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ABSTRACT
[bookmark: OLE_LINK40]Solution crystallization is an important separation unit operation in active pharmaceutical ingredient (API) production. Solvent is one of the important factors affecting crystal morphology. How to select/design suitable crystallization solvents is still one of the most urgent problems in the crystallization field. In this paper, a framework for crystallization solvent design based on the developed quantitative control model of crystal morphology is proposed. First, molecular dynamics is used to predict the crystal morphology in solvents. Next, nine solvent descriptors are selected. Then, the quantitative relationship between crystal aspect ratio and solvent descriptors is developed. Subsequently, Computer-Aided Molecular Design (CAMD) method is integrated with the developed quantitative control model. The crystallization solvent design problem is expressed as a Mixed-Integer Non-Linear Programming (MINLP) model, which is solved by the decomposition algorithm. Finally, the crystallization solvent design framework is applied to two cases: benzoic acid and ibuprofen, and experimental verification is implemented.
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1. Introduction
[bookmark: OLE_LINK27][bookmark: OLE_LINK1][bookmark: OLE_LINK2]Crystal morphology refers to the appearance of the crystalline material, which is determined by the internal structure of the crystal and the external environment. In pharmaceutical crystallization processes, the processing and packaging operations (such as product separation, packaging, transportation and storage), as well as drug solubility, bioavailability, preparation technology and efficacy, etc. can be improved through the control of crystal morphology1,2. Crystal morphology is affected by factors such as temperature, supersaturation, pH, solvent type, additives and impurities. Among them, solvent is one of the most import factors that should be taken into account3,4. Therefore, the selection/design of suitable crystallization solvents that can simultaneously meet the requirements of crystal morphology, yield and green safety is an important but difficult problem in the field of crystallization. Although the selection of crystallization solvents that meet the product quality can be carried out through experiments, it still has serious shortcomings because the experimental process can be expensive and time-consuming. Therefore, the use of effective model-based methods and validated models for the design of crystallization solvents are options worth considering.
Computer-Aided Molecular Design (CAMD) technology has been proposed for screening of crystallization solvents5-8. The principle of the CAMD methodology is shown in Figure 1. First, Quantitative Structure-Property Relationship (QSPR) between molecular structure and its macroscopic properties is established by using different methods such as Group Contribution (GC) methods9,10, Quantum Mechanics (QM)11, etc. to predict the properties of molecules with known structures. On this basis, with the given target properties of molecules, the molecular structures which meet the requirements of these target properties can be screened/designed12.
[image: ]
Figure 1. The schematic diagram of CAMD methodology12

