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This study considers the development of suitable models for the estimation of Life Cycle Assessment (LCA) indices of organic chemicals based on their molecular structure. The models developed here follow the well-established Group-Contribution (GC) approach and a variety of regression and non-regression methodologies are recruited to achieve the optimum correlation. These models can then be used, alongside other GC models, to screen for molecules with optimal and/or desirable properties, using appropriate molecular design synthesis algorithms. The LCA indices considered here are the Global Warming Potential (GWP), Cumulative Energy Demand (CED) and EcoIndicator 99 (EI99). The model development uses data from existing LCA databases, where each material is associated with its cradle-to-gate LCA metrics, GWP, CED and EI99. The paper presents the model development results, and applies the proposed LCA models on a typical case study for the design of LL-extraction solvents to separate an n-butanol – water mixture.
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Highlights
· Novel group contribution models for streamlining the estimation of selected cradle-to-gate life cycle assessment (LCA) metrics, GWP, CED and EI99
· Comparison and selection between state-of-the-art data science methods for optimal development of GC-based LCA-models.
· Integration of derived LCA models in existing computer-aided molecular design tool
· Design of LL extraction solvents for n-butanol – water mixture considering LCA values
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[bookmark: _Toc71920644]Introduction
As environmental awareness increases, issues regarding the environment become more complicated and modern industries focus on adopting a “greener” approach to their processes and products. In this aim, environmental tools play a significant role in evaluating the impacts of processes and products, and designing environmentally benign procedures. Life Cycle Assessment (LCA) is a “cradle to grave” method, to assess the cumulative environmental impact of industrial processes and products during all stages of a product’s life cycle, from raw material extraction, transportation and processing, until the recycle and/or disposal of the final products. This provides a more accurate overview of the environmental behavior of the product or process, and deeper insight of the true environmental trade-offs in process and product selection (SAIC, 2006). 
[bookmark: _Hlk40289273]Detailed LCA calculations can be a cumbersome task, especially at early stages of assessment, where process data are typically lacking. Streamlined LCA (Shatkin and Larsen, 2011) aims at reducing the information required in a standard LCA by using proxy data, qualitative models, regression equations etc. This simplified form of LCA has been demonstrated in a number of process related applications, such as water treatment plants (Quirante and Caballero, 2016), power plants (Moreau et al., 2012), and oil refineries (Weston et al., 2011), as well for chemical synthesis (Pereira et al., 2018, Eckelman, 2016, Curzons et al., 2007). 
Two pioneering works in this direction are those of Wernet et al., (2008, 2009) who proposed a method to estimate the life cycle impact of chemicals from molecular descriptors, using neural networks and principal component analysis for reducing the dimensionality of the predictor variables. Following the concept of this approach, some recent studies proposed improvements by selecting different molecular descriptors and neural network structures (Song et al., 2017), adding thermodynamic properties and selecting predictor variables based on mixed integer programming (Calvo-Serrano et al., 2018), integrating COSMO-based σ-profiles (Calvo-Serrano et al., 2019), adding process descriptors (Kleinekorte et al., 2019), and introducing classification methods and new data for novel biorefinery concepts (Karka et al., 2019). Kleinekorte et al., (2020) summarised the performance of these relevant methods to estimate life cycle impacts on the basis of molecular, property and process descriptors, ahead of collection of life cycle inventories. Despite the advances of the recent works, the improvement in terms of prediction accuracy compared to the work of Wernet et al., (2008, 2009) is rather marginal and only in some environmental impact categories (e.g., acidification, human health, eco-indicator-99). Furthermore, the models are developed using smaller datasets than those used in the FineChem tool proposed by Wernet et al. (2009), making in this way the cross-validation procedure for testing the generalization properties of the developed models more sensitive to overfitting. On the other hand, the main benefit of the works including process related descriptors is that they can differentiate between synthesis paths of a target molecule. Although this is a useful attribute when some information is known about the chemical synthesis paths, it is not of particular interest when this information is not available, as is the case, for instance, in earlier design steps of screening a vast number of molecular structures for particular applications (e.g., solvent design). For instance, only very recently, Papadopoulos et al., (2020) presented an approach for introducing the LCA models of Wernet et al., (2009) together with hazard assessment into computer-aided molecular design (CAMD). The benefit of this approach was the enrichment of Pareto-fronts of the corresponding multi-objective solvent design problem, however, with a significant impact on the computational performance.  
