REFERENCES
Alisafaei, F., Jokhun, D.S., Shivashankar, G.V., & Shenoy, V. B.
(2019). Regulation of nuclear architecture, mechanics, and
nucleocytoplasmic shuttling of epigenetic factors by cell geometric
constraints. Proceedings of the National Academy of Sciences,
116 , 13200–13209. https://doi: 10.1073/pnas.1902035116
Ambriz, X., de Lanerolle, P.,
Ambrosio, J. R. (2018). The mechanobiology of the actin cytoskeleton in
stem cells during differentiation and interaction with biomaterials.Stem Cells International, 2018 , 2891957. https://doi:
10.1155/2018/2891957
Argentati, C., Morena, F.,
Tortorella, I., Bazzucchi, M., Porcellati, S., Emiliani, C., & Martino,
S. (2019). Insight into mechanobiology: How stem cells feel mechanical
forces and orchestrate biological functions. International Journal
of Molecular Sciences , 20 , 5337. https://doi:
10.3390/ijms20215337
Arnold, T.R., Stephenson, R.E., & Miller, A.L. (2017). Rho GTPases and
actomyosin: Partners in regulating epithelial cell-cell junction
structure and function. Experimental Cell Research, 358 , 20–30.
https://doi: 10.1016/j.yexcr.2017.03.053
Borys, B.S., Dang, T., So, T., Rohani, L., Revay, T., Walsh, T.,
Thompson, M., Argiropoulos, B., Rancourt, D.E., Jung, S., Hashimura, Y.,
Lee, B., & Kallos, M.S. (2021). Overcoming bioprocess bottlenecks in
the large-scale expansion of high-quality hiPSC aggregates in
vertical-wheel stirred suspension bioreactors. Stem Cell Research
& Therapy, 12, 55. https://doi: 10.1186/s13287-020-02109-4.
Charras, G., & Yap, A.S. (2018). Tensile Forces and Mechanotransduction
at cell–cell junctions. Current Biology, 28 , R445–R457.
https://doi: 10.1016/j.cub.2018.02.003
Chen, L., Huang, T., Qiao, Y., Jiang, F., Lan, J., Zhou, Y., Yang, C.,
Yan, S., Luo, K., Su, L., & Li, J. (2019). Perspective into the
regulation of cell-generated forces toward stem cell migration and
differentiation. Journal of Cellular Biochemistry, 120 ,
8884–8890. https://doi: 10.1002/jcb.28251
Discher, D., Dong, C., Fredberg,
J.J., Guilak, F., Ingber, D., Janmey, P., Kamm, R.D., Schmid-Schönbein,
G.W., & Weinbaum, S. (2009). Biomechanics: cell research and
applications for the next decade. Annals of Biomedical
Engineering, 37 , 847–859. https://doi: 10.1007/s10439-009-9661-x
Dupont, S., Morsut, L., Aragona,
M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Le Digabel,
J., Forcato, M., Bicciato, S., Elvassore, N., & Piccolo, S. (2011).
Role of YAP/TAZ in mechanotransduction. Nature, 474 , 179–183.
https://doi: 10.1038/nature10137
Ehrig, S., Schamberger, B., Bidan, C.M., West, A., Jacobi, C., Lam, K.,
Kollmannsberger, P., Petersen, A., Tomancak, P., Kommareddy, K.,
Fischer, F.D., Fratzl, P., & Dunlop, J.W.C. (2019). Surface tension
determines tissue shape and growth kinetics. Science Advances, 5,eaav9394. https://doi: 10.1126/sciadv.aav9394
Freund, J. B., Goetz, J. G., Hill, K. L., & Vermot, J. (2012). Fluid
flows and forces in development: functions, features and biophysical
principles. Development, 139 , 1229–1245. https://doi:
10.1242/dev.073593
Goodwin, K., &
Nelson, C.M. (2021). Mechanics of
development. Developmental Cell, 56, 240–250. https://doi:
10.1016/j.devcel.2020.11.025
Harikumar, A., & Meshorer, E. (2015). Chromatin remodeling and bivalent
histone modifications in embryonic stem cells. EMBO reports, 16 ,
1609–1619. https://doi: 10.15252/embr.201541011.