Since the CAMD method was proposed for designing extractant for the liquid-liquid extraction process13, it has been widely used in extractive14,15, absorption16,17, distillation18,19, crystallization5,6 and many other fields20-23. Karunanithi et al.5,6 used CAMD method to design suitable crystallization solvents for ibuprofen and other carboxylic acids, taking the maximum crystal yield as the objective function and considering related solvent properties (such as normal melting point, normal boiling point, miscibility) and the solid-liquid equilibrium equation. In their method, the solubility parameters and viscosity were used to quantify the effects of the solvent on crystal morphology. Although the above methods provide valuable references for the crystallization solvents design, the quantitative control of crystal morphology is still far from accurately and quantitatively describing the mechanism of solvent type on crystal growth, and to reveal the mechanism of solvent on crystal growth from mesoscopic scale. Therefore, in terms of quantitative control of crystal morphology, further research on crystallization solvents design is needed.
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]In recent years, the widespread application of molecular simulation technology has provided researchers with new points for studying crystal growth processes. This technology can be used to analyze the relationship between the internal structure of the crystal, the external environment and the macroscopic morphology of the crystal24. In order to predict the crystal morphology, many theoretical methods have been proposed, such as the pioneering Bravais-Friedel-Donnay-Harker (BFDH) rule25, the periodic bond chain (PBC) theory26 and the attachment energy (AE) model27. However, these theoretical models only consider the influence of crystal internal structure on crystal morphology, which are obviously not suitable for predicting crystal growth in solution. To overcome this problem, researchers have modified the theoretical models. Among them, the modified attachment energy (MAE) model is the most widely used one which is obtained by modifying the attachment energy (AE) model. Duan et al.4 used the MAE model to predict the crystal morphology of 1,3,5,7-tetranitor-1,3,5,7-tetraazacyclooctane (HMX) in acetone, and compared the obtained computational results with the experimental results, which were in good agreement. Liang et al.28 adopted the MAE model to predict the crystal morphology of dirithromycin in 5 solvents, and explored the influence of solvents with different polarity and hydrogen bond donor/acceptor ability on crystal habit. The experimental results are in good agreement with the predicted results, which proves the applicability and accuracy of the MAE model. Liang et al2 predicted the crystal morphology of benzoic acid in 6 solvents by using the MAE model, and explored the variation law of the aspect ratio of benzoic acid with the properties (polarity, permittivity, solubility, molecule weight, evaporation rate, vapor pressure) of solvents. The results show that under infinitely low supersaturation, the aspect ratio of the predicted crystal morphology is mainly determined by the polarity of the solvent. Subsequently, Wang and Liang29 studied the crystal morphology of benzoic acid in 12 solvents, and fitted the equations of aspect ratio with relative solvent polarity, molecular size and solubility, respectively. This study provides a quantitative relationship for the design of crystallization solvents based on the quantitative control of crystal morphology. However, it is difficult to obtain the solvent descriptors, for example, the relative polarity of some solvents cannot be obtained by consulting the literature, which can only be obtained by experiments. Chen et al.30 used the MAE model to predict the crystal morphology of 5,5’-bisterazole-1,1’-diolate (TKX-50) in 6 solvents, and further correlated the empirical formula of aspect ratio with solvent polarity and the root mean square value of diffusion coefficient. However, there are limited solvents to guarantee the expansibility of the empirical formula. Besides, the diffusion coefficient was calculated by molecular dynamics, which is very time-consuming. To sum up, the determination of appropriate descriptors and establishing accurate and universal quantitative control models for crystal morphology is one of the current research hotspots in the crystallization solvent design. 
[bookmark: OLE_LINK28]In this paper, a framework for the design of crystallization solvent based on the quantitative control model of crystal morphology is proposed. In section two, molecular dynamics is used to explore the mechanism of solvents on crystal morphology and establish a quantitative control model of crystal morphology by selecting appropriate solvent descriptors. In section three, the CAMD method is integrated with the developed quantitative control model of crystal morphology. The crystallization solvent design problem is expressed as a MINLP model, which is solved by the decomposition algorithm5. In section four, the proposed framework is evaluated by two crystallization solvent design case studies: benzoic acid and ibuprofen.
[bookmark: OLE_LINK16]2. Construction of quantitative control model of crystal morphology
In this section, a quantitative control model of crystal morphology is proposed, as shown in Figure 2. With this quantitative control model, the crystal morphology of different crystallization solvents can be predicted. 
[image: ]
Figure 2. Flow chart of the construction of quantitative control model of crystal morphology

The flow chart (Figure 2) for constructing the quantitative control model of crystal morphology is briefly explained as follows:
(a) According to the AE model, the crystal morphology of solute and the attachment energy of each crystal surface is first predicted in vacuum.
(b) The influence of solvent on crystal morphology is further considered by the MAE model. By considering the interaction between the solvent molecules and crystal surfaces, the attachment energy () of the main crystal surfaces obtained in step (a) is corrected, and finally the crystal morphology and aspect ratio under the solvent condition are obtained.
(c) The appropriate solvent descriptors are determined by literature research and theoretical analysis, which are obtained by the COnductor-like Screening MOdel for Segment Activity Coefficient (COSMO-SAC) model31 and the Group Contribution (GC) method9,10.
(d) The quantitative control model of crystal morphology is established by fitting the equation between crystal aspect ratio and solvent descriptors with least square method from the prediction results of different solvents.
2.1 Molecular dynamic simulation
In 1980, Hartman and Bennema27 proposed the AE model. The attachment energy () is defined as the energy released on attachment of a growth slice to a growing crystal surface, as shown in Eq (1).
	
	(1)


[bookmark: OLE_LINK21]Here,  is the lattice energy of the crystal.  is the energy of a growth slice of thickness . The AE model proposes that the lower the attachment energy, the slower the relative growth rate of the crystal surface, that is, the relative growth rate of crystal surface is proportional to the absolute value of the attachment energy, as shown in Eq (2).
	
	(2)


However, the AE model can only predict the crystal morphology in vacuum, without considering the influence of the solvent. In modified attachment energy (MAE) model, the solvent effect is considered by calculating the solvent/crystal interaction energy . In MAE model, the relative growth rate of crystal surface is still proportional to the modified attachment energy (), as shown in Eq (3).
	