The use of CAMD techniques enables the systematic and robust screening of an enormous number of alternative molecular structures (Harini et al., 2013; Linke et al., 2015). CAMD has been considered among the promising tools to deliver cost-effective solutions for pollution reduction (Tsoka et al., 2004). CAMD tools use structure-property models to reverse engineer molecules obeying a set of property constraints. This work aims to develop models for the estimation of LCA indices of organic chemicals based on their molecular structure. These short-cut models to streamline LCA estimations, called LCA models herein, follow the well-established Group-Contribution (GC) approach to estimate cradle-to-gate LCA metrics for the production of organic chemicals, such as the Global Warming Potential (GWP), the Cumulative Energy Demand (CED) and the EcoIndicator 99 (EI99). GC models assume that the behavior of a molecule depends mainly on the functional groups participating in the molecular structure (Lydersen, 1955). Physical properties then become functions of structurally-dependent parameters, usually linear functions of the number of occurrences of the functional groups. More complicated formulae involve additional linear terms to depict the occurrences of higher order functional groups (Constantinou and Gani, 1994). GC models are available for a wide range of pure-component properties, such as critical properties (Lydersen, 1955; Joback, 1984; Constantinou and Gani, 1994), phase transition enthalpies (Marrero and Gani, 2001), phase change temperatures (Constantinou and Gani, 1994; Marrero and Gani, 2001; Joback and Reid, 1987), heat capacity and viscocity (Joback and Reid, 1987), as well as UNIFAC-based models for phase-equilibria calculations (Fredenslund et al., 1975; Gmehling, 2009). GC models provide the advantage of quick and relatively accurate estimations without requiring substantial computational resources. The general shortcomings are that in their simpler formulation they cannot distinguish among isomers (however, there are more advanced formulations overcoming this issue, in the expense of additional data and for selected thermodynamic properties, e.g., Constantinou and Gani (1994)) and the low availability of experimental data to estimate the coefficients of the GC models. 
The problem of synthesis of molecules with desirable properties assumes that we have a given set of functional groups, a given set of available GC models, and known synthesis objective(s) and constraints. The objective(s) and the constraints should be formulated mathematically in order to determine their target values and molecular structures appropriate to meet the targets. The CAMD tool considered here is the Simulated Annealing-based optimizer of Marcoulaki and Kokossis (2000a). The tool is able to consider a large number of functional groups (>100), property functions of variable complexity (e.g. UNIFAC models), as well as process simulation models. The proposed methodology was demonstrated with case studies for the optimal design of refrigerants (2000a), and solvent and polymer design (2000b). Marcoulaki et al. (2000c) introduced environmental benignity as an additional objective, using eco-toxicity models for the design of low-toxicity chemicals. Marcoulaki and coworkers expanded the method to the design of solvent mixtures (2001), and extractive fermentation solvents for biofuel production (2003). Papadopoulos and coworkers extended the tool to multi-objective problems (Papadopoulos and Linke, 2004), and designed solvents for reactive separation processes (2009), organic Rankine cycles (2010, 2013) and CO2 capture (2015).
By developing GC based models for the estimation of cradle-to-gate LCA metrics, one can readily overcome the issue of transformation of the molecular descriptors used in CAMD to those used by the streamlined LCA approaches. In general, this transformation cannot be described by “one-to-one” functions. In the state-of-the-art applications, a number of molecules has to be generated (e.g., in the form of simplified molecular-input line-entry system (SMILES)) corresponding just to one GC structure, then each SMILE, for instance, must be transformed into the specific set of molecular descriptors that the streamlined LCA model is using, before the streamlined LCA model can run for the whole set of generated molecules. All these steps must be performed for each iteration of the CAMD algorithm and can cause significant computational inefficiencies. It is therefore beneficial to develop streamlined LCA models on the basis of molecular descriptors commonly used in CAMD approaches to avoid all these intermediate transformation steps, without compromising the estimation accuracy of the state-of-the-art streamlined LCA models of this kind. Moreover, these GC based LCA models will be easily expandable for additional functional groups in the light of new LCA data and they can be readily combined with other GC based models (e.g., for thermodynamic and safety hazard properties) in any application where GC models are typically used today.
The following sections present the development of the LCA GC models and demonstrate how the new models can complement other GC tools in the quest for molecules which feature optimal and/or desirable functionality, as well as being environmentally benign. Section 2 presents the background in terms of the model development procedure, the employed database and the regression methodologies used here. Section 3 reports the regression results and the group-contribution models proposed for GWP, CED and EI99. Section 4 discusses further the proposed models. Section 5 applies the three models to the design of liquid-liquid extraction solvents, using the computer-aided molecular design optimizer of Marcoulaki and Kokossis (2000a). Section 6 concludes this work.
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This section describes the steps used here for the development of three models, one for each LCA index. Molecules are herein represented according to Marcoulaki and Kokossis (2000a), so their representation assumes an ordered set, G, of Ξ functional groups . Each molecule k is then represented by a molecular composition vector  where  denotes the frequency of group  in molecule k. For instance, if  then .
