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Abstract

We consider a new class of semiparametric spatio-temporal models with un-

known and banded autoregressive coefficient matrices. The setting represents a

type of sparse structure in order to include as many panels as possible. We ap-

ply the local linear method and least squares method for Yule-Walker equation to

estimate trend function and spatio-temporal autoregressive coefficient matrices re-

spectively. We also balance the over-determined and under-determined phenomena

in part by adjusting the order of extracting sample information. Both the asymp-

totic normality and convergence rates of the proposed estimators are established.

The proposed methods are further illustrated using both simulation and case s-

tudies, the results also show that our estimator is stable among different sample

size, and it performs better than the traditional method with known spatial weight

matrices.

Keywords: Spatio-temporal autoregression; Unknown and banded coefficient matrices;

Local linear estimation; Yule–Walker equation

1 Introduction

The demand of spatio-temporal prediction arises from panel studies of economics, air pol-

lution analysis, epidemic phenomena, and various other fields. For example, we analyze the

monthly air quality index (AQI) for Beijing-Tianjin-Hebei urban agglomeration of China in

the period of Jan 2014–Nov 2019. The detailed analysis for this data set will be presented
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in Section 5. Fig. 1 depicts the AQI in a map for consecutive months, it’s noticeable that

the AQI level is analogous in region and each month’s AQI level is similar to that of the last

month, those fully show the spatial effect and dynamic effect. Correlation and heterogeneity are

Figure 1: Maps of the monthly AQI in the period of Feb-Sep 2014 for Beijing-Tianjin-

Hebei urban agglomeration of China.

two significant features of spatio-temporal data. The class of spatio-temporal autoregression

(STAR) models is the most common product to model cross sectional correlation among differ-

ent locations, it was first introduced by Cliff and Ord (1973) and has been applied to various

domains. For example, Deutsch and Ramos (1986) examined river flows with STAR model.

Szummer and Picard (1996) used a STAR model to aid in the synthesis of images of phenomena

such as moving water, fire, or other evolving textures. For the effect of spatial heterogeneity,

Lin and Lee (2010) proposed the robust generalized method of moments (GMM) estimators for

STAR model in the presence of heteroskedastic disturbances, and efficiency of estimator can be

improved by constructing the optimal weighted estimation. Kelejian and Prucha (2010) defined

instrumental variable estimators and gave some general theories concerning the joint asymptotic

distribution of those estimators and the GMM estimator in STAR models with autoregressive

and heteroskedastic disturbances. To tackle the panel data with time dependence, Fu and Li

(2020) explored the association between socioeconomic indicators and global PM2.5 using a

spatial econometric model coupled with a temporal weighted regression based on the hybrid
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method.

In practice the spans of dependence among locations exists, Guo et al. (2016) showed that

it is rare to collect the information enough from neighbour variables, and information from

farther locations may become redundant. Hence it is pertinent to consider the setting with

infinite location bands in the coefficient matrices. Notably, Dou et al. (2016) and Gao et al.

(2019) investigated the feasibility of estimation when the pertinent spatial weight matrix is

unknown, and showed that generalized Yule-Walker equations are viable and efficient. Due to

the limits of parametric models, more recent developments extend the class of STAR models

to nonparametric and semiparametric spatio-temporal autoregressive models. For example,

Biau and Cadre (2004) and Hallin et al. (2004) proposed the local linear method to model

spatial heterogeneity. Robinson (2010) applied the adaptive estimation method to estimate the

semiparametric spatial autoregressive model with non-normal innovations. Ulteriorly, Wang et

al. (2012) considered the following spatio-temporal models:

Yi,t = m(Xi,t) +Ri,t,

R = ρWR+ ε,

where Xi,t ∈ Rl, Yi,t ∈ R, i ∈ Λn = {(1, · · · , n1) × (1, · · · , n2) × · · · × (1, · · · , nd)}, t ∈ Tn =

