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Abstract

We consider a new class of semiparametric spatio-temporal models with un-
known and banded autoregressive coefficient matrices. The setting represents a
type of sparse structure in order to include as many panels as possible. We ap-
ply the local linear method and least squares method for Yule-Walker equation to
estimate trend function and spatio-temporal autoregressive coefficient matrices re-
spectively. We also balance the over-determined and under-determined phenomena
in part by adjusting the order of extracting sample information. Both the asymp-
totic normality and convergence rates of the proposed estimators are established.
The proposed methods are further illustrated using both simulation and case s-
tudies, the results also show that our estimator is stable among different sample
size, and it performs better than the traditional method with known spatial weight

matrices.

Keywords: Spatio-temporal autoregression; Unknown and banded coefficient matrices;

Local linear estimation; Yule - Walker equation

1 Introduction

The demand of spatio-temporal prediction arises from panel studies of economics, air pol-
lution analysis, epidemic phenomena, and various other fields. For example, we analyze the
monthly air quality index (AQI) for Beijing-Tianjin-Hebei urban agglomeration of China in
the period of Jan 2014 - Nov 2019. The detailed analysis for this data set will be presented
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in Section 5. Fig. 1 depicts the AQI in a map for consecutive months, it’s noticeable that
the AQI level is analogous in region and each month’s AQI level is similar to that of the last

month, those fully show the spatial effect and dynamic effect. Correlation and heterogeneity are
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Figure 1: Maps of the monthly AQI in the period of Feb-Sep 2014 for Beijing-Tianjin-

Hebei urban agglomeration of China.

two significant features of spatio-temporal data. The class of spatio-temporal autoregression
(STAR) models is the most common product to model cross sectional correlation among differ-
ent locations, it was first introduced by Cliff and Ord (1973) and has been applied to various
domains. For example, Deutsch and Ramos (1986) examined river flows with STAR model.
Szummer and Picard (1996) used a STAR model to aid in the synthesis of images of phenomena
such as moving water, fire, or other evolving textures. For the effect of spatial heterogeneity,
Lin and Lee (2010) proposed the robust generalized method of moments (GMM) estimators for
STAR model in the presence of heteroskedastic disturbances, and efficiency of estimator can be
improved by constructing the optimal weighted estimation. Kelejian and Prucha (2010) defined
instrumental variable estimators and gave some general theories concerning the joint asymptotic
distribution of those estimators and the GMM estimator in STAR models with autoregressive
and heteroskedastic disturbances. To tackle the panel data with time dependence, Fu and Li
(2020) explored the association between socioeconomic indicators and global PM2.5 using a

spatial econometric model coupled with a temporal weighted regression based on the hybrid



method.

In practice the spans of dependence among locations exists, Guo et al. (2016) showed that
it is rare to collect the information enough from neighbour variables, and information from
farther locations may become redundant. Hence it is pertinent to consider the setting with
infinite location bands in the coefficient matrices. Notably, Dou et al. (2016) and Gao et al.
(2019) investigated the feasibility of estimation when the pertinent spatial weight matrix is
unknown, and showed that generalized Yule-Walker equations are viable and efficient. Due to
the limits of parametric models, more recent developments extend the class of STAR models
to nonparametric and semiparametric spatio-temporal autoregressive models. For example,
Biau and Cadre (2004) and Hallin et al. (2004) proposed the local linear method to model
spatial heterogeneity. Robinson (2010) applied the adaptive estimation method to estimate the
semiparametric spatial autoregressive model with non-normal innovations. Ulteriorly, Wang et

al. (2012) considered the following spatio-temporal models:

Yiie=m(X;) + Riy,
R=pWR+e¢,

where X;; € Rl,Yi,t eRie Ay ={(1,---,n1) x (1, ,ng) x - x(1,-- ,ng)},t € T, =
(1,---,ng),n = (ng,n1,- - ,ng), and m(+) is an unknown function, p is the coefficient need to be
estimated, error term € is independently identically normal distribution, the vector R is consists

of R; ; which are positively correlated in a lexicographical order. W is the n* x n* weight matrix

d
which measures the dependence and n* = [] n;. The common practice in spatial econometrics
Jj=0
to assume the main diagonal elements of known W are zero, see Moran (1948)and Wang et

al. (2018). Motivated by the evidence in some practical cases, we extend the semiparametric
spatio-temporal models with autoregressive errors above to following models by allowing spatial
weight matrices are completely unknown but are assumed to be sparse, and the similar sparse

structure can be found in Guo et al. (2016):

Yie = m(Xiy) + Rig, (1)
Ry = (d?)TRt + (d%)TRt—l 4+ 4 (df)TRt_p + it (2)

where X;; € R! and Y;+ € R represents the observations collected from every location we
studied at time ¢, X;; has finite dimension [, R; is consists of R;; in a lexicographical order
of 7, ;1 is the independent and identically distributed innovation at time ¢ of location ¢, and
e; denotes the vector consists of the corresponding &;, it has a zero mean and satisfies the
condition Cov(R;_j,e¢) = 0 for all j > 1, and the unknown positive definite matrix 3. denotes
the variance of ;. Furthermore we assume that D; = (d,- ,d)T = (d{0 o) are i X i unknown
banded coefficient matrices and 7 = n*/ng. The coefficient matrix Dy captures the pure spatial
effect among different locations, other coefficient matrices D; capture dynamic effect for j # 0.
=0 for all 1 < ko < |ig — jo| < 7, the bandwidth kg is
=0 for

To the banded matrices we have dgo,jo

an unknown integer which should be repeatedly determined in different cases, and d?oji o



1 <ip < n, the latter is equal to the common practice of spatial weight matrix in econometrics.
For simplicity, we assume that the autoregressive order p is known, as the order-determination
problem has already been thoroughly studied, see, e.g., Chapter 4 of Liitkepohl (2007). Note
that the condition dg ,

0,J0
be banded.

This study seeks to make contributions in the following three respects. Firstly, we consider

= 0 does not mean Cov(R;,¢,, Rj,+,) = 0, and we don’t require X, to

the more flexible and reasonable semiparametric models, the unknown and banded setting in
models comes with the decrease of the number of estimated parameters and weaken the curse of
dimension, it also avoids the unaccurate issue of constructing spatial weight matrices. Secondly,
we try to avoid over-determined and under-determined by adjusting the order of extracting the
information from sample data, and adopt a version of marginal Bayesian information criterion to
identify the true bandwidth under the order of autoregression p is known. Finally, both asymp-
totic distribution and convergence rate of estimators are established in the new class of models
under mild conditions. We develop the asymptotic normality of nonparametric predictors and
the estimated coefficients under a general setting for stationary and a-mixing processes, and
the convergence rates of the estimators are same with 1/,/ng. The analysis results of simulation
and real data sets indicate that the proposed methodology performs well.

The rest of the paper is organized as follows. Section 2 is the main part of the paper, where
the new class of models and estimation method are specified. The asymptotic properties are
stated in Section 3. Numerical results on simulated data and real data are reported in Section
4 and 5 respectively. In the Appendix we present all the technical proofs.

To guarantee the desired results, we make some notations here. For a n x n matrix H is
consist of h; j, Amax(H) and Apin(H) denote the largest eigenvalue and the smallest eigenvalue
of matrix H respectively, ||[H|j; = maxz |hij| and |[H||2 = \/Amax(HTH) are the L; norm
and Euclidean Lo norm respectively, ]Hmlax is the largest value of matrix H. For subset S C
{1,--- ,n}, let Hg be a sub-matrix consisting of the columns of H in S and |S| be the cardinality
of S. The letter ¢ and C are used to denote constants whose values are unimportant and may

vary from line to line.

2 Main methodology

2.1 Local linear estimator

The object is to estimate coefficient matrices D; for all j € {0,1,---,p}, and R;; is not
observed in process of collecting data, we propose below a new two-step estimation method
which combines the local linear fitting method and the generalized Yule-Walker equation: first,
getting the estimator ﬁw’,t of R;;, then obtaining all coefficient matrices with the least squares
method to Yule-Walker equation.