Step 0. Acquire a database, D, of molecular compounds, and their known ψ values, where Ψ{GWP, CED, EI99}. In the present case, this database comprises the Ecoinvent database and a set of compounds whose of LCA indices were estimated using the Finechem tool (Wernet et al., 2009). See section 2.2 for more details.
Step 1. Select the set DC, of D to be used for the regression. More information on why we do not use the entire database can be found in section 2.2.
Step 2. Consider a function , where F is a set of available functions, to model the index . This function will be used to predict , which is the  value of molecule k, depending on the groups present in k, and the respective values of the group contribution coefficients. So,  follows the general formulation of a group contribution model: 
		(1)
where  is the vector of group contribution coefficients for index . The  values will depend on the choices made in steps 2-5.
Step 3. Consider a regression procedure r to be applied on φ using the known LCA indices of the compounds in . Certain regression methods require additional steps, for instance if principal components regression is used, then principal component analysis (PCA) is applied prior to regression. For reasons of simplicity all these steps related to the regression are considered part of the procedure r.   
Step 4. Consider a partition of  into  and . Set  denotes the training set. There are many methods for performing the partition of a given dataset into a training and a test set. The procedure outlined here assumes random sampling and replacement (i.e. bootstrapping), hence the need for step 6. 
Step 5. Apply r on   to evaluate the coefficient vector , for index ψ and function φ. The regression scope is to obtain the coefficient values that best predict the (known) property values of the molecules in . The prediction quality is assessed by means of statistical indices calculated for the training and the test set. 
Step 6. Repeat Steps 4-5 for an adequately large sample of  partitions and calculate the vector  of average group contribution coefficients for procedure  and formulation . Average values for the employed statistical indices are also calculated.
Step 7. Repeat Steps 3-6 for all the regression methods, , and select the regression procedure that yields the best average statistics for function . The final coefficients vector  is the one corresponding to the selected (best) regression procedure. Note that different statistical indices might favor different regression procedures, so it is important to carefully select which indices will be used for the comparison.
Step 8. Repeat Steps 2-7 for all the functions in , and compare the selected statistical indices, to find the best combination of function  and coefficient vector  for index .
[bookmark: _Toc23369667][bookmark: _Toc71920647]Database
The database (D) used here comprises the Ecoinvent database and a set of compounds whose LCA indices were estimated using the Finechem tool (Wernet et al., 2009). The dataset used for the regression (DC) includes 214 compounds (aliphatic and aromatic) of known GWP/CED/EI99 values. In this database, the indices for 113 molecules are available in the Ecoinvent database. The LCA indices for the remaining 101 molecules are estimated with the Finechem tool (Wernet et al., 2009), which was developed using, among others, life cycle inventory data from industrial processes for the production of basic and fine chemicals. These 101 molecules are taken from the training set of the FineChem tool. The database includes only the molecules that can be expressed with the set of groups listed in Marcoulaki and Kokossis (2000a) but it still contains more compounds than those used by recent approaches (i.e., Song et al., (2017), Calvo-Serrano et al., (2018), Kleinekorte et al., (2019)). Molecules with a biomass origin have been excluded, because the life cycle of biomass derived products was recently shown to strongly depend on process parameters (Karka et al., 2019). This is because the majority of the available data for biomass based production of chemicals are coming from processes that are not mature or with low technology readiness level. Most of these processes are hardly optimized and definitely not in a comparable extent to those included in the dataset. A few exceptions, such as mature first generation ethanol production data, would not justify their presence in the dataset to represent this different production category.
All life cycle impact assessment metrics in this study are cradle-to-gate, where “gate” denotes the chemical product manufactured in an industrial facility. The GWP considers the production impact of a chemical to global warming (IPCC, 2013). The GWP data used here are according to the EcoInvent Report No. 3 (SCLCI, 2007), where the use of CO2 equivalents per mass unit of a specific compound is proposed. Typical GWP values range from 1 to 10kg CO2-eq/kg. The CED of a product represents the direct and indirect energy use throughout the life cycle, including the energy consumed during extraction, manufacturing and disposal of the raw and auxiliary materials (Frischknecht et al., 2006). Typical CED values span from 50 to 200MJ-eq/kg. The EI99 examines the overall environmental behavior (human health, ecosystem quality and abiotic resources depletion (MHSPE, 2000)) rather than focusing on a specific environmental impact (EI Manual, 2000). The Ecoindicator methodology weights the impacts of a product's life cycle and sums them up on a single score, the Ecoindicator (EI). The data used here are in terms of the EI99 hierarchical approach (H, A) (PRé, 2000). Typical values of EI99 lay between 0 and 1 points/kg. EI99 was selected instead of the more recent ReCiPe method to incorporate estimations of the FineChem models in the database (i.e., the FineChem tool provides estimations only for the CED, GWP and EI99 life cycle metrics). 