	(3)


Here, S is the correction factor, which reflects the surface features and the roughness of face, as shown in Eq. (4).  describes the energy of the solvent binding on the crystal surface and is defined by Eq. (5).
	
	(4)

	
	(5)


Where  is the accessible solvent surface of the crystal layer, which can be obtained by calculating the Connoly surface.  is the surface area of crystal layer,  represents the total area of the modeling box and N is the number of solute molecules in each crystal layer. The interaction energy () between the crystal layer and the solution layer is determined by Eq. (6).
	
	(6)


Where ,  and  represent the energy values of the modeling box, crystal layer and solvent layer, respectively, which is determined by molecular dynamics (MD). 
2.2 Selection of solvent descriptors
[bookmark: OLE_LINK22]In the past decade, many researchers have used the MAE model to predict the crystal morphology in solution, and found that the solvent has a significant effect on the crystal morphology2,4,28-30. However, it is still unclear which solvent properties are the main factors. It is very important to quantify the effect of solvent on crystal morphology. However, the existing models have the disadvantages of poor accuracy and narrow application scope, which are mainly due to the inappropriate selection of solvent descriptors and limited simulation data points. At present, researchers have found that the polarity, molecular size, solubility, hydrogen bond donor/acceptor, diffusion coefficient and other solvent physical properties affect the crystal morphology2,29,30,32. However, some physical properties are difficult to obtain, for example, the solvent polarity needs to be obtained from experiment, while the diffusion coefficient needs to be obtained from molecular dynamic simulation, which is time-consuming.
Through literature and theoretical analysis2,29,30,32, nine solvent descriptors including infinite dilution activity coefficient (), Hansen dispersive solubility parameter (), Hansen polar solubility parameter (), Hansen hydrogen-bond solubility parameter (), solvent molar volume (), surface tension (ST), dielectric constant (DC), hydrogen bond donor (HBD), hydrogen bond acceptor (HBA) are selected in this paper. The general form of the quantitative relationship between the crystal aspect ratio and solvent descriptors is shown in Eq. (7).
	
	(7)


The infinite dilution activity coefficient () is used to explore the interaction between crystal molecules and crystallization solvents, which reflects the non-ideality of the solution where the solute molecules are completely surrounded by the solvent. The infinite dilution activity coefficient can be obtained through COSMO-SAC model.
Hansen solubility parameter is used to quantify the affinity between substances, which can be divided into three terms: dispersion force term (), polarity force term () and hydrogen-bonding force term (). The dispersive force term () describes the weak attraction between the instantaneous dipole moments of nonpolar molecules when they are close to each other. The dispersive force exists among all molecules. The polar force term () describes the intermolecular forces caused by the inherent dipole moments, which are important to almost all types of molecules except for some hydrocarbons and some molecules containing only carbon and fluorine. The hydrogen-bonding force term () is essentially polar force, but it is measured separately because of its special structure. Hydrogen-bonding forces can generally be considered to describe electronic exchange. The three Hansen solubility parameters (, , ) can be used to represent the dispersion forces, polarity forces and hydrogen bond interactions between molecules during crystallization, which are predicted by the GC method.
Cohesive energy density (CED) is the energy required for vaporization of 1 mol condensate per unit volume to overcome the intermolecular force, which mainly reflects the interaction between groups. The CED is determined by the solvent molar volume and surface tension, as shown in Eq. (8), where C represents a molecular structure constant. In addition, in Eq. (4), the accessible solvent surface () refers to the surface area of a small ball with the same size as the solvent molecule rolling on the surface of van der Waals force, which is affected by the solvent molecule size. Therefore, the solvent molar volume () and surface tension (ST) are also considered, and their values can be predicted by the GC method.
	