We use Taylor expansion of m(X;;) around xo and local polynomial fitting method to



estimate m(xo) in model (2):

min 3 37 (Vi — miao) — [ (2o)] (X~ 20)} K

1€Ap teTn
where K;; = (1/(hy---h))K((Xit — xo)/h) is the non-negative weight function on R, the
bandwidth of nonparametric method h is equal to (hy,---, k)T, and (X;; — x)/h is a vector
representation of the difference between X; +(j) and xo(j) for j = 1,--- , [, which are the element
of X;; and xo respectively, it has the short form of following formula:

Xig—xo _ (Xig(1) —wo(1)  Xi(l) —ao(l) !
h hy T hy ’

Based on the results of the weighted least square method, we can obtain the estimator

_ 1 ! _
m(xo) = e] {n*srTwo.sr} {n*fﬂwog} =e/U,'J,, (3)
where T
1 <X1’z_m0> Yi1
1 (7Xﬁ’"ﬁ %o ) ' Y5 no

and the weight matrix Wy =diag(Ki 1, -, Kp o), the (I + 1) x 1 unit vector e; with 1 as
its first element. On the other hand, applying the local polynomial fitting method to estimate
error value of each observation location in model (1), the mechanism of weight function K,
will fail when x( equal to X;;, a common practice in practical studies is to use leave-one-out
method to avoid that failure case, see, e.g., Linton and Xiao (2007). Then our objective here
in practical cases is to solve the minimization problem

min > > {Vis - ml@o) - [m

ro#X;
0F it N 1T

’ T 2
(2o "(Xi0 — 20)} K.
By Theorem 1 in Section 3, the resulting estimator of R;; is a zero mean autoregressive

random field which admits the following expression:
Rip =Y — m(Xiy).

In the first step, we use the methodology above to obtain (X ;) in the process of estimate

error term. Throughout this paper, R; is referred to as a strictly stationary process defined by

(2).

2.2 Generalized Yule-Walker estimator

With the banded condition of model above, the information from farther locations be-
come redundant, though there may be non-zero correlations among all component series of R;.
This reflects that bandwidth of banded model is the distance of dependency between differ-
ent locations, and the optimal bandwidth parameter kg is case-dependent, we use a Bayesian

information criterion method to estimate it in the following content.



Let X; = Cov(Ry4;, R;) for any j > 0, and E(R;) = 0, then the Yule-Walker equations

below follows from (2) and properties of stationary process that

p
3= T —Do) 'Y Dy, 0<j<p,
k=1

p
%= Is—Do) 'Y DiEjk j=p,
k=1

which ensure the feasibility of second moment. Let I; — Dy be invertible, where 15 is an X 7o
identity matrix. To avoid the endogeneity and inconsistent estimators, we convert the original
estimation problem to estimate the coefficient matrix of Yule-Walker equation of 3,,. Take the

ioth row of the 3,
p p )
Syei,=> %) Die, =Y % d =VB, =17, (4)
=0 =0

where e;, denotes the n x 1 unit vector with the igth element equal to 1. The 7;, x 1 vector 3;,
consists of d{o after removing the zero element for j =0,--- ,p, e.g., Bi, = ((d%)T, cee (df(:)T)T,
in which there are some vectors dz(; with non-zero elements from dgo. Similarly, we stack the
corresponding columns of Z;—_j horizontally for j = 0,---,p to construct the n x 7;, matrix.
For the banded area of a matrix, there are three regions divided by two boundaries, the number
of elements is constant in the middle region, and the number of elements in the remaining two

regions changes inversely with each other, then the actual formulas of 7, can be written as
(p+1)(ko +10) — 1 1 <ip < ko,

Tig = Tig(ko) =  (p+1)(2ko +1) — 1 ko <o < 7 — ko, (5)
(p+D(ko+n+1—ip)—1 n—ky<ip<n.

Since the stationary process Ry is a zero mean field, we replace X; by the sample (au-

to)covariance matrices

~ 1 o )
E] = Z RtprrjR;r—pv J= Oa Y 2 (6)
o t=p+1

which omit finite terms is reasonable to ensure the validity of (9) when ny — oco. Consequently,

the least squares estimator of 3;, based on (4) is
S PSEUPS, SU _
ﬁio = <V10V10> lviozioa 0 = 17 N,

where z;, = f)geio, and the hat values denote the corresponding sample values. More explicitly,

R 1 o R 1 Jo
Zio = o Z R _pRiot = Vi Biy + o Z Ry _peigt, (7)
t=p+1 t=p+1
~ 1 X
Vip=— Y Riyp(rr)’, (8)
o t=p+1



where the 1x 7, vector (r7)T = ((rg,)7, (rr,_,)7, -+, (rp)T) and T; = t—p+, the sub-vector

r1; consists of Ry, for ¢ € S;, when j = p and for ¢ € S;g when j # p , where
Sio ={a:1<q¢<n,1<ig—jo| < ko} and S;EZ{qilﬁqSﬁ,\io—jo\S/ﬁo}-

Then it holds that

1

- (\A/T
no

10

no
~ ~T
—1 j : . _
Vio) Vio Rt—p£i0,t7 0 = 1, e, N
t=p+1

Bio - Bio (9)
In addition, the mean of corresponding residual sum of squares for the estimation of xth
row of Yule-Walker equation is expressed in Euclidean norm as

2 .
) Z0:17"'
2

A~ o~

- V’io IBio

, .

1

Zi, (10)

The number of elements of whole coefficient matrices which we need to estimate is a function
of the bandwidth kg, we observe the specific expression of (5) imply that this is a under-
determined case in the sense that the number of estimation equations is less than the number
of estimation parameters, especially in the case of small sample size. Note that there are n + 1
n+2

1
value and satisfies boundary condition (< 72) for p = 1 and ig = kg, a similar under-determined

situation can also be found in Section 2.2 of Dou et al. (2016) and Gao et al. (2019). In order

parameters to be estimated with n equations in (4) when ky equals to which is an extreme

to improve the estimation accuracy, we estimate parameters using the following r Yule-Walker

equations:
[ T ] i T ] [ T T [ T ]
3, 3, X 3
ET ET ZT ET
p+1 p+1 T P T 1 T
i = . Dy + ) Dy +---+ : D, . (11)
L E;J—Jrrfl | | E;J—Jrrfl | L z);-Jrrf2 L Z;!- 1 ]
then the igth row of equation (11) implies
- T - N -
%, EP*J
ET p ET ) )
’ +1 —7+1 /
z;, = P €y = Z p=J d} =V, Bi, (12)
j=0
T T
L 2P-i-r—l i L Ep*jJrrfl i

where the definition of V;O is similar toV;,. For ease of calculation, we also replace 3; by the

/

corresponding sample matrices, hence V; ~could be written as

1

no

t=p+1

no
> R p(rpyr)"




where (rgy )" = ((r(k),Tp+k_1)T» (r(k)vaM_Q)T, -, (r@wyr,_,)"), the sub-vector T(k),1; consists
of Ry, for ¢ € S;, when j =p+k —1 and for g € S{E when j # p + k — 1. Similarly, by the

least squares method, we obtain the estimator

/ / -1 /
3 v \TU v \To
ﬁ’io = <(V20) V’Lo> (VZ()) Zio‘ (13)
no ]
Denote a nir x 1 vector f., = (1%0 > Rl eige, e nio > R ,cipt—rs1)", then it holds
t=p+1 t=p+1

that for ig = 1,--- ,n,

’ / -1 ’
3 T \TU U \T
IB’ZO _IBiO = <(V20) VZ()) (VZ()) fEiO'

The multiple generalized Yule-Walker estimator has the same properties as ng — oo and
n — 00, and we usually take r = 1 for calculation convenience, we can increase r appropriately
if there is lack of accuracy. But it is important that it performs better than generalized Yule-

Walker estimator when there exists under-determined case.

2.3 A consistent estimator for high dimensional vector

When n//ng — oo, the estimator (7) presents a convergence rate different from standard
rate 1/,/ng by Theorem 3 in Section 3. For a high dimensional vector z;,, we know the value
of kg is finite, then the dimension of estimator is far less than 7, this is a traditional over-
determined scenario. The probability of over-determined situation increases with the value of
r X N, we have to decrease the numerical value r x n for the objective accuracy of estimation
parameters, that means we should omit some columns of (r) Yule-Walker equations. Borrowing
the idea from Dou et al. (2016), we propose an alternative estimator to restore the standard
\/no-consistency and the asymptotic normality.