The final number of groups used for the model development is , since certain groups are not present in the  214 molecules of our database. Consequently, the inputs are: a matrix  storing the molecular composition vectors , and three vectors, , one for each LCA index . The model unknowns for each index Ψ consist of the group contribution coefficients vector . 
[bookmark: _Toc23369668][bookmark: _Toc71920648]Regression tools
The following six regression methodologies are used here: Multiple Linear Regression (MLR), Principal Component Regression (PCR)[footnoteRef:2], Partial Least Squares (PLS), Kriging, Radial Basis Functions (RBF), and a combination of RBF with PCA (RBF-PCA).  [2:  The term “components” with respect to the regression tools should not be confused with the chemical substances (e.g. pure components, component mixture).] 

MLR models assume a linear dependence between the descriptors and the values of the LCA index and the regression task is to minimize the residual part of the linear model (Wernet, 2008). In PCR (or MLR-PCA) we apply PCA followed by MLR of the principal components (PCs). Thus, the final model can be expressed as a linear combination of the original predictor variables. PCA is a popular multivariate technique to handle large sets of independent variables, by identifying inter-relations and projecting the original problem to a smaller vector space of uncorrelated variables, known as the PCs. The PCs are ordered according to how much variance they explain, so one can easily address the trade-off between the explained variance and the dimensionality reduction of the variables vector, and identify the optimal number of PCs (Joliffe, 2002; Sabio et al., 2012). Each PC is a linear combination of the original variables. PLS works similarly to PCR by projecting variables to a new vector space, considering, however, the explained variance of the predictor variables together with the target variables. The resulting model can be also expressed directly as a linear combination of the original predictor variables. So in the case of MLR, PCR and PLS, we can finally assume a linear correlation for Equation 1:
		(2)
For MLR and PLS the  are directly obtained from fit to Equation 2. In the case of PCR we derive  by first calculating the regression coefficients for the Principal Components (PC). Since the PCs are linear combinations of the original descriptors (i.e. the functional groups), the model is brought again to the linear form of Equation 2. 
The RBF, RBF-PCA and Kriging models involve non-linear transformations (i.e. by the Euclidean distance criterion). Note that, the PCA in PCR also provides here the PCs used in RBF-PCA. Kriging uses the observations (i.e. values of target variables) to create a grid in the vector space, so that any point in the vector space is estimated as a weighted sum of the distances between the point and the neighboring observations (Forrester et al., 2008). RBF is an adaptation of Artificial Neural Networks which works similarly to Kriging in terms of using a linear interpolation to create the vector space. In RBF the values of the target variables are only used once to define the weights of the centers of the grid (network), where the centers have been derived via unsupervised learning in the predictor variable space. Then every new point to be estimated is activated differently mainly based on which center is closer to. So in Kriging the linear function is only between the target variable and the existing values of the target variable in the training set, while in RBF neural networks the linear function is between the target variable and the activated value of a new point (that measures the distance of a new point in the input vector space to the centers of the grid). In RBF-PCA, we apply PCA to identify an adequate number of PCs and use them to derive the central points, thus a smaller grid is created (Wernet et al., 2009). 
According to the procedure in section 2.1, the regression method r, therefore, belongs to the set {MLR, PCR, PLS, Kriging, RBF, RBF-PCA}. 
[bookmark: _Toc23369669][bookmark: _Toc71920649]Model development results 
This section describes the final models and their overall statistics obtained for the GWP, the CED and the EI99 indices. The comparative analysis of these results should enable the selection of the most appropriate model for each LCA index, according to the procedure described in section 2.1. The dataset of section 2.2 is partitioned into a training set for the model development, and a test set to validate the model and estimate its predictive capability. 80% of the database entries are the training set ( = 171 compounds) and 20% are the test set (43 compounds). The total number of possible partitions is therefore roughly equal to  partitions. We assume that a sample of P = 1000 randomly generated partitions for the training and the test set is adequately large to represent this enormous population, while keeping a reasonable computational effort. 
Table 1 presents the statistical indices considered in this study, in order to assess the correlation quality and the predictive performance of the regressed models. The coefficient of determination (CoD) and the mean of the absolute values of the relative errors (μARE) are the main criteria for setting up the PCR, PLS and RBF-PCA models. Note that the μARE metric is also used by the FineChem tool and other studies. The three outperforming models, one for each LCA index, are further discussed in section 4. 
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Table 2 reports the overall statistical indices for the final versions of the six GWP Group contribution (GWP|GC) models. The overall values are calculated as the average of each statistical index over all the partitions during the training (TR) and the test (TE) phase. In particular:
GWP|MLR model: We apply a simple linear regression in step 3 of the development process (section 2.1), using as predictor variables the group decomposition data and the GWP values as target variable, for the set of  compounds. 
