calculation result of the cohesive element.
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Figure 13: Load-displacement under fatigue loading

The delamination front positions of experiment and simulation of VCCT/CZM models under fatigue

loading can be compared in Figures 14 and 15. In all loading steps, the delamination front positions of

the experiment and CZM simulation model are similar. However, The analysis in Figure 13 indicates

that the damage of VCCT in load step 2 does not inherit the micro-damage in load step 1, which results

in the slower development in VCCT delamination in Figure 14, as the nodes at the crack front behaves

stronger without pre-damage. Similar to the development of delamination under quasi-static loading,

the delamination front develops extremely slowly near the reinforced region, while the crack front moves

faster at the other area. In the third loading step, the VCCT method is again converted from the fatigue

failure criterion to the VCCT criterion, and the separation of the nodes is continued to be calculated

based solely on the opening at this time. Therefore, the position of the delamination front is close to that

of the specimen in Figure 12 which has not undergone fatigue loading and have the same opening. In the

fourth loading step, the VCCT method switches back to the fatigue failure criterion one more time, and

the micro-damage caused by monotonic loading does not have its due effect on this loading step. The

VCCT model loses the information of micro-damdage every time the failure criterion changed, thus after

several repeated changes, the position of the crack front in VCCT model has significantly deviated from
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the results of the experiment and CZM model.
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Figure 14: Delamination front position during steps 1 and 2

Combining the results of the analysis model, test data, and two different simulation methods (VCCT

and CZM), it can be concluded that there is still a big difference between the partially reinforced DCB

and the normal DCB. Compared with normal DCB, the maximum load that the reinforced DCB can carry

will not be higher, but it can have multiple load peaks, which avoids the rapid decrease in the overall

stiffness of the specimen once the first peak is passed during monotonic or cyclic loading, and results

in rapid failure. However, the partially reinforced DCB will be unstable when the delamination damage

front edge completely enters the reinforced part, causing the damage front to advance a certain distance

quickly. This feature is unique in partially reinforced DCB.

Comparing the simulation results of VCCT method and CZM on delamination, it can be found that
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Figure 15: Delamination front position during steps 3 and 4
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when VCCT method simulates partially reinforced DCB, the shape of the delamination front in reinforced

area is distorted, which causes the load in the load-displacement curve to be smaller than the true value.

When using the VCCT method to simulate the delamination of partially reinforced DCB under the

repeated action of monotonic and cyclic load, VCCT will discard the micro-damage data calculated in

the previous step every time the failure criterion is switched, thus larger errors develops with the increase

in number of switching times of the destruction criterion. However, the CZM uses both the monotonic

damage Dm and the cyclic damage Dc to indicate the degree of damage of the cohesive elements. Under

different load steps, the damage parameters can be transmitted from the previous one to the next, so

there is no information loss of micro-damage, and makes it a relatively reliable method in simulating

partially reinforced DCB.

6 Conclusion

In order to analyze the quasi-static and fatigue delamination process of composite laminates with uneven

thickness and its simulation methods, in this research, the delamination process of a partially reinforced

DCB was studied using theory and VCCT and CZM simulation methods, then the experimental results

were used as benchmark to make the comparison. The results show that the delamination in areas

without reinforcement behaves the same as that of standard DCB, that loading increases with the increase

of separation distance, then decreases with the increase of delamination distance. However, when the

delamination front is close to the partially reinforced composite laminate area, the shape of the crack

front will bend around the reinforcement, decreasing the energy release rate of the specimen, increasing

the load or fatigue cycle required for delamination, and generating a second peak. When the delamination

front completely enters the reinforced area, the specimen will develop a sudden unstably delamination,

whick causes the delamination front under the reinforced area moves forward rapidly. This is caused by

the sudden release of strain energy. This process can be observed not only in theory and experiment, but

also in VCCT and CZM simulations.

By comparing the VCCT method and CZM in simulating the delamination process of the partially

reinforced DCB specimen, it can be found that the results of the load-displacement relationship of both

methods are similar to the test in quasi-static delamination. However, the crack front of VCCT will

remain straight after it enters the area of local reinforcement, which is inconsistent with the test results;

on the contrary, the delamination front edge of the CZM is more consistent with the test results. When

the finite element method is used to simulate the delamination that alternately switching between quasi-

static and fatigue, the VCCT method cannot match the test results due to its own characteristics. This

is because VCCT uses different failure criteria under steady-state and fatigue load steps, thus the effects

of micro damage cannot be transferred between different load steps, which makes VCCT method not

suitable for simulating the fatigue delamination process of composite laminates with uneven thickness.

At the same time, in the simulation using Roe’s exponential CZM model, because the damage parameter

under monotonic load Dm and the damage parameter under cyclic load Dc affect the tension-separation

relationship of the element at the same time, and the damage is transmitted between loading steps, the

CZM simulation result is much more similar to the test results.
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In future work, it is necessary to further study the parameters of the CZM, so that it can simulate

the load-displacement relationship and the position of the delamination front in the later stage of rapid

delamination in the strengthened area more accurately.
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