Since the lth row of \A/'io is elT{/'io, which is the sample covariance between R, ;_, and 'r(T)

k)T
Then define a non-negative parameter for k=1,--- ,r,
0) ’ .
l TG T
oy = |ler Vil = - Z Rigp(ranyr) ||
1

t=p+1 )

which can be rewritten as the /th row of the sum of all \§j|, the sum of 5,?) presents the whole

strength of correlation between R;;_, and T(k),r; in this situation that more than one Yule-
T ~
Walker equations. When 6¢) = 3° 5,(;) is close to 0, the ith row of all |X;| is also close to 0,
k=1

that implies parameters which we are estimating are meaningless, hence we may only keep the
Ith equation in (12) with the d;, largest 6%), and d;, is a prescribed number.
Let my;y);—p be the d;; x 1 sub-vector of R;_p, and it consists of the corresponding d;,

largest 6(), we replace R;_, with the informative my in the process of estimation here.

i9),t—p
Then the new estimator is defined as

3 N NI \-INT | . -
ﬁio - (MZOMZ()) Miozi07 0 = 1, e m,

8



where

no - no -
T 1
no 2 (i0)t—p(T(1),T) o Yo M) —pliot
t=p+1 t=p+1
no T 1 )
~ ng 2 (f0),t p(r(2) T) _ o > M) 1 —pFio t+1
M;, = t=p+1 and  z;, = t=p+1 (14)
no 1 no
1 E 30),t p(’l'(r) ) o E m(i0)7t_pRiO,t+T_1
t=p+1 § t=p+1 i
Thus
~ ~T~  _~T~
/B’io - /BiO = (MZOMZO) Miofsioa
3 LT T T
where fgio = ( - > MGt piods ’no Z M0t piot— r+1) . Theorem 5 in Section 3
t=p+1 t=p+1

shows the asymptotic normality of the above estimator as long as the condition d;, = o(/no)
holds uniformly for all 7y, and we have proved that the consistent estimator is effective in
the section of simulation study. Compared with Gao et al. (2019), we adjusted the order
of extracting sample information, and the over-determined and under-determined phenomena
can be balanced in part by increasing the amount of information first and then restricting the

estimation with convergence rate.

2.4 Determination of optimal bandwidth

The bandwidth is unknown and we need to estimate kg actually. We propose to determine

the optimal bandwidth kg based on the marginal Bayesian information criterion,

1
BIC;, (k) = log RSS;, (k) + p— pTiy (k) Chy log(nn V no), w=1---,m,
0

where (1 V ng) = max(n,ng), and Cy, is some positive constant which diverges with ng, similar
ideas can be found in Guo et al. (2016) and Lam and Yao (2012). We know the corresponding
BIC is minimal for £ = kg when all the sample covariance matrices EA]]- are replaced by the true
¥.;. Then the hat value of optimal bandwidth kg is defined as

ko = BI
0 =\ e, i BIC(R)

where K > 1 is a prescribed upper boundary of bandwidth, and our numerical study shows
that it is insensitive to the choice of K provided that K > kg. In practice, we often choose
the upper boundary K to be [/fi] which is integer. The ratio-based method was also used to
determine optimal bandwidth in Gao et al. (2019), but the results of simulation show BIC

method performs better in this model.



3 Theoretical properties

3.1 Regularity conditions

A strictly stationary of spatial process R, is a-mixing at any fixed time ¢ if

a(d(Ey, E3)) = sup  [P(A)P(B) — P(AB)| < (|E1|, [Ez|)e(d(Er, E2)) — 0,
AeFp, BEFR,
as d(Ey, Ey) — oo, where d(Ep, Fs) is the ordinary Euclidean distance, Fg denotes the o-
algebra generated by {Ri’t/ 11 € E}, and v : N2 — RT is a symmetric positive function which
is non-decreasing in each variable, the monotonically decreasing function ¢(z) — 0 as z — o
and satisfies ¢(0) = 1.

Similarly, the strictly stationary of time process R, , is a-mixing at any fixed location i if

o (d(Ey, E)) = sup  [P(A)P(B) — P(AB)| < ¢/'(|Ey|, |Es|)¢ (d(By, Ey)) = 0,
AE?E;’BEQE;

as d(Ei, E;) — 00, where & v denotes the o-algebra generated by {Rz",t ite El}, ¢’ and ¢ are
similar to ¢ and ¢ above in setting of condition. Some regularity conditions are now in order.
A1l. The random field {X;,} is strictly stationary. For all distinct (¢,t) and (j,7) in
Ap X Ty, the {X;} and {Xj,} admit a joint density f(;
density of Xj ;.
A2. The support of K(-) is [—¢,c]' as ¢ < oo and K(-) is a bounded function.

jm and f denotes the marginal

A3. m(x) is twice differentiable, denoting by m’ () and m” () its gradient and matrix of
its second derivatives at a respectively, and m/(az) is continuous for € R'.

A4. h — 0, and \/n*hy ---hh2 . — 0 as n — oo.

A5. (a) The innovations €; are independent and identically distributed satisfying E(e;¢) =
0 and Cov(Ry,er) =0 for ¢ € Ay, t € Th,.

o0
(b) The process Ry in models (1) and (2) is a-mixing satisfying a(k‘)ﬁ < oo for some
k=1
constant v > 0 and E(R;;) =0 for i € Ay, t € T),.
(¢) For v > 0 in (b) above,
4+ 4+
sup F e]TEth,k) <oo, sup FE eJTRt,k’ <00, sup E\5¢07t|4+7 < 00
1<j<n 1<j<n 1<io<n

for k € {0,---,p}.
A6. The matrix I— Dy is invertible. And for each j = (1,--- ,p), (i) H(I — Do)’leH2 <1,

j ~ =T
(ii)dgm j, and the diagonal elements of Kj, PZ-OPZ) and P; P, are all bounded uniformly, where
K,,, P, and P;, are specified in (15), (16) and (17), respectively. (iii)|d§0’i07ko| or |d§07i0+k0| is

greater than \/Cnokonal log(n V ng), where (Chp,log(ng))/no — 0 and (C2, logng)/ng — oo
as ng — 00.

AT7. For any finite number of columns of V;,, denoted by F;, and H;, in matrix form and
Fiy 7 Fig, At < Amin{F, (1—Hlig (FL Hig) ™ H g b < A {F, (T (F Fyg )~ H F } <

A2 for some positive constants A; < A2, and the rank of V;, is equal to 7.

10



Remark 1. Condition Al is standard in this context; it has been used, for instance, by
Masry (1986) in the serial case, and by Tran (1990) in the spatial context. Conditions A2-A4
are proposed in Wang et al. (2012) as standard for nonparametric estimation process, Condition
A2 is just for the minor convenient process of proof, it can be extended to the infinite support
set in practice as is the good case in Wang et al. (2012), and Condition A4 is required such that
the bias goes to zero faster than the standard error, and thus is a suboptimal nonparametric
bandwidth choice. Condition A5 limits the dependence across different spatial locations. It is

implied by, for example, the conditions imposed in Yu et al. (2012). Condition A6 ensures that

the bandwidth kg is asymptotically identifiable, as \/ ng ! log(n V ng) is the minimum order of a
non-zero coefficient to be identifiable, see, e.g., Guo et al. (2016). Similar to the Condition A4
in Gao et al.(2019), Condition A7 guarantees that the boundaries of RSS;, (k) are identifiable,
and the rank is equal to the number of parameters we need to estimate, then ensure the validity

of estimation with generalized Yule-Walker equations.

3.2 Asymptotic properties

We first state the asymptotic properties of hat value of the error term Rxo’t.
Theorem 1. Let Conditions A1-A5 hold, then
()E(Riz) =0
(“)m(th - Ezt) —4 N(0,0°e]UT'S(U) e),
where
U [ f(@o) o K(2)dz  f(0) [ 2 K (2)dz ]
f(xo) le zK(z)dz f(xo) le 22 K(z)dz
5 [ f(@o) o K*(2)dz f(@0) fr 2 K2(2)d ] |
f(zo) le zK?(z)dz  f(=0) le 22" K?(z)dz
Remark 2. Theorem 1 indicates that ﬁi,t has the same expectation as R;;, and the
nonparametric estimator of unobserved R;; also performs well, then the analyses of simulation
and case study are fairly reliable.

Theorem 2. Let conditions A1-A7 hold and 7 = o(ng), then P(?C\() = ko) — 1 as ng — oo.

Forig=1,---,n, let

2R7€i0 (]) = COV(Rt*p*H'gio,tJrj? Rt*peio,t)a J=0,1,2,---,
00

zR,EiO = 2R7€i0 (0) + Z[zRasiO (]) + 2£7Ei0 (])]'
j=1

Meanwhile, define

T T T T T
5, 5 e, 5 ls, 1§ Spre B lgr o 15, BpTne, Solgs
T T T T T
1 5 12k, S0 ls, I3 1BRe, B0 I -+ 1L 5, 18R, Solg
Uio = ) 0 0 ) 0
T T
1 20%Re, S5, I B0ZRre, 2] Ig Il 22 Re, Solg
L 0 0 ‘0 0 J




and

I, 550, I3 5,301 st 1§, ZpSoLgt
L3, %0, 13,08 T - ILX,  Solgs
K= | " 0 B 0 ‘s (15)
LD 311> 11 RN D 310 YL | si L, Zoolge
L 0 0 v 0 ‘0

where Ig, is the 72 X [Sj,| matrix obtained by the stacking e; for all j € S;, parallel, in other
words, Ig, = (ej,J € Siy). Similarly, I+ is consisting of e; for all j € S{g.
io
Theorem 3. Let conditions A1-A7 hold.