GWP|PCR model: In order to apply the PCA one needs to determine the optimum number of PCs (see section 2.3). Figure 1(a) displays the percentage of variance coverage versus the number of principal components (PC’s), showing that the variance coverage tends to 100% as the number of PC’s increases. The number of PC’s needs to be the smallest possible, while the covered variance needs to be as close to unity as possible to ensure reliability of the model. We concentrated on the range of 3 to 12 PC’s where 65% to 94% of the total variance is covered. Figure 1(b) shows the CoD and μARE in this range of PC numbers. Both are used here as measures of the quality of the model. Looking at the test set statistics, the maximal CoD is equal to 0.19 and is obtained using 9 PC’s. The respective μARE is equal to 88%, i.e. only 2% higher than the minimum μARE (86% for 3 PC’s). Following this analysis, the PCR results for GWP are obtained with 9 PC’s. Table 2 reports the GWP|PCR model fitting statistics.
GWP|PLS model: In the PLS process, the sets of latent input and output variables are formulated. The criterion to choose among the different number of components is the percentage of the variance that they cover. Figure 2(a) displays the variance for predictor and target variables as a function of the number of components extracted by the PLS model in order of importance. Choosing 50 over 5 components improves only by 6% the variance covered by the predictor variables, while the range of 5-10 components covers more than 90% of the variance for the target variable. Therefore, the range of 5-10 components is used to obtain the final formulation of the model. It should be noted that when a number of components in the PLS model (i.e., 5-10 in this case) covers a small percentage of the variance of the predictor variables (i.e., 30-40%) but a big percentage of the variance of the target variable (i.e., more than 90%), this shows that there is redundant variance in the predictor variables as far as the modelling target is concerned. Figure 2(b) displays the comparison results of the CoD and μARE using different number of components. Table 2 reports the GWP|PLS model statistics obtained using 10 components, where CoD and μARE are at their extreme in the range of 5-10 components, i.e., at 0.26 (maximum value) and 62% (minimum value), respectively. Note that further increase for the number of components would bring unnecessary complexion to the model. 
GWP|Kriging model: In Kriging interpolation basis functions are used to describe the correlation between observations of the target variable. In this application the basis function expression was exponential, using the Euclidean distance between the predictor variables. Kriging was applied in a regression mode (i.e., not exact interpolant) using a trial-and-error procedure for a single regression parameter (λ) and a maximum likelihood estimation for the standard Kriging model weights. Results for the Kriging method are also presented in Table 2 . The CoD has a steep drop, from 0.97 during training (notably the highest CoD in this analysis) to only 0.10 during testing, which is approximately the lower limit for statistical significance for the CoD metric (i.e., for the size of the testing set and 99% confidence level). In terms of μARE metric, this model shows the smallest average of the absolute values of relative error (32%) for the training set and the biggest increase for the test set (from 32% to 53%). The 32% is not by itself an indication of overfitting, and a 53% error would be fine for environmental assessment. However, these values when combined with the CoD results become indicative of overfitting.
GWP|RBF model: In the RBF method, the density of the grid of the model predictor variables can be determined using heuristics or optimised in a supervised learning approach (e.g., the concept of supervised learning is used in PCR if the number of principal components are selected based on the performance of the PCR model, for instance by applying sensitivity analysis like in this work, and not solely on the variance covered by the principal components). In this work, the density of the grid of the predictor variables was set to be proportional to the maximum value of a group’s occurrences in the molecules of the training set. It should be noted that the activated centers of this grid are always selected by unsupervised learning in the first step of the RBF training algorithm, regardless of the way the grid is developed. Table 2 reports the GWP|RBF model fitting statistics, which are in general similar but slightly worse than those obtained by the PLS model.
GWP|RBF-PCA model: According to the GWP|RBF-PCA analysis, the use of 9 PCs is recommended (i.e., see also Figure 1). Regarding the density of the grid, all predictor variables are divided equally into 5-10 intervals, and Figure 3 presents the comparison between models developed for different numbers of intervals in the training and test set. The use of 5 intervals appears the best option in terms of both CoD and μARE according to the testing phase results. In this case the density of the grid is evenly distributed for every variable (i.e., PC) because the heuristic used in the case of RBF (i.e., based on the number of occurrences) is not readily applicable when PCs are used as predictor variables in the place of original variables. Results for the GWP|RBF-PCA model are also presented in Table 2; they are generally very similar to those of the PCR model, which shows that for this data set the way that the dimensionality reduction is performed (i.e., PCR versus PLS) is more important than subsequently imposing a linear or nonlinear functional form between the target and the predictor variables.