Harrison, R.P., Medcalf, N., &
Rafiq, Q.A. (2018). Cell therapy-processing economics: small-scale
microfactories as a stepping stone toward large-scale macrofactories.Regenerative Medicine, 13 , 159–173. https://doi:
10.2217/rme-2017-0103
Hilfinger, A. & Paulsson, J. (2011). Separating intrinsic from
extrinsic fluctuations in dynamic biological systems. Proceedings
of the National Academy of Sciences, 108, 12167–12172,
https://doi.org/10.1073/pnas.1018832108
Ingber, D.E. (1997). Tensegrity:
the architectural basis of cellular mechanotransduction. Annual
Review of Physiology, 59 , 575– 599. https://doi:
10.1146/annurev.physiol.59.1.575
Ingber, D.E. (2018). From mechanobiology to developmentally inspired
engineering. Philosophical Transactions of The Royal Society B
Biological Sciences, 373 , 20170323. https://doi:
10.1098/rstb.2017.0323
Ivanovska, I.L., Shin, J.W., Swift, J., & Discher, D. (2015). Stem cell
mechanobiology: diverse lessons from bone marrow. Trends in Cell
Biology, 25, 523–532. https://doi: 10.1016/j.tcb.2015.04.003
Iskratsch, T., Wolfenson, H., &
Sheetz, M. P. (2014). Appreciating force and shape—the rise of
mechanotransduction in cell biology. Nature Reviews Molecular Cell
Biology, 15 , 825–833. https://doi: 10.1038/nrm3903
Jégou, A. & Romet-Lemonne, G. (2021). Mechanically tuning actin
filaments to modulate the action of actin-binding proteins.Current Opinion in Cell Biology, 68 , 72–80. https://doi:
10.1016/j.ceb.2020.09.002
Jo, J., Abdi Nansa, S., & Kim, D.H. (2020). Molecular regulators of
cellular mechanoadaptation at cell-material interfaces. Frontiers
in Bioengineering and Biotechnology, 8 , 608569. https://doi:
10.3389/fbioe.2020.608569
Kato, R., Kim M.H., & Kino-oka, M. (2018). Comparison of growth
kinetics between static and dynamic cultures of human induced
pluripotent stem cells. Journal of Bioscience and Bioengineering,
125, 736–740. https://doi: 10.1016/j.jbiosc.2018.01.002
Kinney, M.A., Vo, L.T., Frame, J.M., Barragan, J., Conway, A.J., Li, S.,
Wong, K.K., Collins, J.J., Cahan, P., North, T.E., Lauffenburger, D.A.,
& Daley, G.Q. (2019). A systems biology pipeline identifies regulatory
networks for stem cell engineering. Nature Biotechnology, 37 ,
810–818. https://doi: 10.1038/s41587-019-0159-2
Kami, D., Watakabe, K.,
Yamazaki-Inoue, M., Minami, K., Kitani, T., Itakura, Y., Toyoda, M.,
Sakurai, T., Umezawa, A., & Gojo, S. (2013). Large-scale cell
production of stem cells for clinical application using the automated
cell processing machine. BMC Biotechnology, 13 , 102. https://doi:
10.1186/1472-6750-13-102
Kim, M.H., & Kino-oka, M. (2018). Bioprocessing strategies for
pluripotent stem cells based on Waddington’s epigenetic landscape.Trends in Biotechnology, 36 , 89–104. https://doi:
10.1016/j.tibtech.2017.10.006
Kim, M.H. & Kino-oka, M. (2020a). Bioengineering considerations for a
nurturing way to enhance scalable expansion of human pluripotent stem
cells. Biotechnology Journal, 15 , e1900314. https://doi:
10.1002/biot.201900314
Kim, M.H. & Kino-oka, M. (2020b). Designing a blueprint for
next-generation stem cell bioprocessing development. Biotechnology
and Bioengineering, 117 , 832–843. https://doi: 10.1002/bit.27228
Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M.,
Yamamori, B., Feng, J., Nakano, T., Okawa, K., Iwamatsu, A., &
Kaibuchi, K. (1996). Regulation of myosin phosphatase by Rho and
Rho-associated kinase (Rho-kinase). Science 273, 245–248.
https://doi: 10.1126/science.273.5272.245
Lei J. (2009). Stochasticity in single gene expression with both
intrinsic noise and fluctuation in kinetic parameters. Journal of
Theoretical Biology, 256, 485–492. https://doi:
10.1016/j.jtbi.2008.10.028.
Lenormand, G., Bursac, P., Butler, J.P., & Fredberg, J.J. (2007).