(1) As ng — oo, — o0, and 7 = o(y/ng). If ko is fixed, then

TR

_1 .
\/n/»oUiOQKio(IBiO _IBZO) _>d ]\[(0,]:7-7;0)7 ’[,O = ]_’..
Ifkg=o0 (Cgolng/ log(n Vv no)), then

ko . _
[ N LT R

(73) As ng — 0o, — oo, and n = O(y/ng), andn = o(ng). If ko is fixed, then

If ko = o (C;, lno/log(n V ng)), then

Remark 3. Theorem 3 indicates that the standard convergence rate prevails as long as

B\io - Bio

~

Bio - Bio

n

)7 ip=1,--+,n.

2:017(

//8\7)0 - IBio

n g/ .
= Op(f ko), 10 — 1,-" ,n.

2 no

.= o(ng). However the convergence rate may be slower when 7 is of higher orders than ,/ng.

To present the convergence rate for the estimation errors, Theorem 4 consider the L; norm
of estimation errors.

Theorem 4. Let conditions A1-A7 hold.
(i) As ng — 00, — 00, and 7. = O(y/ng). If ko is fixed, then

n

A’i - Mi - y 0 = ]-7 77'

‘:30 Bio 1 Op(no) Lo n
If ko = o (Cy, o/ log(n V ng)), then

~ nko . _

‘Bio_ﬂio 1 :OP(TO)’ 10:13"' , 1.

(7i) As ng — 00, n — oo, and 1 = o(y/ng). If ko is fixed, then

N 1 . )
B0 = 8u], =007 io=1.

If ko = o (Cy, o/ log(n V ng)), then
3 ko _
‘B’Loiﬁlo 1 _Op(ﬁ)a 7’0_15 ,Tl/




(i73) As ng — 00, — 00, —— — 00, and 7i = o(ng). If ko is fixed, then

)
‘BZ - Bi :O(ﬁ) io=1,---,n.
0 0 1 p nO ? ’ ’
Ifkg=o (Cgolng/log(ﬁ \Y no)), then
~ nko . _
‘ﬁio_ﬁio 1 :OP(TO)7 10:17"' , 1.

Theorem 4 indicates that the Li-norm of estimation errors tend to 0 when those conditions
above hold, and the convergence rates for Li-norm of estimation errors keep different correlation
with 7, ng and kg under different setting conditions.

To derive the asymptotic properties of estimator B; ,» define the element

Qi,(J1,72) = Cov(Ri—peigt+1—j1> Ri—pEig,t+1—js)

(e 9]

+ E [Cov(Ri—p+;€ig t-+1+i—j1» Bt—p€ig t+1-j2)
=1

+ Cov(Ri—pig,t+1—j1s Ri—ptj€ip t-+1+i—ja )]

of 7 x r matrix Q;, for ji,j2 € {1,---,r}. Furthermore,
T T T 7
ISiO Zp ISZO 2p+1 [N IS@Q Ep—‘,—?‘—l
I3, ILX, | LD > S
Pip=1 " ° N (16)
I3 I3 | D > A
’LO ’LO ZO -

In addition, the Condition A7 need to be adapted under the multiple Yule-Walker equations,
then Condition A8 was built to establish Theorem 5.
AS8. For any finite number of columns of V;-O, denoted by F;, and H;, in matrix form and

Fi, # Hi07 A < )‘min{F;l(—) (I_Hio (H;[)Hio)_lH;g)Fio} < /\maX{F—'IE) (I_Hio (H;I(—)Hio)_lH;l;)Fio} <

7

Ao for some positive constants Ay < A9, and the rank of V;O is equal to 7;,.
Theorem 5. Let conditions A1-A7 hold.
(i) As ng — oo, — 00, and 1. = o(y/ng). If ko is fixed, then

o]

1 . _
Vo(Pi,Q; Pi) 2P P (B;) — Biy) a N(0,1, ), ig=1,---,n.
If ko = o (C;, tno/log(n V ng)), then

ko . _
| ,= O 2) =1

(#7) As ng — oo, — 00, and 7. = O(y/ng), andn = o(ng). If ko is fixed, then

If ko = o (Cy, o/ log(n V ng)), then

~
/61'0 - Bio

n

=~
Bz’o - /B’i()

)7 7:0:17"'777"

22019(

no

~
161'0 - IBio

;I

n .
2:Op(7\/k0)7 Z0:17"'7

no
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To derive the asymptotic properties of estimator Eio, redefine the (auto)covariance matrices,

=/

Z(io),j = COV(Rt, m(io)’t,j), 2(10)’] = COV(Rt_p+j, m(io)ﬂf,p).

By some similar notations as that of Theorem 5, define the element

Qi (J1,52) = Cov(myig) 1—pio t+1—j1> M(ig),t—pEio,t+1—ja)
o0
+ Y [Cov(miig) t—ptj€iot+11i—ins Mio) t—pSiost+1—5o)
=1

+ Cov(m(ig),t—pgio,t+1*j1 ) m(io),t—p+j5i0,t+1+j*j2)]

of r x r matrix Qio for ji1,72 € {1,--- ,r}, and
T 3 T 3 T 3 T
ISZ' 2}(io)m ISi 2(i0)7p+1 e IS¢O 2](io),p—i-r—l
T ! T ’ T !
_ Lo By o1 Lo Big) Lo 50 prr—2
B, —| o P RT - a7)
T / T ’ T /
Lor B0 Lo D Lsi Zio) 1

Similarly, the Condition A5(c) and A7 just do not suit the new estimator, then we adapt
them for Condition A8 in order to establish Theorem 6.

A9. For v > 0 specified in A5(b),

4+~ 4+~ 4
‘ ‘ <00, sup Elei T < o0

1<ip<n

!
sup F e}-Ekmt_k
1<j<n

for k= (0,---,p) and i = (1,--- ,n).
A10. For any finite number of columns of Mim denoted by F;, and H;, in matrix form and

Fio e Hioa A1 < )‘min{FT (I_Hio (H;I;Hio)_lH;l;)Fio} < )‘maX{FT (I_Hw(H%Hio)_lH%)Fio} <

10 10

< 00, sup F e;rRt_k
1<j<n

Ao for some positive constants A1 < A9, and the rank of Mio is equal to 7;,.
Theorem 6. Let conditions A1-A5(a,b), A6 and A9-A10 hold. As nyg — oo,n — 00, and
di, = o(y/no). If ko is fixed, then

S ST 1= =T . _
Vo (PioQ Py )) 2P P (Bi, — Big) —a N(0,1, ), ig=1,--- 7.

If ko = o (Cy, o/ log(n V ng)), then

|

Theorem 6 indicates that the estimator B;O are asymptotic normal with the standard rate

ko
=0 — o=1,---,1n.
9 p( n(])’ 10 ) ,n

g;(, - ﬁio

as long as d;, = o(y/ng). If the positive integer r equals to 1, we can also achieve the standard

convergence rate in Theorem 3.

4 Simulation study

In this section, we conduct two simulations as follows to evaluate the finite-sample proper-

ties of the proposed methods. For the sake of simplicity, we simulate Y;; from the model
Yivjvt = m(X’ijvt) + Ri7j7t7
R; = DoR; + D1 R;_1 + &,
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with d = 2,1 = p = 1, where innovations are iid from a standard normal distribution. To
simulate the spatio-temporal process v; j ¢+, we follow the spectral method of Cressie (1993) that
% M

Vigjt = (;) kzlcos(i cw(l k) +7-w(2,k)+t-q(k)+r(k)), k=1,---,M,

where w(i, k),i = 1,2, and ¢(k) are iid from a standard normal distribution, independent of
r(k), which are iid uniform random variables on [—m, w|. We apply the data central processing
method to R; ;; and set the bandwidth of nonparametric estimation hy = n*_%s(X ) where s(X)
is the sample standard deviation of X. For each nonparametric estimation process, we choose
Epanechnikov kernel function K (t) = 0.75(1 — t2)I(|t| < 1). Then we consider two settings for
m(-) and coefficient matrices Dg = (d? ; ) and Dy = (d} . ).

10,40 10,J0

Scenario 1. m(t) is sin(t) for spatl(J) temporal processj and {d, Jo? dy, o * lio—Jo| < ko} are
generated independently from U([—2.5, —1]J[1, 2.5]), then rescale Dy and D to ng-Dg/||Dol|2
and 11 - D1/||D1||2, where 79 and n are drawn independently from U (0.4, 1).