	(8)


The polarity of solvent has a great influence on the crystal morphology, but it is usually obtained by experiments, which is very time-consuming. It is well known that the polarity of solvent is related to dielectric constant. The medium in the external electric field will generate induced charges and weaken the electric field. The dielectric constant (DC) refers to the ratio of the electric field in the medium to the original external electric field (in vacuum). The greater the dielectric constant, the greater the polarity, and vice versa. Therefore, the dielectric constant that can be predicted by the GC method is used to reflect the polarity of solvent.
Hydrogen bond acidity A and basicity B indicate the ability of hydrogen bond donor (HBD) and acceptor (HBA) in forming hydrogen bonds. Usually, A and B are obtained through experiments, which limits their application. To overcome this problem, HBD and HBA (both can be predicted by GC method) are selected to replace A and B.
Based on the crystal aspect ratio (calculated by molecular dynamics) and the above nine solvent descriptors, Eq. (7) can be obtained by regression with the least square method.
3. Crystallization solvent design: Integration of CAMD with the quantitative control model of crystal morphology
In this section, the quantitative control model of crystal morphology (Section 2) is integrated with the CAMD model. The framework of the crystallization solvent design is shown in Figure 3.
[image: ]
Fig. 3. Framework for crystallization solvent design

(a). Determine design requirements. The main concerns of crystallization solvent design include the product performance (purity, yield, crystal habit, particle size distribution, color, etc.), operating conditions (temperature, pressure, stirring, etc.), safety, toxicity, etc.
(b). Convert design requirements to properties. The properties of crystallization solvent are identified by design needs. For example, product purity and yield can be determined by solid-liquid phase equilibrium (SLE) and solubility parameter. The crystal morphology can be constrained by quantitative control model (in Section 2). The proper choice of normal melting point and normal boiling point ensures that the solvent remains liquid during the crystallization process. Flash point and Lethal Concentration 50 (LC50) can be used to quantify the toxicity and safety of the solvent. The properties of the solvent can be obtained by database search, GC method, COSMO-SAC model and so on.
(c). Mixed-Integer Non-Linear Programming (MINLP) model. The CAMD problem can be expressed as an MINLP model with the objective function (Maximize the product yield), molecular structure constraints, solvent linear and/or nonlinear property constraints.
[bookmark: _Hlk66791523](d). Decomposition algorithm (DA). The crystallization solvent design problem is decomposed into multiple subproblems by the decomposition algorithm. First, a list of feasible solutions are obtained by solving the linear constraints. Then, the feasible solutions are verified one by one with nonlinear and nonconvex constraints. Finally, according to the objective function values, the feasible solutions satisfying all constraints are retained and sorted. Among them, the quantitative control model is used to predict the crystal aspect ratio of solute in candidate solvents.
(e). Experiment verification. Crystallization experiments are carried out with the candidate solvents designed/selected from the CAMD model to obtain the crystal morphology in different solvents, and the experimental results are compared with the simulation results.
3.1. MINLP model for crystallization solvent design
Based on the quantitative control model and COSMO-SAC method, the CAMD problem is formulated as an MINLP model, as shown in Eqs. (9-19). The constraints include feasibility of molecular structures, solvent properties and crystallization process equations.
	Max: 
	(9)

	s.t.
	

	Structure constraints: 
	(10)

	Molecular weight  (g/mol): 
	(11)

	Normal melting point  (K): 
	(12)

	Normal boiling point  (K): 
	(13)

	Flash point  (K): 
	(14)

	Hildebrand solubility parameter  (MPa1/2): 
	(15)

	[bookmark: OLE_LINK18]Fathead Minnow 96-hr LC50: 
	(16)

	Solid-liquid phase equilibrium: 
	(17)

	Activity coefficients  (COSMO-SAC): 
	(18)

	Crystal aspect ratio:

	(19)