In summary, there is a somewhat better performance in the PLS and RBF models, while the Kriging method performs even worse than MLR in terms of overfitting. The low performance of PCA in the PCR and RBF-PCA models (though they do not overfit) can be partly explained by the behavior of PLS. Indeed, in PLS a small variance of the input variables is enough for covering most of the variance of the output variables, which means that selecting PCs that cover the most variance of the input variables is not the best strategy for our data set. Also looking at Table 2, the proposed GC model for GWP, denoted as GWP|GC, is derived using the PLS method with 10 components. GWP|GC features μARE = 62% and CoD = 0.26 during the testing phase, and Table 3 presents the fitted values of the Ξ = 57 group contribution coefficients of the model.   
[bookmark: _Toc23369671][bookmark: _Toc71920651]Modeling the CED index
Table 4 gives the overall final statistics for the CED models using a similar procedure as in section 3.1 and 1000 randomly generated partitions for training and testing. In addition, for the: 
CED|PCR model: The variance covered by PC’s remains the same, as in GWP, since it refers to the variance of the input matrix which is the same for all models. The results’ comparison between 3 to 12 PCs is displayed in Figure 4, indicating that the best option according to the CoD (0.24) and μΑRE (0.56) trade-offs is to use 9 PC’s. 
CED|PLS model: Figure 5(a) displays the variance covered by the number of components for the input and output variables. Figure 5(b) displays the results comparison for 5 to 10 components. The trends and remarks are similar to the GWP/PLS model; the use of 10 components provides the best trade-off between correlation quality and errors, while a significant percentage of redundant variance of the input variables with respect to the target variable is observed. 
CED|RBF-PCA model: The comparison for different numbers of grid intervals is presented in Figure 6. Using 5 intervals proves to yield the highest CoD value, according to the CoD and μΑRE in the testing phase, and it is chosen as the optimal option. 
Similarly to GWP, the resulting six CED models are compared in terms of their CoD and μARE to find the best model. According to Table 4, CED|PLS achieves the optimum balance between correlation quality (CoD = 0.32) and μARE (40%), so the CED|GC model proposed here is according to the PLS method using 10 components. Table 5 presents the fitted values of the Ξ = 57 group contribution coefficients of the GWP|GC model.    
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Table 6 gives the overall final statistics for the EI99 models. In addition to previous observations during the GWP and CED analyses, for the:
EI99|PCR model: The results’ comparison between 3-12 PC’s is displayed in Figure 7. The selected number of PC’s is 10, with μARE equal to 43% and CoD equal to 0.12 for the testing phase. 
EI99|PLS model: The variance covered by the number of components is plotted in Figure 8(a). Results for 5-10 components are displayed in Figure 8(b). The obtained CoD values in the testing phase range between 0.19 and 0.26. The selected number of PC’s is 10, with μARE and CoD equal to 38% (minimum) and 0.24 for the testing phase, respectively.
EI99|RBF-PCA model: Figure 9 presents the comparison between models developed by different numbers of grid intervals. In the whole range of 5 to 10 grid intervals the μARE ranges between 44% and 45% and the CoD between 0.07 and 0.09. So we select the less complex model in this case, using 5 subspaces (similar to the GWP|RBF-PCA and CED|RBF-PCA models. 
Similarly to the GWP and CED models, the six EI99 models are compared in terms of their CoD to find the best model. According to Table 6, the PLS method achieves again the optimum balance between correlation quality and average relative error during testing, so this is proposed here as the EI99|GC model. Table 7 presents the fitted values of the Ξ = 57 group contribution coefficients of the EI99|GC model.
[bookmark: _Toc23369677][bookmark: _Toc71920653]Discussion on the models 
As presented in section 3, in all three indices, the correlations developed using the 10-components PLS method are found to exhibit the best statistical behavior. The absolute relative errors of the LCA GC models developed here is higher than those of standard Group Contribution tools for pure components, which can reach up to 12% (Hukkerikar et al., 2012). This is expected since cradle-to-gate LCA metrics for the production of chemicals is a different, more challenging task compared to the estimation of physical properties of pure compounds, which is further restricted by data availability (i.e., the 214 compounds used in this study is a good starting point that requires significance enrichment to result in more accurate estimations) So the proposed models can only be used for a qualitative or semi-quantitative assessment of a compound’s environmental impact over its life cycle. Like other contribution models, they are suitable to use in optimization tasks (see section 5), where the trend is more important than the actual value of a compound property (Marcoulaki & Kokossis, 2000b, 2000c).