Scenario 2. m(t) is (t+5)~ 2 for spatio-temporal process, and {df, oo dy; o \zo—jg\ =ko}
are generated independently from Bernoulli(0.5) on two points {—1.5,1.5}, {dlo o? lo ot lio—
jol < ko} are drawn independently from mixture distribution & - x*(3) + (1 — &) - N(0, 1) with

P¢(=1)=04=1- P(¢£=0), then rescale Dy and D; as in Scenario 1 above.

t=4,1=3 t=10,1=3 t=30,r=3 t=50,r=3
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Figure 2: Boxplots of | Dy — Dy||2 for scenario 1.
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Figure 3: Boxplots of |[D; — D1||5 for scenario 1.

For each setting, we replicate the experiment 100 times with M = 1000 and set sample
pize with {i x j x t:i = j = 4,8,10,12,15,20;¢t = 4,10, 30,50}, this leads to the 24 different

estimator(i, j,t) combinations. In addition, we choose d,, = min(n, n3-467)

after many numerical
simulation experiments and ky = 3, K = 7. Figure 2 and Figure 3 depict some boxplots of
estimation errors || Dy — Dyl|z and || Dy — D |2 respectively for estimator(14) with r = 1,3 under
the setting of scenario 1. As indicated clearly in Figures 2 and 3, when the time size is small, the
errors in estimating the coefficient matrices fluctuate with the location size; when the time size
increases to a certain extent, the errors tend to be stable and ignore the change of location size.
Those results above signify that the estimator (14) can balance over-determined and under-
determined in part. Note that the errors in estimating the coefficient matrices based on r = 3
don’t perform worse than the errors based on r = 1, this shows that multiple generalized Yule-
Walker equations can provide more information for estimation process. Moreover, the accuracy
of k increases with the sample size can be found in Table 1, and a dominant proportion of
{k = ko} and {k > ko} usually produces more stable estimation errors. The ultimate goal of
our model is prediction, then the most important index is relative frequencies of occurrence of
the events {];: > ko}, and the results of ratio-based method (Gao et al., 2019) are also reported
in parentheses. Both results of two methods tend to 1 with the increase of sample size, and the

probability value is gradually similar. On the other hand, the probability of occurrence of the
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estimated optimal bandwidth equal to the real bandwidth under BIC method is significantly
higher, which is also an important reason why the marginal Bayesian information criterion is

finally used to determine the optimal bandwidth in this paper.

~

Table 1: Relative frequencies of occurrence (%) of the events {k = ko} and {k >
ko} based on r = 1 by BIC method and ratio-based method (in parentheses).

~

Scenario 2

Scenario 1

S

{k > Ko}

{]ﬁ > ko}

{k = ko}

~

{k > ko}

~

{k > ko}

{k = ko}

~

t

TX ]

12 (7)
21 (13)
26 (17)
28 (21)
13 (13)
35 (19)
38 (25)
45 (34)
27 (21)
35 (28)
46 (31)
46 (38)
34 (23)
38 (25)
40 (28)
50 (33)
37 (26)
40 (24)
44 (30)
49 (34)
40 (29)
44 (33)
57 (37)
57 (41)

22 (18)
22 (21)
2% (27)
38 (36)
25 (24)
35 (32)
46 (48)
62 (53)
36 (36)
48 (46)
56 (55)
75 (66)
50 (50)
66 (65)
72 (71)
84 (80)
70 (68)
81 (71)
80 (81)
91 (90)
79 (78)
85 (79)
94 (91)
99 (99)

14 (12)
5 (8)
4 (13)
8 (18)
4 (7)
8 (16)
14 (24)
24 (27)
11 (16)
18 (25)
17 (29)
32 (34)
19 (26)
29 (41)
36 (41)
36 (46)
29 (42)
34 (43)
27 (48)
37 (51)
34 (48)
36 (50)
36 (58)
39 (57)

23 (20)
32 (27)
38 (35)
29 (28)
43 (34)
48 (51)
68 (65)
43 (39)
56 (59)
71 (68)
88 (74)
53 (53)
62 (60)
71 (70)
83 (79)
59 (60)
62 (61)
81 (79)
84 (84)
67 (68)
83 (81)
96 (95)
100 (98)

2 (7)

6 (10)
10 (14)
16 (15)

17 (13)
22 (14)
30 (18)
21 (17)
27 (16)
32 (24)
38 (26)
25 (20)
30 (21)
39 (26)
43 (32)
31 (24)
37 (24)
36 (30)
48 (34)
41 (26)
47 (28)
53 (33)
54 (39)
45 (30)
49 (29)
58 (33)
60 (42)

10
30
20

4 x4

4
10
30
50

8 (15)
10 (26)
23 (31)
16 (18)
21 (31)
25 (37)
42 (36)
19 (30)
24 (35)
31 (42)
33 (46)
22 (34)
22 (37)
37 (49)
35 (50)
27 (37)
39 (48)
39 (58)
43 (57)

8 x 8

4
10
30
50

10 x 10

10
30
50

12 x 12

10
30
50

15 x 15

4
10
30
50

20 x 20

To show the estimation errors for scenario 2, we omit the worse results based on r =1 to

save space, and Figure 4 indicate a similar estimation results to scenario 1, so does Table 1.

Overall, the estimator (14) is stable for the sample size.
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Figure 4: Boxplots of || Dy — Dy|l2 (the top panels) and ||[D; — Dy||s (the bottom

panels) for scenario 2.

5 Real data analysis

We now illustrate the proposed model via an application to two spatio-temporal data sets
in this section, and the dimension of independent variable is small, then we don’t need to solve
the curse of dimensionality. The settings not mentioned below are same as section 4.

Case 1. We analyze here the monthly air quality index (AQI) for Beijing-Tianjin-Hebei
urban agglomeration of China in the period of Jan 2014 - Nov 2019, and PMs 5, PMig, SOo,
CO, NOs, Os, temperature, speed of the winds, rainfall of the corresponding period as in-
dependent variables. Data can be availabled from https://www.aqistudy.cn/historydata/ and
http://hj.zc12369.com/. For this data set, location size n = 14, time size ng = 71. Figure
5 presents the time series plots of the monthly estimated error terms at three cities Beijing,
Chinwangtao and Kalgan. To fit the banded model with p = 1, K = 7 and r = 3, we might
need to arrange the 14 cities in a certain order and here consider the operating frequency of
trains to Beijing as the ordering.

According to the Air Quality Standard in China, the AQI is marked at 6 different levels, the
higher AQI indicates the worse air quality, and Figure 1 depicts the AQI level for consecutive

months. For general public the prediction for a specific AQI value is more significant than that
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for the level, the estimated bandwidth k and the mean squared predictive errors of one-step
ahead and two-step ahead predictions based on the spatio-temporal error models with known
spatial weight matrix (STEM) and spatio-temporal models with autoregressive errors(STBEM)
are reported in Table 2, and the known spatial matrix was set to spatial contiguity matrix. It

is easy to see from Table 2 that the STBEM has the greater prediction accuracy than STEM.

Monthly data

20

10 A

Beijing

—10 A

10 A

Chinwangtao
o

—10 -

20 4

kalgan
o

—20 A

time

Figure 5: Time series plots of monthly estimated error terms at, from top to bottom,

Beijing, Chinwangtao and Kalgan.

Case 2. Now we consider the yearly effect of public capital, private capital, employment
and the rate of unemployment on gross state product of 48 states (except Hawaii and Alaska) in
the United States over the years 1970-1984. Data can be availabled from https://www.ceicdata.com/zh-
hans. Note that now location size n = 48 and time size ng = 15. With the logarithmic trans-
formation to the data of variables (except the rate of unemployment), Figure 6 shows the time
series plots of the estimated error terms from those transformed data at six randomly selected
states. In order to fit the banded model with p = 1, K = 15,r = 3, and detect the importance of
location order to prediction, we just arrange them in alphabetical order. Moreover, we choose
the spatial contiguity matrix in this case to predict based on the STEM. The mean squared
predictive errors of one-step and two-step ahead for two different methods are both reported
in three different directions in Table 2. According that, STBEM has the better one-step ahead
predictions clearly in three different directions, and the two-step ahead predictions are not worse
than that of STEM.

6 Concluding remark

We propose in this paper a new class of semiparametric banded spatio-temporal models

with autoregressive errors. No matter what form of the implied auto-covariance matrices, the
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Figure 6: Time series plots of yearly estimated error terms at six randomly selected

states in the United States.

Table 2: The estimated bandwidth and mean squared predictive errors for case

1 and case 2.