[bookmark: OLE_LINK17]The objective function is defined as maximizing the potential yield (PR%), as shown in Eq. (9). Here,  and  are weight fraction solubilities at low and high temperatures, respectively. m represents the solvent molecule. Eq. (10) is the structural constraint, which includes the octet rule and complexity constraints22. Eqs. (11-16) are property constraints, which are restricted to meet the requirements of operability, safety and low toxicity of the crystallization solvent. Eqs. (17-19) are process constraints, according to which the solubility of each compound is predicted by the pure compound properties of the solute (, Tm) and the liquid phase activity coefficients of the compounds in the solution. Eq. (19) is obtained from Section 2, where , , , , , ,  and  are predicted by the GC method (see Table S1 in Supporting Information), and  is obtained by the COSMO-SAC model31.
3.2. Solution strategy 
The crystallization solvent design problem is expressed as an MINLP model and integrated with the quantitative control model and COSMO-SAC equations. Among them, the equations of the COSMO-SAC model for calculating  and  are nonlinear constraints, which make the MINLP model difficult in searching for the optimal crystallization solvents with feasible molecular structures and all property constraints simultaneously. Therefore, decomposition algorithm (DA) is employed, which decomposes the MINLP model into three sub-problems.
Sub-problem 1: molecular structural constraints (octet rule and chemical complexity constraints) are first considered to generate a certain number of feasible molecular structures from an ergodic combination of all functional groups by mathematical programming method. All molecules satisfying these constraints are further considered in sub-problem 2.
Sub-problem 2: the solvent properties (, , , , , LC50) are calculated by the GC method for the molecules obtained in sub-problem 1. The molecules from sub-problem 1 are screened by the upper and lower limits of the solvent properties, and the molecules meet the property constraints are proceed to sub-problem 3. In addition, , , , , , ,  and  are predicted by the GC method to provide descriptors for the quantitative control model.
Sub-problem 3: The nonlinear properties of the interaction between candidate solvents and solutes ( and ) are calculated individually from the COSMO-SAC model. Based on the obtained model parameters, the potential yield (PR%) and aspect ratio (AR) are calculated by Eq. (9) and Eq. (19).
[bookmark: OLE_LINK12]By using the decomposition algorithm, the top ranked candidate solvents are obtained and further verified by experiments. It should be noted that as long as all feasible solutions are obtained for sub-problem 1, global optimal solution is guaranteed from the decomposition algorithm.
4. Case studies
[bookmark: OLE_LINK23]In this section, the crystallization solvent design of benzoic acid and ibuprofen are taken as case studies to verify the proposed crystallization solvent design framework. First, molecular dynamics (MD) is used to predict the crystal morphology of benzoic acid and ibuprofen in different solvents, and the quantitative control model of crystal morphology is established by selecting appropriate solvent descriptors. Next, the developed quantitative control model is coupled with the CAMD model to design the optimal crystallization solvents, and finally the design results are verified through experiments.
4.1 Crystallization solvent design of benzoic acid 
Benzoic acid (BA) is one of the simplest aromatic acids, and its carboxyl group directly forms a bond with the carbon atom on the benzene ring. Benzoic acid is mainly used in the production of medicines, dye carriers and perfumes, etc. 
The unit cell structure of benzoic acid is obtained from the Cambridge Structural Database (No. BENZAC02). As shown in Figure 4, it belongs to monoclinic system. The unit cell is composed of four benzoic acid molecules with cell parameters of a = 5.500 Å, b = 5.128 Å, c = 21.950 Å, α = γ = 90° and β = 97.370°, respectively. 
[image: C:\Users\shiyang\AppData\Local\Temp\1619397685(1).png]
Figure 4. Unit cell of benzoic acid

4.1.1 Simulation details
All the calculations are performed in Material Studio 2017 R2. First, the unit cell of benzoic acid is optimized in Forcite module. Then, the ideal crystal habit in the vacuum can be predicted by the growth morphology method in Morphology module based on the AE model, and the basic information of crystal faces, such as inherent symmetry multiplicities, interplanar distances , surface areas A and attachment energy , can also be obtained (see Table S2 in Supporting Information). The ideal crystal habit of benzoic acid is shown in Figure 5. 
[image: ]
Figure 5. Ideal crystal habit of benzoic acid

The microstructure of each main crystal surface at the atomic and molecular level is shown in Figure 6, which shows that different exposed groups of each crystal surface lead to different crystal surface roughness.
[image: ]
Figure 6. Main crystal surface structure of benzoic acid ideal crystal habit (C: gray, H: white, O: red)

The morphological import surfaces are cleaved with a depth of . The corresponding crystal layer is built as a superstructure of  unit cell and its Connoly surface created to calculate the accessible solvent surface (). Next, the amorphous unit cell of 200 solvent molecules is established with the same dimensions in the a and b directions as the crystal surface layer, which is the solvent layer. Then, a modeling box is created by placing the solvent layer on top of the crystal surface layer, the spacing between the layers is 0.2 nm, and the thickness of the vacuum layer is 0.3 nm. Finally, the crystal layer, solvent layer and modeling box are optimized by the energy minimization and molecular dynamic (MD) simulation in the NVT ensemble. The resulting energies are defined as ,  and , respectively. All MD simulations are carried out at the crystallization temperature (298K) by application of the Velocity Scaling thermostat. The total simulation time is 200 ps, the time step is 1 fs, and the trajectory is recorded every 2000 fs. Electrostatic interaction and van der Waals interaction adopt Ewald summation and Atom-based summation, respectively, with a calculation accuracy of 0.001 kcal/mol and a spline cutoff distance of 12.5 Å. The PCFF force field is used for the whole process.
4.1.2 Quantitative control model of crystal morphology
[bookmark: OLE_LINK13][bookmark: _Hlk71122032]The crystal morphology and aspect ratio of benzoic acid in 23 solvents are predicted using the method provided in Section 4.1.1. The GC method and COSMO-SAC model are used to predict the nine descriptors (, , , , , , ,  and ) of each solvent. The results are shown in Table S3 (Supporting Information). The crystal morphology of benzoic acid in each solvent is shown in Fig. S1 (Supporting Information).
Next, least squares method is used to fit the equation between lnAR and the nine solvent descriptors from Table S3, as shown in Eq. (29).
	