Out-of-equilibrium dynamics in the cytoskeleton of the living cell.Physical Review E, 76 , 41901. https://doi:
10.1103/PhysRevE.76.041901
Li, F., Wan, M., Zhang, B., Peng, Y., Zhou, Y., Pi, C., Xu, X., Ye, L.,
Zhou, X., & Zheng, L. (2018). Bivalent histone modifications and
development. Current Stem Cell Research & Therapy, 13, 83–90.
https://doi: 10.2174/1574888X12666170123144743
Li, J., Liu, Y., Zhang, Y., Yao, B., Enhejirigala, Li, Z., Song, W.,
Wang, Y., Duan, X., Yuan, X., Fu, X., & Huang, S. (2021). Biophysical
and biochemical cues of biomaterials guide mesenchymal stem cell
behaviors. Frontiers in Cell and Developmental Biology, 9 ,
640388. https://doi: 10.3389/fcell.2021.640388
Li, S., Yang, D., Gao, L., Wang, Y., & Peng, Q. (2020). Epigenetic
regulation and mechanobiology. Biophysics Reports, 6 , 33–48.
https://doi.org/10.1007/s41048-020-00106-x
Liu, L., Yuan, W., & Wang, J. (2010). Mechanisms for osteogenic
differentiation of human mesenchymal stem cells induced by fluid shear
stress. Biomechanics and Modeling in Mechanobiology, 9 , 659–670.
doi: 10.1007/s10237-010-0206-x
Mack, P. J., Kaazempur-Mofrad, M. R., Karcher, H., Lee, R. T., & Kamm,
R. D. (2004). Force-induced focal adhesion translocation: effects of
force amplitude and frequency. American Journal of Physiology,
287 , C954–C962. https://doi: 10.1152/ajpcell.00567.2003
Mizuno, D., Tardin, C., Schmidt, C. F., & Mackintosh, F. C. (2007).
Nonequilibrium mechanics of active cytoskeletal networks. Science,
315(5810):370–373. https://doi: 10.1126/science.1134404
Mount, N.M., Ward, S.J., Kefalas,
P., & Hyllner, J. (2015). Cell-based therapy technology classifications
and translational challenges. Philosophical Transactions of the
Royal Society, 370, 20150017. https://doi: 10.1098/rstb.2015.0017
Matthews, B. D., Overby, D. R., Mannix, R. & Ingber, D. E. (2006).
Cellular adaptation to mechanical stress: role of integrins, Rho,
cytoskeletal tension and mechanosensitive ion channels. Journal of
Cell Science, 119 , 508–518. https://doi: 10.1242/jcs.02760
Maul, T.M., Chew, D.W., Nieponice, A., & Vorp, D.A. (2011). Mechanical
stimuli differentially control stem cell behavior: morphology,
proliferation, and differentiation. Biomechanics and Modeling in
Mechanobiology, 10 , 939–953. https://doi: 10.1007/s10237-010-0285-8
Mammoto, T., Mammoto, A., & Ingber, D.E. (2013). Mechanobiology and
developmental control. Annual Review of Cell and Developmental
Biology, 29 , 27–61. https://doi: 10.1146/annurev-cellbio-101512-122340
Mao, Y. & Baum, B. (2015). Tug of war-the influence of opposing
physical forces on epithelial cell morphology. Developmental
Biology, 401 , 92–102. https://doi: 10.1016/j.ydbio.2014.12.030
Madl, C.M., Heilshorn, S.C., Blau, H.M. (2018). Bioengineering
strategies to accelerate stem cell therapeutics. Nature, 557 ,
335–342. https://doi: 10.1038/s41586-018-0089-z
Mack, P. J., M. R. Kaazempur-Mofrad, H. Karcher, R. T. Lee,. & R. D.
Kamm. (2004). Force-induced focal adhesion translocation: effects of
force amplitude and frequency. American Journal of Physiology,
287 , C954–C962. https://doi: 10.1152/ajpcell.00567.2003
McKee, C. &
Chaudhry, G.R. (2017). Advances
and challenges in stem cell culture. Colloids and Surfaces B:
Biointerfaces, 159 , 62–77. https://doi: 10.1016/j.colsurfb.2017.07.051
Mendez, M.G., & Janmey, P.A. (2012). Transcription factor regulation by
mechanical stress. International Journal of Biochemistry and Cell
Biology, 44 , 728-32. https://doi: 10.1016/j.biocel.2012.02.003
Mendelson, A. & Frenette, P.S. (2014). Hematopoietic stem cell niche
maintenance during homeostasis and regeneration. Nature Medicine,
20, 833–846. https://doi: 10.1038/nm.3647
Miroshnikova, Y. A., Nava, M. M., & Wickstrom, S. A. (2017). Emerging
roles of mechanical forces in chromatin regulation. Journal of
Cell Science, 130 , 2243–2250. https://doi: 10.1242/jcs.202192
Misener, R., Allenby, M.C., Fuentes-Gari, M., Gupta, K., Wiggins, T.,
Panoskaltsis, N., Pistikopoulos, E.N., & Mantalaris, A. (2018). Stem
cell biomanufacturing under uncertainty: A case study in optimizing red
blood cell production. AIChE Journal, 64 , 3011–3022.
https://doi: 10.1002/aic.16042
Kaazempur Mofrad, M.R., Abdul-Rahim, N.A., Karcher, H., Mack, P.J., Yap,
B., & Kamm, R.D. (2005). Exploring the molecular basis for
mechanosensation, signal transduction, and cytoskeletal remodeling.Acta Biomaterialia, 1 , 281–293. https://doi:
10.1016/j.actbio.2005.02.008.