Case 1 Case 2

STBEM STEM STBEM STEM

No One-step ahead 2.9715 3.1290 0.0026 0.0034

particular Two-step ahead 5.4154 6.4205 0.0054 0.0054
order k 7 13

Northeast One-step ahead 1.4954 3.8940 0.0025 0.0035

to Two-step ahead 2.4314 5.3306 0.0053 0.0056
southwest k 7 13

Southeast One-step ahead 1.1075 1.5415 0.0023 0.0035

to Two-step ahead 4.2776 4.5084 0.0048 0.0056
northwest k 7 15

setting can include as many panels as possible. The coefficient matrices are estimated based
on generalized Yule - Walker equations, and the optimal bandwidth of the coefficient matrices
is determined by the marginal Bayesian information criterion. Both the asymptotic properties

and numerical results show that the proposed models perform well.
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Appendix. Proofs
Lemma 1. Under conditions Al, A2, and A4, we have
%.SZ’TWOEZ' -, U

Lemma 1 is similar to Lemma 2.1 in Hallin et al. (2004), so we omit the proof. For our purposes, we

make a new notation before Lemma 2.

,71* S>> Ki(pit+ Rit)

H. = 1E€EA, tETR
no 1 Xit—%o K. . R.
n* Z Z ( h ) z,t(Pz,t + z,t)

i€, tETy
where p;; = m(Xi,) — m(zo) — h™m' (x0).
Lemma 2. If conditions A1-A4 hold, then
(n*hy---h)? E(Hy,) = 0.

Proof. It suffices to prove

(n*hl' 5 Z ZE zfpzt+sz)) 0

1EN, tETY,

We first rewritten p; ¢+ by the Taylor expansion,
piv = (Xis—x0)"m’ (w0 + p(Xi s — 0))(Xis — To),

where |p| < 1. Since the explanatory variable is independent of the error term, E(K; ;R; ;) = E(K; ) E(R; ) =

0, and their expectations are both exist. By condition A4,

1

(n*hl- 5 Z ZE i,t pzt+th))

1€EA, tETY,
1 X;:—x
= (nhy ) Z Z E{K(z’tho)(m,t +Ri,t)}
1E€EA, tET,
< hfnax(n*hl ! Z Z E{K p’b t )}
1EA, tETY,

= R lh ) f ) [ K ()ps(wd

R
< Ch2, (n*hy---h)% — 0.

This completes the proof of Lemma 2.
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Proof of Theorem 1. By equation (3), we have

Ri,t—ﬁi)t = 1(xg) — m(xo)
P11+ Ria
= n—elU larwy :
L Pn,no JrRﬁ,no
[ pra Ry
= —elU 'rw, : —elU 'TW,
n* n*
L Prne Rs no
= A +A,

for the first part. In addition, we can easily derive that the equation above equals e] U 'H,,. Then, to

M )
prove the zero mean, it suffices to prove E(v/n*hy ---hje] U,,'Hy,) = 0. The Lemma 1 means that we
)7, it holds

]

just need to prove that for any vector ¢ = (cg,
(18)

E ((n*hl . hl)%cTHn) =0.
It is easy to prove that holds by Lemma 2. Next, we consider the asymptotic behaviour of the first part

by observing A; and As. After that, we know that it suffices to prove
(n*hy---h)7 Ay — 0 (19)

and
(n*hy - h)2As =1 N(0,02e] U 'S(U ) Tey).

Without loss of generality, we take d = 2 in the proof process, then ¢ can be rewritten (7, 7). Similar to
the proof of Lemma 2.1 in Hallin et al. (2004), by Taylor expansion, conditions A2 and A4,

(*hy - h)? Ay
hi---h ot
= HzelU'aTw,
n*
Pr,ng
X t—x
o
= (n*hi---h) el U, vein il o
I e (e
1€EA, tET,
eTU-L DD {K(L'f{mo)(‘x't—$0)Tm,/($o+P(Xi,t—Sﬂo))(Xi,t—wo)}
_ 1 n 1€EA, tET,
n*hl"'hl Z Z { it woK( it zo)(Xi,t_wO)Tm (w0+p(Xi,t_wO))(Xi,t_wO)}

1€EA, tET,

62
am:%(g";f. fR’ zizj K (z)dz

||M~

2f (@)

(n*hl e hy )2h’?nax
o) 3

0°m(wo) le zi2jzK (z)dz

_>p
8930

l
>
¥
PRz

wb—‘

’

—p 0.
To prove (20), similar to (18), it suffices to prove that for any vector ¢ = (cg, -+ ,¢;)" = (co, (¢ )T)T, it

holds
Xt — X, —
= sco) K(M))Ri,t}—m N(0,0%¢"2c). (20)

A=(nhyh)7E Y Z{[Cw ) (= — -

1€EA, tET,
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We know the expectation of A is zero already from the front, and similar to the proof of Lemma 1, it is
easy to prove the variance of A is equal to o2¢” Xe. By conditions A1-A5, (20) is hold. Thus, the proof
of Theorem 1 is completed.

Proof of Theorem 2.

Our goal is to prove that P(ky = ko) — 1. It is sufficient to show that P(ky < ko) — 0 and
P(ko > ko) — 0. Our proof follows the arguments in Wang et al. (2009).

Without loss of generality, we take p = 1 in the proof process. Consider the first case. Since

ko =  max ki, then it holds that P(ky < ko) < P(ki, < ko) for some ig € {1,---,7}, and the event
Stosn

(ks, < ko) implies
\Ilioﬂlo = min BICZO(]C) < BICiO (]C())
k<ko

That means we just need to prove P(¥;, ,,,) — 0 for some x. We observe the situation under k = ko
first. By (4), we have

~

Vio = (i\:;a aio)v IBio = ((d?(:)-r? ’(dpo)T)T’

which all correspond to the non-zero elements of ((d9)T,-- -, (df )T)T. It follows from the compatibility

of matrix Lo norm and some properties of projection matrix that

1. 2
RSSiO(kb) = % Zio_ViO,@io )
1 JR ’
= % V’i()/@io + n Z Rt—pgiu,t _Viglﬁio
Ot:erl 9
2
1 1 &
= —[@=Hi)— > Ripeiny
n o e
=p+1 2
1 1 & ’
2
< S T=-Hllg || — Z Ry e
n o t=p+1 2
2
11 &
< % nio Z Rt—pEio,t s
t=p+1

2
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where H;, =

IA

IN

forj=1,---

~ ~T ~

~T
Vio(Vi, Vi)'V, . By proposition 2.5 of Fan and Yao (2003), we have
2
< Z Rt ps’LO t>
t p+1
1 no 1 no
Var | — Z e}Rt,psw,t +E?| = Z ejTRt,paimt
1o t=p+1 1o t=p+1
1 &
Var ( Z ejTRt_peioyt) +0
1o t=p+1
no
Z Var( Z ejTRtpsiO’t> ZCOV e TR, psm,t,eRs,peio,s)
ng t=p+1 t=p+1 0 ¢2s
C = =
—+—Z8a It — sy (E|e Riopein*t3) ™7 (Ble] Ryopeins )™
"o t;és
=t Y- )
t#s
C
o no ;
1
O(—
(o)

,Ti, where a(j) is the mixing coefficient, and it is easy to prove that Z;’;l a(j)ﬁ <

for some positive constant v by Theorem 2.1 of Pham and Tran (1985). Meanwhile, the constant C is

independent of n, then we obtain

2 2 -
Z Ry peig :Z< Z Ry pei, t) ZOp(n%)

O t=pt1 9 J=1 O t=p+1
Hence
1
RSSi, (ko) = Op(—). (21)
no
For k < kg, we set
G 1 2 3 4 2p+1) & 2p+2
Vi = (AL 30 ADL AL, ST AR AR 3, AR,
0(1 0(2 101 12 1 2
B = (@) (0, ) (@) T ()Tl )T (@D ()T )T (@)
where \71—0,;C = (f];k, 7§O,k) and B3, = ((d?mk)-r7 - ,(dfmk)T)T, which correspond to 7;, (k) non-
zero elements of ((d9)7,---, (d} )T)T. Meanwhile, note A;, = (Ago)k, Agf)k, e ,Agfﬁjz)) and d;, =
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(AT (@)D, (@), (@ )T)T. By (10) and (7),

7,0,]{)
1 ~ ~T aT 2
Rsslo(k) = ﬁ ZZU_Vio»k(Vio,kVioyk) 1Vio,kz’io 9
1 ~ 2
= T i )2 [
1 1 & ’
= —||(T—=Hiy ) (Vig kBio.k + Aig 1 ik + — Z R peip,t)
n no t=pt1 )
) 2
= (0= Hig 1) Ay xd g+ (1= Hiy ) — Z Ry _p€ig ¢
t p+1 9
1 1 ’
2
= 5 = Hay ) Aig oo el + — | |(T = Hig 1) Z Ri—pigt
t p+1
+ dT kAzo k(I —Hi k) Z Ri—pio.ts (22)
t p+1