	(29)


 The average absolute percent error (AAPE) of the crystal aspect ratio obtained by MD and Eq. (29) is compared, which is given by the following equation (Eq. (30)).
	
	(30)


Where,  is the logarithmic value of the crystal aspect ratio predicted by Eq. (29).  is calculated from molecular dynamics in section 2.1, and N is the total number of data points. The results are shown in Eq. (29) with , and AAPE = 17.80%, respectively, which indicates that the aspect ratio can be predicted by the quantitative control model (Eq. (29)) at relatively high accuracy.
4.1.3 MINLP model for crystallization solvent design
Based on the quantitative control model (Eq. (29)), an MINLP model is formulated for crystallization solvent design of benzoic acid. Groups CH3, CH2, CH, C, OH, CH3COO, CH2COO, COOH, CH3CO, aC, aCH, aCH-CH3, aCH-CH2 are selected. The upper and lower bounds of solvent properties in crystallization solvent design of benzoic acid are listed in Table 1.

Table 1. Lower and upper bounds of solvent properties in crystallization solvent design of benzoic acid
	
	Lower
	Upper

	Total group number 
	2
	8

	Repeat group number 
	0
	7

	Functional group number 
	1
	8

	Number of aromatic rings 
	0
	2

	Molecular weight Mw (g/mol)
	0
	120

	 Normal melting point Tm (K)
	-273.15
	310

	Normal boiling point Tb (K) Tb (K)
	340
	--

	Flash point Tf (K)
	280
	--

	Fathead Minnow 96-hr LC50
	--
	4.5

	Hildebrand solubility parameter at 298K  (MPa1/2) 
	18
	23



Decomposition algorithm method is adopted to obtain the optimal crystallization solvents. First, feasible molecules are generated by considering the molecular structural constraints and property constraints. Then, the potential yield of benzoic acid in obtained solvents is calculated by Eq (9). For the nine solvents with the highest yields, the quantitative control model (Eq. (29)) is used to predict the benzoic acid aspect ratio in these solvents. The result is shown in Figure 7.
[image: ]
Figure 7. Calculate the potential yield and aspect ratio of benzoic acid in each candidate solvent

[bookmark: OLE_LINK29]In Figure 7, based on the potential yield () and crystal aspect ratio (), the coordinate axes are divided into four parts: Ⅰ, Ⅱ, Ⅲ and Ⅳ. Part Ⅱ indicates that the potential yield obtained by using the candidate molecules as crystallization solvent are higher than 75%, and the logarithmic value of crystal aspect ratio is smaller than 2.0. while part Ⅰ represents that the product obtained by using the candidate molecules as solvent is higher than 75% in yield, and the logarithmic value of crystal aspect ratio is higher than 2.0. The smaller the crystal aspect ratio, the more favorable the post-processing operation of crystallization. Therefore, o-xylene and m-xylene are selected as the optimal crystallization solvents.
Next, the crystal aspect ratio of benzoic acid in nine solvents (Figure 7) are calculated by molecular dynamics and compared with the crystal aspect ratio in Figure 7. The results are shown in Figure 8.
[image: ]
Figure 8. Comparison of molecular dynamics and predictive value of benzoic acid aspect ratio