Nevertheless, the models proposed in this work have comparable performance to the respective state-of-the-art models proposed in literature (Table 8), while being GC models and thus more suitable to be used in CAMD applications. The CoD of the GWP|GC lies within the range of the linear and non-linear models (from negative values to 0.37) developed by Wernet et al. (2008), the non-linear models of the FineChem tool (0.18-0.64) developed by Wernet et al. (2009) and the non-linear models (0.25-0.30) developed by Kleinekorte et al. (2019). Similar values are also obtained when these models are compared in terms of μARE (i.e., 62% in this work compared to 58% in the work of Wernet et al. (2009), 50%-88% in the work of Song et al. (2017), and 30-50% in the works of Calvo-Serrano et al. (2018, 2019). It should be noted that with respect to correlation between model estimations and target values for the testing phase, some of the previous works report R2 Pearson and Spearman metrics instead of CoD. For instance, the R2 Pearson for the GWP|GC model in this work is 0.43, which lies in the range of 0.21-0.48 reported by Song et al. (2017), while the R2 Spearman in the works of Calvo-Serrano et al. (2018, 2019) ranges from 0.2 to 0.55.
The CoD of the CED|GC lies within the range of the linear models (0.01 to 0.43) developed by Wernet et al. (2008) but is smaller than the values reported by the FineChem tool (0.45-0.71) developed by Wernet et al. (2009). In terms of μARE, the CED|GC performance is somewhat worse when compared to the 22%-30% error reported in the works of Wernet et al. (2008, 2009) and the 16%-31% error reported in the works of Calvo-Serrano et al. (2018, 2019) but it has similar performance when compared to the model proposed by Song et al. (2017). In terms of R2 Pearson and Spearman metrics, the CED|GC model in this work achieves an R2 Pearson of 0.55, which is somewhat better than the range (0.45-0.52) reported by Song et al. (2017), while the R2 Spearman in the works of Calvo-Serrano et al. (2018, 2019) ranges from 0.5 to 0.6.
The CoD of the EI99|GC lies within the range of the linear models (negative to 0.46) developed by Wernet et al. (2008) but is smaller than the values reported by the FineChem tool (0.57-0.81) developed by Wernet et al. (2009). In terms of μARE, the EI99|GC performance does not reach the 20% error reported in the works of Wernet et al. (2008, 2009) and the 20%-31% error reported in the works of Calvo-Serrano et al. (2018, 2019) but has similar performance when compared to the error (20% to 50%) of the models proposed by Song et al. (2017). In terms of R2 Pearson and Spearman metrics, the EI99|GC model in this work achieves an R2 Pearson of 0.35, which is worse than the respective metric (0.72-0.87) reported by Song et al. (2017), while the R2 Spearman in the works of Calvo-Serrano et al. (2018, 2019) ranges from 0.5 to 0.67.
The robustness of the obtained models can be significantly improved by increasing the number of observation data. For instance, by extending the dataset to include more compounds, the number of observations correlated with descriptors would increase, thus increasing the ratio of the number of observations over the number of variables. All these would lead to better regression statistics and improve the predictive behavior of the derived LCA models. In addition, the use of larger datasets could provide a more uniform distribution of LCA values in the input data. Currently, the majority of compounds exhibit low to medium values, with only few outliers exhibiting much higher LCA values. This lack of uniformity introduces biases and has a considerable effect on the performance of the models especially in the underrepresented area between medium and very high LCA values. In view of the constant expansion of available molecules in LCA databases, if the same approach is followed in the future, the derived models could have broader predictive scope and provide more reliable results. 
Increased data availability could also enable the consideration of interactions between the functional groups. This was not statistically feasible with the limited amount of data available in the present work, leaving linear correlations as the only option. The use of non-linear correlations together with an appropriately large dataset could improve the fit statistics, as well as tackle non-additivity effects stemming from the presence of multiple group types. 
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We herein consider the design of appropriate solvents S to facilitate the separation of a binary mixture composed of two compounds A and B. This is a benchmark problem for the CAMD approach, and generally involves liquid-liquid extraction (Marcoulaki and Kokossis, 2000a, 2000b), extractive distillation (Marcoulaki and Kokossis, 2000b), extractive fermentation (Marcoulaki and Batzias, 2003) or gas absorption (Marcoulaki and Kokossis, 2000b). Marcoulaki et al. (2001) expanded their CAMD tool to design mixtures of solvents, and presented demonstrations in extractive distillation and liquid extraction processes. These design problems usually consider a multitude of desirable ranges for various properties which are considered very important to the overall process efficiency, and are directly calculated from the activity coefficient of the mixture (Marcoulaki and Kokossis, 2000b). The following properties are considered here:
· The solvent selectivity is linked with the cost of the solute recovery unit (higher selectivity values, lower unit cost):   
· The solute distribution coefficient determines the size of the extractor unit and the required amount of solvent:   
· The solvent losses determine the immiscibility between the raffinate and the extract: 
The subscripts “A”, “B” and “S” denote the extract, the raffinate and the solvent, respectively. The activity coefficients (γ) refer to infinite dilution and temperature equal to 298K, and can be estimated using the UNIFAC method. 