-~ ~T =~ ~T
where H;, ;, = Vz‘a,k(Vio,kvio,k)_lvio,k- For the orthogonal matrix P and diagonal matrix A, it follows

from condition A7 and properties of spatial weight matrix that
1 2
= I = Hig ) Ao i il = fd;l; AL k(= Hig 1) A kdig

= dT «PTAPd;

> dm WPTAMIPd,
1 p . .
= %/\1 Z((dzo7i0*ko)2 + (dgo7i0+ko)2)'
=0

And it is easy to get the upper boundary Xs||3;,||3/7. We can further relax the boundaries of the first
term of (22) to
Cno k0>\1 IOg('ﬁ, V ’rLo)
nno

1 2
< % H(I - Hio,k)Aio,kdio,kHQ <

by conditions A6. The order of second term is same as that of RSS;,(ko), and the third term can be
bounded by the sum of the first and the second terms by Cauchy-Schwarz inequality. Therefore, under
the condition of kg is fixed,

ko log (7
Cnokohlog(nVino) |y 1) peg. (k) <
ing no

O(1)As

For the deviance of number of elements between different bandwidth k, we have 7, (ko) — 7, (k) =

u(f 4+ 1) with a positive constant p by (5). Then we get that

min BIC ( ) BICZU(]CQ)

k<ko
RSS; (k‘) 1 _
= log————~+ — 1 ; - T
0g RSS ( ) no Cno Og(n \ no)(Tlo (k) Tig (ko))
> log(1l+ Croko log(n v ng)) — i,uCno (7 + 1) log(n V ng) — oo

n no
with the lower bound of RSS;, (k). Therefore, we obtain P(¥;, n,) — 0. The lower bound of RSS;, (k)
stays same for ko = o (C;;'ng/log(7i V ng)), it means the result of (24) still holds.

Similarly, we also know P(l%o > ko) < P(fcio > ko) for some iy € {1,--- ,7}, and the event (i% > ko)
implies
lgmgl BIC;, (k)
iy = ko 0 1,
010 BIC;, (ko)
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it suffices to prove P(®;, ,) — 0 for some 4y. Let

7 1 2 3 4 2p+1 2p+2
Vi07k = (BE )k:’ET Bgo)k7Bgo?k’E; 1’B§0)k7 o BE():D/C+ ) 2 Bgopk+ )

);

-
0(1 / 0(2 1 2 2
Bioa = (BT, (@) T, (B0 T, (BT (@) T, (B DT, (BT ()T, ()T
then the residual sum of squares can be rewritten as
1 .~ -~ 2
RSSZO (k) = % 11}1111)121 Zi, — Vl'o’l}l — Bio’k’vg‘ 2, (24)
where B, = (Bii)k, ng?k, Bf)p,:rl) B(2p+2)) By the least squares method, we obtain

~ TS \—1OT _ ~
= (Vi, Vi) 'V, [T= Biy (G 1Gio) G | B,

=~ T = _aT . 1T o

U2 = (Gio,kGio, ) Szo k( Hio)zio = (Gio,kGlo,k) Gi07kzlov
here Gy, x = ( I —H;,)S;, 5. Obviousl hat 2; Gi, 102 = 03 G, 12y = 03 G} Gig x
where Gy, 1 = ( i0)Sio,k- Obviously, we can see that z;, G, kU2 = Uy G, 12, = V3 G, G, 1 V2.

It follows from (21) and (24) that

1 - 2
RSS; (k) = = |2, — Vi, 01 — Big,k'ﬁ2H2
= RSS;, (ko) — tIIGio,k%H%
1
< Op(-)+ - IIGzU, (G, xGiot) ' G i3 ||* Z Ri—pigill3
0 t=p+1
= 0)() (26)
= O
It is briefly that 7;, (k) — 74, (ko) = p(72 + 1), and the constant p > 0. Hence
min BIC(R) - —logng + LC, (i) + (7 + 1)) og(7 ¥ o)
BICiO (k‘o) N —lOgTLO + CnoTzo (k‘o) 10g(n \Y no)
 OuCu 1) -1
- Op(niocnoﬁo (ko)) -
= 1.

Therefore, we obtain P(,ﬁﬁi,ﬁ}) BIC;, (k) = BIC;, (ko)) — 1, it is equal to P(®;, n,) — 0 for all types of
ko. The proof of Theorem 2 is completed.

Proof of Theorem 3.

Under the condition 7 = o(ng) of Theorem 3, the result of Theorem 2 holds. To prove Part (i)
of Theorem 3 for a fixed bandwidth ko over the conclusion of Theorem 2, it is equivalent to prove
\ﬁU Kz0 (V VZO) 1Vzo - > 2pi1 B—p€ig,¢ is asymptotically normal, then we just need to verify
the assertion (1) and (2) below by (8).

(1)

1

1

O t=pt1

1

no

0,

no

> (Rji)jes,, Ri-,
t=p+1

(no
no

Z (Rjt 1)Jes+Rt p(

p+1
(’ﬂ

no

Z (Rj,t—p)jesjo RtT—p

AT o~
Kio (Vio VZO)

26

no

> R peigs
t=p+1

Z Rt p520t
t=p+1

Z R pEio,t
_p-l,-l

1
—p 1

Ti()?

)

)
)

—d N(07 IT-;O )7




To prove assertion (1), we just need to prove that for any nonzero vector a = (a
+
ay € RS0 and a; € R% for other values of 7, the linear combination

no

ni E (Rg t)]GS Rt p< Z R;_ p5m,>

®t=p+1 t=p+1

ng
1 T
aT n*ot:%;i_l(Rj,t—l)jes%Rt—p (no Z R _peig >

o
nL Z (Rj,tp)jeS%R;rp< Z R pEio, t)

O t=p+1 t=p+1

is asymptotic normal. Let us consider one term for each j € S;, in the first block of (26) first, thus we

have

’17,70 Z R fR Z Rt p€107

t=p+l t=p+1
= = Z «RL, — E(R;,R]_,) Z R peins
1o t=p+1 0,7 i1
ng — ]_ no
" E(Rj Ry, Z Ri—p€iot
"o t p+1
1 &
SRR RGLIEREA o S e
s t=p+1
no — 1 T 1 o
N — R, ;
+ ’]’LO e] 177,0 tZZP;I t p€ 0,t
= El + EQ.
By similar method of (21) for term E; and k = 1,--- , 71, we have
1 no 2 1
E lno Z ((eth—p)(eJT‘Rt) - eZZ]IT)ej) < O(TTO)_
t=p+1
Then,
no 2
! T n
L3 (B[R - efSe)| = 0)()
t=p+1 )
Thus,
1 & i
Bis o= > (Reple]R) —efZje;) Z Ripine| = Op(-o). (26)
s 2 O t=p+1 9 0

Similarly, we obtain Fy = O( \/%0) Under the condition 72 = o(,/ng), it holds that \/ngE; = 0,(1) and
VnoE2 = Op(1). Hence,

Z R; R/ Z Ri_peips) =€) Bp—— Z R ,ei:+0,(1), jE€S;.

Vo 2 p+1 gl 0 t=pt1

Similarly, we obtain

1 & .
Z R; i t— q Z R, pgzo, e]TZp_q—\/TT Z Rt_pé‘imt + Op(l)7 VS S:g
t=p+1 t=p+1 0 t=p+1
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for g =1, -+ ,p. Now it suffices to prove

no

Sh.mo _ag)— Z R; p510t+za Z R peig i

t p+1 t p+1

is asymptotic normal.

Obviously, the mean of Sy ,,, is zero. Next, we calculate the variance of one term of S5 ,,, first,

TIT
Var(a, L, Z R, _pcipt)
t=p+1

no—p
= oI, %, T Sre, (003,15, a

no—p—1

+al1}, %, Z (1- [ER%( /) + ke ()| =15, ao. (27)
We note that it holds that
ElelS,Ri_peidl = < [Ble] SpRiy| )3 [Elesy ]2 < o0

by the probability form of Cauchy inequality. It follows from the discrete form of Holder inequality that

Sl}pz ’a;JrI—SI:iO 217 |:ER75iU( ) + 2R Eig ( )} E;Isio U’O‘
()

< C sup 2’6]12 ERelo(')EgejA

MASVERS

e Aty T s 751

< ¢ s Y al)™ | (Ble] SpRipeid )T (Blel 2R peins] )

Ju,ges<n, T
< C B es [ 3
< sup Ele[Z,Ri_p| ' Eleiyl Za )T

j=1

< oo. (28)

Similarly, we obtain the same boundary results of all covariance and variance of other terms. Back to
the variance of Sy ., there exit control functions for each term by the proof of (28). it follows from
dominate convergence theorem that Var(S; .,) = a'Uj,a.