Naqvi, S.M. & McNamara, L.M. (2020). Stem cell mechanobiology and the
role of biomaterials in governing mechanotransduction and matrix
production for tissue regeneration. Frontiers in Bioengineering
and Biotechnology, 8 , 597661. https://doi: 10.3389/fbioe.2020.597661
Nath, S.C., Tokura, T., Kim M.H., & Kino-oka M. (2018). Botulinum
hemagglutinin-mediated in situ break-up of human induced pluripotent
stem cell aggregates for high-density suspension culture.Biotechnology and Bioengineering, 115, 910–920. https://doi:
10.1002/bit.26526
Panchalingam, K.M., Jung, S., Rosenberg, L., & Behie, L.A. (2015).
Bioprocessing strategies for the large-scale production of human
mesenchymal stem cells: a review. Stem Cell Research & Therapy,
6 , 225. https://doi: 10.1186/s13287-015-0228-5
Pittenger, M.F., Mackay, A.M.,
Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A.,
Simonetti, D.W., Craig, S., & Marshak, D.R. (1999a). Multilineage
potential of adult human mesenchymal stem cells. Science, 284 ,
143–147. https://doi: 10.1126/science.284.5411.143
Pittenger, M.F., Discher, D.E., Péault, B.M., Phinney, D.G., Hare, J.M.,
& Caplan, A.I. (2019) Mesenchymal stem cell perspective: cell biology
to clinical progress. NPJ Regenerative Medicine, 4 , 22.
https://doi: 10.1038/s41536-019-0083-6
Ratcliffe, E., Thomas, R.J., & Williams, D.J. (2011). Current
understanding and challenges in bioprocessing of stem cell-based
therapies for regenerative medicine. British Medical Bulletin, 100,
137–155. https://doi: 10.1093/bmb/ldr03
Raser, J. M., & O’shea, E. K. (2005). Noise in gene expression:
origins, consequences, and control. Science, 309 ,
2010–2013, https://doi.org/10.1126/science.1105891
Roca-Cusachs, P., Conte, V., & Trepat, X. (2017). Quantifying forces in
cell biology. Nature Cell Biology, 19, 742–751. https://doi:
10.1038/ncb3564
Rosowski, K.A., Schreiner, S.M.,
Horsley, V., & King, M.C. (2015). Nuclear–cytoskeletal linkages
facilitate cross talk between the nucleus and intercellular adhesions.Journal of Cell Biology, 209 , 403–418. https://doi:
10.1083/jcb.201502024
Rotty, J.D., Wu, C., & Bear, J.E.
(2013). New insights into the regulation and cellular functions of the
ARP2/3 complex. Nature Reviews Molecular Cell Biology, 14, 7–12.
https://doi: 10.1038/nrm3492
Shuzui, E., Kim, M.H., & Kino-oka, M. (2019). Anomalous cell migration
triggers a switch to deviation from the undifferentiated state in
colonies of human induced pluripotent stems on feeder layers.Journal of Bioscience and Bioengineering, 127, 246-255.
https://doi: 10.1016/j.jbiosc.2018.07.020
Soltani, M., Vargas-Garcia, C.A., Antunes, D., & Singh, A. (2016).
Intercellular variability in protein levels from stochastic expression
and noisy cell cycle processes. PLOS Computational Biology,
12 , e1004972. https://doi: 10.1371/journal.pcbi.1004972
Stricker, J., Falzone, T., & Gardel, M.L. (2010). Mechanics of the
F-actin cytoskeleton. Journal of Biomechanics, 43 , 9–14.