In Figure 8, the results of molecular dynamics are slightly different from those predicted by the quantitative control model (Eq. (29)), but the results of molecular dynamics show that the two solvents with the smallest aspect ratio of benzoic acid are still o-xylene and m-xylene. The results shown in Figure 8 have accuracy of , and AAPE=17.80% respectively, which indicates that the quantitative control model (Eq. (29)) has good expansibility. Here, the two red dashed lines represent the acceptable range of errors (20%).
[bookmark: OLE_LINK19]4.1.4 Experimental verification
[bookmark: OLE_LINK31][bookmark: OLE_LINK30][bookmark: OLE_LINK32]Four solvents are selected to verify the results of molecular dynamics, which are o-xylene, m-xylene, acetonitrile and ethyl acetate. In which, o-xylene and m-xylene are supplied by Damao chemical reagent factory. Acetonitrile and Ethyl acetate are supplied by Tianjin in Fuyu Fine Chemical Co., Ltd. All the above solvents are of analytical grade purity and used directly without further purification.
[bookmark: OLE_LINK33]The solubilities of benzoic acid in different solvents are measured at the room temperature (298K). First, a certain amount of benzoic acid is dissolved in different solvents to prepare a saturated solution at room temperature (298K). Then, the crystal dish is covered by a thin film with evenly distributed holes and placed in a fume hood. The solvents evaporated gradually and the benzoic acid crystals finally crystallized. Finally, the crystal habits of the experimental benzoic acid crystals are observed by microscope (NIB410). The results are shown in Figure 9-12. 
[image: ]
                 (a)                      (b)
Figure 9. Crystal morphology of benzoic acid in o-xylene: (a) simulation result; (b) experimental result

[image: ]
(a)                        (b)
Figure 10. Crystal morphology of benzoic acid in m-xylene: (a) simulation result; (b) experimental result

[image: ]
(a)                     (b)
Figure 11. Crystal morphology of benzoic acid in acetonitrile: (a) simulation result; (b) experimental result

[image: ]
(a)                      (b)
Figure 12. Crystal morphology of benzoic acid in ethyl acetate: (a) simulation result; (b) experimental result

From Figure 9-12, the consistency between predicted and experimental benzoic acid crystal habits of o-xylene, m-xylene, acetonitrile and ethyl acetate confirms the validity and applicability of the proposed crystallization solvent design model and the quantitative control model of crystal morphology.
4.2 Crystallization solvent design of ibuprofen
As a common analgesic, ibuprofen has anti-inflammatory, analgesic and antipyretic effects, and is widely used in the treatment of rheumatoid arthritis, osteoarthritis and neuritis. 
The unit cell structure of ibuprofen is obtained from the Cambridge Structural Database (No. IBPRAC06). As shown in Figure 13, it belongs to monoclinic system. The unit cell is composed of four ibuprofen molecules with cell parameters of a = 14.6737 Å, b = 7.8950 Å, c = 10.7345 Å, α = γ = 90° and β = 99.541°, respectively.
[image: C:\Users\shiyang\AppData\Local\Temp\1619484840(1).png]
Figure 13. Unit cell of ibuprofen

4.2.1 Simulation details
All the calculations are performed in Material Studio 2017 R2. The simulation details for predicting the crystal morphology of ibuprofen in solvent are similar to those in section 4.1.1. The PCFF force field is used for the whole process. The ideal crystal habit of ibuprofen is shown in Figure 14 and the main crystal plane information can be referred to Table S4 (Supporting Information).
[image: ]
Figure 14. Ideal crystal habit of ibuprofen

The microstructure of each main crystal surface at the atomic and molecular level is shown in Figure 15, which shows that different exposed groups of each crystal surface lead to different crystal surface roughness.
[image: ]
Figure 15. Main crystal surface structure of ibuprofen ideal crystal habit (C: gray, H: white, O: red)

4.2.2 Quantitative control model of crystal morphology
The crystal morphology and aspect ratio of ibuprofen in 21 solvents are shown in Table S5 (Supporting Information). Among them, the GC method and COSMO-SAC model are used to predict the nine descriptors (, , , , , , ,  and ) of each solvent. The crystal morphology of benzoic acid in each solvent is shown in Fig. S2 (Supporting Information).
Least squares method is used to fit the equation between lnAR and the nine solvent descriptors from Table S5. The results are shown in Eq. (31) with , and AAPE = 17.80% respectively, which indicates that the aspect ratio can be predicted by the quantitative control model (Eq. (31)) at relatively high accuracy.
	