To prove the asymptotic normality of S5 ,, by Lévy continuity theorem, we employ the small-block
and large-block arguments as follows. We partition the set {1,--- ,ng} into 2k’ + 1 subsets with large

blocks of size I, small blocks of size s and the last remaining set of size ng — k'l —k's'. Then we have

k k
1 0 1 0
Snne = ag—=_&" +ag—=> 1" +aj
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where

Gl +G-1)s

§= X

t=(j—1)(U"+s")+1

.
Ls, XpRi—pio 15

il +s")
.
> Is, XpRi—pEipts
t=41"+(j—1)s"+1

no il +(—1)s
0 T T
CJ( ) — Z ISiO sztpriO,h Z IS+ EORtprio,h
t=k"(I'4+s")+1 t=G—1)(I'+s")+1 ’
i +s) no

=

T
IS?@ Yo R pEig ts
t=jl'+(j—1)s' +1

T
E ISer EORt—peio,t-
t=k'(I'+s")+1 "

Put
’ \/ 1o ’ ’ no
| = = (/101 X k="
lnnoa S ( no DTL()) 5 l/—f-S”

a4y
where ? <x < 1. Also Zj La(g)T T < 00, we can casily obtain a(ng) = o(ny,” ) by using harmonic

series, then it holds that &’ a(s ) o(1). By using the Holder inequality successively for each 8;, we have
that

Cov(61,6011)| < a(r)*~[El61 '] < O [E)E = 0(),

where 0; = e]TZpRt,pem’t and § = “%'4. It follows from Theorem 2.17 of Fan and Yao (2003) that

’ 2 ’ 2
k k

1 () 1 “) Ck's
— |F . = —F . < —
Llp (5] |- 2] <24

n
=1 =1 0

for i =0, --,p. Similarly, it holds that

o|E (g@'))Q’ - niOE (c“’))Q < ng[n— K(s +1)] =0

fori =0,---,p. Thus, S5, can be rewritten as

k
o7
S’ﬁ,no = O E

Similar to (27) and (28), w can calculate the variance of Tj ,,, and it holds that

“+a —Zﬁ +0,(1) = Ty + 0p(1).

T
Var [ —=22 | = 1.
va'U;a
Next, we just need to prove the asymptotic normality of 75 ,,. We partition T ., into two parts via

truncation. Specifically, we define

iU +G-1)s

S

.
Is,, EpRt—pfio,tI{HIgiO Sy Ri_peig illa<L}>
t=(—-1)(I"+s")+1

' +G-1)s'

- Y

.
Ls ZoRi—pCioalyny, =, e illo>1)-
t=(G-1) (' +s")+1
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Similarly, we can define §§i)L and SJ@R fori=0,---,p. Then

K k
1 0)L 1 L
Time = |@g—— E & +"'+a;70§ &7 4 0,(1)

j=1
— gL R
= i, + 1Titn,:

Similar to computing the variance of Sy ,, and T p,, note that

TEL TR
Var (nm) — 1, Var (n’”"> -1,
ar OR

where we denote oy, as the asymptotic variance of Té"no7 and opr as the asymptotic variance of T,ffno.

Define

Mﬁ)no =

)

Eexp M — exp (_t2>
va'U; a 2

where i = v/—1 now. We bound M, ,,, as follows

M < E 7 TanO Tfno 1
n,n exXp exp —
’ va'lU;a va'U;a
. (0)L T 1 L
tTE ; “‘(aT =&t Ay s )
+ |Fexp Monme —HEexp 0 Vo > P Vo~
valU; a =1 a'U; a

> o2 t2
+ |exp <_2aTU4 a) —exp (—2)’. (29)

For the first term of (29), according to the property of characteristic function that |E(e®X)| < 1, we

have

<FE —0

itTE,, tTH, . itTE, .
exp | ——==] |exp | ——=== | — exp | ———=— | —
va'U; a va'U; a va'U; a
when L is enough large. The last term of (29) may also have the same result by choosing large L as well.

By proposition 2.6 of (Fan and Ya02003), the second term of (29) is bounded by 16(k" — 1)a(s ), which

converges to 0. In addition, we can rewritten the third term of (29) as follows,

/ : 0)L L
T L G e ) (£t )
exp —exp | ——
j=1 \/aTUiOa 2 aTUiOa
" 0)L L
ity iy (aoT\/lyTofj(» Ty al \/ln—oﬁj(-p) ) ( 2 o2 )
— exp _ 9L

va'U;a 2 a'U; a

= Fexp

itT—L tQ 0'2
FEexp| —m20_ | —exp | —— ——2— | .
(m) 2 /a'U,a
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TE .
Now it suffices to prove =2 —; N(0,1). Under the condition that all £; are mutually independent, we

just need to prove

Zf( —a N(0,17)

for all i = 0,--- ,p by the additive property of normal distribution , where v is the asymptotic variance
P
of the term above, and % = > v2. It follows from Theorem 2.20 of Fan and Yao (2003) and (27) that
i=0

1 0)L -
fVar( § ) ) — Var (Igm EpRtprig,t) +2 Z Cov (I;O EpROEio,la I;m EpRjEi07j+1) < 00,
Jj=1

then we obtain Var( EO)L) = O(l'). Meanwhile,
E (™2 1067 > eviog)) < B (€72 1067 > evios) )|

VR 5 [P0 > evion)

BV 4P(e | > ey/nog),

IA

where ¢ = —“— and ¢ > 0 is arbitrarily positive number. For the probability term above, we have
VvaTa Y

’

B[ o)

P > ey/nog) = P((677)? > noe29?) <

noe2d2  nge2g?’
Thus,
B (€07 160 > evinn)) < Joun 25 = o)
Therefore, the Lindberg condition can be bounded as follows,
0)L 0)L 12
Jim nod)z ZE{ €77 17 > evmo)) < Jim - nKO( ) 0.

Similar proof for the rest items of the third term of M3 ,,, we can obtain the similar conclusion, and
summing up them. Hence the third term of (29) converges to 0. By the Lévy continuity theorem, it
holds that

no
a2 (Rid)jes, R, | Z Ri_peig,
t=p+1

t=p+1

no
a2 (Rju-1)jes+ R, | 5 Z Ry _pei, t)

Vnoa' t=p+1 ‘0 t=p+1 /y/aTU;a—4 N(0,1).
1 T
no E (Rj,t—p)jeszt—p no E R peig,t
t=p+1 0 t=p+1

Substituting a by (U, 1) a, then assertion (1) holds.
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T~
To prove assertion (2) let us look at one element of V, V first. For some j1,j2 € S,

o Z eJlRt Z R, ,R/ej,

0 t=p+1 t=p+1
1 no 1 no
T T T T T
= (Tl Z ej1Rthp_ej12p> <n Z R, ,R;ej, _Epej2>
O t=p+1 O t=p1
1 &
T T T
+ ejIZ]p nf Z Rt—pRt €4, _ZpejQ
0 t=p+1
1 no
T T T T
+ (n Y. e RiRL, - ej12p> €
0 t=p+1
+ eJT1 2,,2;63-2. (30)

Using the same arguments as (26), the first term is O, (;-), the second and third terms are of order

Op(ﬁ). Hence given 71 = o(ng), it holds that
R.R] L3 R, ,Rlej,

t—p no t=p+1 1

ej12p2p ej,

’ﬂo Zt =p+1 J1

~T —
Applying the same arguments to the other elements of V,; 'V  , it holds that

T —~
Kio (Vzo Vio)_l —p I

T,;O .

T~
When ko = o (C,'no/log(n V ng)), we have Amin(V,, Vi,) > ¢ with probability tending to 1. By (5)
and (26),

no

~ 1 ~T~
‘51‘0—:31'0 , = ;O(Vi Vi)~ 1Vzo > Ry
t=p+1 9
1 1 AT
= - Z Rf pgz[),
c
t=p+1
1 Tig |: 7 1 :|2
= - oO,(—)+0,(——
: g o)+ Opl )
ko .
= 0 — =1,---,n.
p( nO), 20 ) , N
If ko is not fixed in the part (i) of Theorem 3, we obtain
_ 1|14 Vkont : _
‘,87;0—,8@‘0 QSE o VZO Z Rt p670t :Op(TO), 7,0:1’...7’[1.
2

The required asymptotic result for a fixed kg follows from the above result directly. This completes
the proof of Theorem 3.

Proof of Theorem 4.

By Theorem 3, it holds that

ng
H/@LO - /6io 1 = n (V VZU) 1V10 Z Rt pEio,t
0 t=p+1 1
L oT &
S C nfo\/l0 Z Rtfpgio,t
t=p+1 1
7'»;0 1
— Yo,y oLy
=1 Vo
for ig =1, -+ ,n. The required asymptotic result follows from the above result easily.
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