https://doi: 10.1016/j.jbiomech.2009.09.003
Sun, Y., Chen, C.S., & Fu, J. (2012). Forcing stem cells to behave: a
biophysical perspective of the cellular microenvironment. Annual
Review of Biophysics, 41 , 519–542. https://doi:
10.1146/annurev-biophys-042910-155306
Swain, P.S., Elowitz, M.B., & Siggia, E.D. (2002). Intrinsic and
extrinsic contributions to stochasticity in gene expression.Proceedings of the National Academy of Sciences, 99,12795–12800. https://doi: 10.1073/pnas.162041399
Tajik, A., Zhang, Y., Wei, F., Sun, J., Jia, Q., Zhou, W., Singh, R.,
Khanna, N., Belmont, A.S., & Wang, N. (2016). Transcription
upregulation via force-induced direct stretching of chromatin.Nature Materials, 15 , 1287–1296. https://doi: 10.1038/nmat4729
Tewary, M., Shakiba, N., & Zandstra, P.W. (2018). Stem cell
bioengineering: building from stem cell biology. Nature Reviews
Genetics, 19 , 595–614. https://doi: 10.1038/s41576-018-0040-z
Thanuthanakhun, N., Kino-oka, M., Borwornpinyo, S., Ito, Y., & Kim,
M.H. (2021). The impact of culture dimensionality on behavioral
epigenetic memory contributing to pluripotent state of iPS cells.Journal of Cellular Physiology, 236 , 4985–4996. https://doi:
10.1002/jcp.30211
Thomas, P. (2019). Intrinsic and extrinsic noise of gene expression in
lineage trees. Scientific Reports, 9, 474. https://doi:
10.1038/s41598-018-35927-x.
Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A.,
Swiergiel, J.J., Marshall, V.S., & Jones, J.M. (1998). Embryonic stem
cell lines derived from human blastocysts. Science, 282 ,
1145–1147. https://doi: 10.1126/science.282.5391.1145
Thomas, P., Terradot, G., Danos, V. & Weiße, A. Y. (2018). Sources,
propagation and consequences of stochasticity in cellular growth.Nature Communications, 9 , 4528,
https://doi.org/10.1038/s41467-018-06912-9
Thomas, R.J., Hourd, P., & Williams, D.J. (2008). Application of
process quality engineering techniques to improve the understanding of
the in vitro processing of stem cells for therapeutic use. Journal
of Biotechnology, 136 , 148–155. https://doi:
10.1016/j.jbiotec.2008.06.009
Tottori, T., Fuji, M., & Kuroda, S. (2019). Robustness against
additional noise in cellular information transmission. Physical
Review E, 100 , 042403. https://doi: 10.1103/PhysRevE.100.042403
Vining, K.H., & Mooney, D.J. (2017). Mechanical forces direct stem cell
behaviour in development and regeneration. Nature Reviews
Molecular Cell Biology , 18, 728–742. https://doi: 10.1038/nrm.2017.108
Walker, M., Godin, M., Harden, J.L., & Pelling, A.E. (2020a). Time
dependent stress relaxation and recovery in mechanically strained 3D
microtissues. APL Bioengineering, 4 , 036107. https://doi:
10.1063/5.0002898
Walker, M., Rizzuto, P., Godin,
M., & Pelling, A.E. (2020b). Structural and mechanical remodeling of
the cytoskeleton maintains tensional homeostasis in 3D microtissues
under acute dynamic stretch. Scientific Reports, 10 , 7696.
https://doi: 10.1038/s41598-020-64725-7
Wall, M., Butler, D., El Haj, A., Bodle, J.C., Loboa, E.G., & Banes,
A.J. (2018). Key developments that impacted the field of mechanobiology
and mechanotransduction. Journal of Orthopaedic Research, 36 ,
605–619. https://doi: 10.1002/jor.23707
Webster, K.D., Ng, W.P., & Fletcher, D.A. (2014). Tensional homeostasis
in single fibroblasts. Biophysical Journal, 107 , 146–155.
https:// doi: 10.1016/j.bpj.2014.04.051
Weirich, K.L., Stam, S., Munro, E., & Gardel, M.L. (2021). Actin bundle
architecture and mechanics regulate myosin II force generation.Biophysical Journal, 120 , 1957–1970. https://doi:
10.1016/j.bpj.2021.03.026
Yamanaka S. (2020). Pluripotent stem cell-based cell therapy-promise and
challenges. Cell Stem Cell, 27 , 523–531. https://doi:
10.1016/j.stem.2020.09.014
Zalevsky, J., Lempert, L., Kranitz, H., & Mullins, R.D. (2001).
Different WASP family proteins stimulate different Arp2/3
complex-dependent actin-nucleating activities. Current Biology,
11, 1903–1913. https://doi: 10.1016/s0960-9822(01)00603-0
Zhu, Y., Ge, J., Huang, C., Liu, H., & Jiang, H. (2021). Application of
mesenchymal stem cell therapy for aging frailty: from mechanisms to
therapeutics. Theranostics, 11 , 5675–5685. https://doi:
10.7150/thno.46436