The present demonstration considers the liquid-liquid extraction of an n-butanol-water mixture, where n-butanol is the extract and water is the raffinate. The optimum solvent must achieve the maximum solute distribution coefficient (M), in order to maximize the extract gain in the extract-solvent mixture. The solvent selectivity must be adequately high, in order to minimize the quantity of water in the extract and also, solvent losses must be sufficiently low, in order to minimize the amount of solvent in the raffinate phase. Finally, the boiling temperature difference (ΔTb) between the solvent and the extract must be high enough to ensure that the solvent is efficiently recovered from the solvent-extract mixture using simple distillation, and reduce the possibility of azeotropes. We consider three cases, without additional constraints for the three LCA indices, with loose constraints and with stricter LCA constraints, as presented in Table 9. In all three cases, the objective function of the minimization problem is formulated as the inverse of M. The optimal search involves the 57 functional groups which participated in the model development process of Section 3 (see Tables 3, 5 and 7). The optimizer parameters are taken from Marcoulaki and Kokossis (2000b).
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The obtained group contribution vectors are reported in Table 10 along with a possible instance of the molecular structure. Table 11 provides the property values for each vector, and indicates the case where this vector was obtained. As expected, when the LCA criteria are included, they guide the search to different sets of solutions. S10 is an exception to this rule, since it is obtained in the Base case and LCA1 case. In Table 11, as we move from the Base case to LCA1 and LCA2, the range of M is gradually decreasing from 12.7-7.1 to 11.1-7.1 and finally 8.8-6.9, respectively. A similar trend is observed in , though  is not linked to M: Base: 175-24, LCA1: 121-13, LCA2: 27-17. The ranges of  (roughly 450-500K) obtained under the three cases do not change much. For , the ranges of the Base case and LCA1 are similar (0.04-0.1), but the minimum in LCA2 drops below 0.2.
Under the Base case and the LCA1 case, the optimizer converges mainly to solutions that contain the nitrile group. Nitriles exhibit very low environmental efficiency and are proven to cause a series of considerable negative effects in air, soil and water (Mao et al, 2010). Looking at Tables 3, 5 and 7, the LCA model coefficients for -CH2-CN are 1.68 kg CO2-eq / kg (GWP), 54.44 MJ-eq/kg (CED) and 0.1715 (EI99), respectively. These values, put the contribution coefficients of the –CH2-CN group in the top 20% of GWP and CED coefficients, and nearly the top 10% of EI99 coefficients. As environmental constraints become stricter in LCA2, the nitriles are replaced by the AC-CH2 and CH-NH2 groups which have negative contributions in GWP and CED. In terms of EI99, AC-CH2 is again negatively correlated. These negative contributions may result to negative LCA indices, as in the case of S20. It should be noted that, it is possible to have negative LCA indices if the substitution approach is used in the LCA models. However, in our case we did not consider this kind of models neither when taking data from Ecoinvent nor when the FineChem tool was applied (instead we used the standard allocation approach of Ecoinvent). Moreover, molecules such as S19 and S20 are not readily available in commercial LCA databases (e.g., Ecoinvent), thus making it difficult to estimate the error of these estimations. Nevertheless, the structure of the GC models provides insights with respect to the origin of “peculiar” LCA metrics and thus the focus of future improvement in the light of more data. 
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This work develops functional group contribution models for LCA indices, to estimate the life cycle environmental behavior of compounds that are currently not present in LCA databases. The selected indices are the Global Warming Potential, the Cumulative Energy Demand and the Ecoindicator 99. The employed database includes experimental data from the Ecoinvent database as well as outputs of the Finechem tool. Six different regression methods (namely MLR, PCR, PLS, Kriging, RBF and RBF-PCA) are tested for each index, to identify the method giving the best linear fit per index. The error range of the derived models is in the typical range for group contribution approaches. Better correlations can be achieved in the future, since the LCA databases are constantly populated with new substances. 
Likewise other group contribution methods, the developed models can be embedded in computer-aided molecular design tools, so that environmental issues can be addressed at the early stages of molecular design, along with other desirable properties. A case study is presented here, to demonstrate the applicability of the developed models on the design of liquid-liquid extraction solvent to separate a mixture of n-butanol (extract) and water (raffinate). The problem is solved using various constraints including different upper limits in LCA values. The obtained results indicate the tradeoffs between environmental behavior and process related objectives, and that different constraints lead to different sets of optimal molecular designs. In effect, in the absence of environmental constraints, the algorithm suggests molecules with proven harmful effects, such as nitriles. These are replaced with more environmentally friendly compounds after the addition of LCA criteria. 
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