	(31)


4.2.3 MINLP model for crystallization solvent design
Based on the quantitative control model (Eq. (31)), an MINLP model is formulated for crystallization solvent design of ibuprofen. Groups CH3, CH2, CH, C, OH, CH3COO, CH2COO, COOH, CH3CO, aC, aCH, aCH-CH3, aCH-CH2 are selected. The upper and lower limits of the constraints are the same as listed in Table 1.
Decomposition algorithm is adopted to obtain the optimal crystallization solvents. First, feasible molecules are generated by considering the molecular structural constraints and property constraints. Then, the potential yield of ibuprofen in obtained solvents is calculated by Eq (9). For the nine solvents with the highest yields, the quantitative control model (Eq. (31)) is used to predict the ibuprofen aspect ratio in these solvents. The result is shown in Figure 16.
[image: ]
Figure 16. Calculate the potential yield and aspect ratio of ibuprofen in each candidate solvent

In Figure 16, based on the potential yield () and crystal aspect ratio (), the coordinate axes are divided into four parts: Ⅰ, Ⅱ, Ⅲ and Ⅳ. The meaning of each part is the same as Figure 7. The smaller the crystal aspect ratio, the more favorable the post-processing operation of crystallization. Therefore, o-xylene and m-xylene are the optimal crystallization solvents.
Next, molecular dynamics is used to calculate the crystal aspect ratio of ibuprofen in nine solvents (Figure 16), and the results are compared with those in Figure 16. The results are shown in Figure 17.

[image: ]
Figure 17. Comparison of molecular dynamics and predictive value of ibuprofen aspect ratio

In Figure 17, the results of molecular dynamics are slightly different from those predicted by the quantitative control model, but the results of molecular dynamics show that the two solvents with the smallest aspect ratio of ibuprofen are still o-xylene and m-xylene. The results shown in Fig. 17 have accuracy of , and AAPE = 19.85% respectively, which indicates that the quantitative control model (Eq. (31)) has good expansibility. Here, the two red dashed lines represent the acceptable range of errors (20%).
4.2.4 Experimental verification
Four solvents are selected to verify the results of molecular dynamics, which are o-xylene, m-xylene, acetonitrile and ethyl acetate. The source of reagents, experimental procedures, and detection devices are the same as those in section 4.1.4. The results are shown in Figure 18-21.
[image: ]
(a)                     (b)
Figure 18. Crystal morphology of ibuprofen in o-xylene: (a) simulation result; (b) experimental result
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(a)                        (b)
Figure 19. Crystal morphology of ibuprofen in m-xylene: (a) simulation result; (b) experimental result
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(a)                     (b)
Figure 20. Crystal morphology of ibuprofen in acetonitrile: (a) simulation result; (b) experimental result
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(a)                      (b)
Figure 21. Crystal morphology of ibuprofen in ethyl acetate: (a) simulation result; (b) experimental result

From Figure 18-21, the consistency between predicted and experimental ibuprofen crystal habits of o-xylene, m-xylene, acetonitrile and ethyl acetate confirms the validity and applicability of the proposed crystallization solvent design model and the quantitative control model of crystal morphology.
5. Conclusions
[bookmark: OLE_LINK20][bookmark: OLE_LINK11]In this paper, a framework for crystallization solvent design based on the quantitative control model of crystal morphology has been proposed. First, molecular dynamics has been used to predict the crystal morphology of solute in solvent. Then, a quantitative control model of crystal morphology has been established by selecting nine suitable solvent descriptors, including infinite dilution activity coefficient, Hansen dispersive solubility parameter, Hansen polar solubility parameter, Hansen hydrogen-bond solubility parameter, solvent molar volume, surface tension, dielectric constant, hydrogen bond donor and hydrogen bond acceptor. The effectiveness and accuracy of the ultimate quantitative control model have been demonstrated through two cases: benzoic acid and ibuprofen. The regression results show that the data has good correlation (AAPE=15.72% for benzoic acid; , AAPE=17.80% for ibuprofen). Next, an MINLP model was established for two cases (benzoic acid and ibuprofen) by coupling computer-aided molecular design method and the quantitative control model, which is solved by the decomposition algorithm. Nine solvents with the highest yield were selected, and the crystal aspect ratio of solute in these solvents was calculated one by one by the quantitative control model. Subsequently, the crystal aspect ratio of solute in these nine solvents was also calculated by molecular dynamics. The results were compared with the quantitative control model (445, AAPE=17.48% for benzoic acid; , AAPE=19.85% for ibuprofen), which showed that the quantitative control model has good expansibility. Finally, experimental verification was implemented. By comparing model predictions and experimental results, the validity of the framework was verified. 
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