(1, · · · , n0),n = (n0, n1, · · · , nd), andm(·) is an unknown function, ρ is the coefficient need to be

estimated, error term ε is independently identically normal distribution, the vector R is consists

of Ri,t which are positively correlated in a lexicographical order. W is the n∗×n∗ weight matrix

which measures the dependence and n∗ =
d∏

j=0
nj . The common practice in spatial econometrics

to assume the main diagonal elements of known W are zero, see Moran (1948)and Wang et

al. (2018). Motivated by the evidence in some practical cases, we extend the semiparametric

spatio-temporal models with autoregressive errors above to following models by allowing spatial

weight matrices are completely unknown but are assumed to be sparse, and the similar sparse

structure can be found in Guo et al. (2016):

Yi,t = m(Xi,t) +Ri,t, (1)

Ri,t = (d0
i )

TRt + (d1
i )

TRt−1 + · · ·+ (dp
i )

TRt−p + εi,t, (2)

where Xi,t ∈ Rl and Yi,t ∈ R represents the observations collected from every location we

studied at time t, Xi,t has finite dimension l, Rt is consists of Ri,t in a lexicographical order

of i, εi,t is the independent and identically distributed innovation at time t of location i, and

εt denotes the vector consists of the corresponding εi,t, it has a zero mean and satisfies the

condition Cov(Rt−j , εt) = 0 for all j ≥ 1, and the unknown positive definite matrix Σε denotes

the variance of εt. Furthermore we assume thatDj ≡ (dj
1, · · · ,d

j
n̄)

T ≡ (dji0,j0) are n̄×n̄ unknown

banded coefficient matrices and n̄ = n∗/n0. The coefficient matrix D0 captures the pure spatial

effect among different locations, other coefficient matrices Dj capture dynamic effect for j ̸= 0.

To the banded matrices we have dji0,j0 = 0 for all 1 ≤ k0 < |i0 − j0| < n̄, the bandwidth k0 is

an unknown integer which should be repeatedly determined in different cases, and d0i0,i0 = 0 for
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1 ≤ i0 ≤ n̄, the latter is equal to the common practice of spatial weight matrix in econometrics.

For simplicity, we assume that the autoregressive order p is known, as the order-determination

problem has already been thoroughly studied, see, e.g., Chapter 4 of Lütkepohl (2007). Note

that the condition dji0,j0 = 0 does not mean Cov(Ri0,t1 , Rj0,t2) = 0, and we don’t require Σε to

be banded.

This study seeks to make contributions in the following three respects. Firstly, we consider

the more flexible and reasonable semiparametric models, the unknown and banded setting in

models comes with the decrease of the number of estimated parameters and weaken the curse of

dimension, it also avoids the unaccurate issue of constructing spatial weight matrices. Secondly,

we try to avoid over-determined and under-determined by adjusting the order of extracting the

information from sample data, and adopt a version of marginal Bayesian information criterion to

identify the true bandwidth under the order of autoregression p is known. Finally, both asymp-

totic distribution and convergence rate of estimators are established in the new class of models

under mild conditions. We develop the asymptotic normality of nonparametric predictors and

the estimated coefficients under a general setting for stationary and α-mixing processes, and

the convergence rates of the estimators are same with 1/
√
n0. The analysis results of simulation

and real data sets indicate that the proposed methodology performs well.

The rest of the paper is organized as follows. Section 2 is the main part of the paper, where

the new class of models and estimation method are specified. The asymptotic properties are

stated in Section 3. Numerical results on simulated data and real data are reported in Section

4 and 5 respectively. In the Appendix we present all the technical proofs.

To guarantee the desired results, we make some notations here. For a n × n matrix H is

consist of hi,j , λmax(H) and λmin(H) denote the largest eigenvalue and the smallest eigenvalue

of matrix H respectively, ∥H∥1 = max
j

∑
i
|hi,j | and ∥H∥2 =

√
λmax(H

TH) are the L1 norm

and Euclidean L2 norm respectively, Hmax is the largest value of matrix H. For subset S ⊂
{1, · · · , n}, let HS be a sub-matrix consisting of the columns of H in S and |S| be the cardinality
of S. The letter c and C are used to denote constants whose values are unimportant and may

vary from line to line.

2 Main methodology

2.1 Local linear estimator

The object is to estimate coefficient matrices Dj for all j ∈ {0, 1, · · · , p}, and Ri,t is not

observed in process of collecting data, we propose below a new two-step estimation method

which combines the local linear fitting method and the generalized Yule-Walker equation: first,

getting the estimator R̂i,t of Ri,t, then obtaining all coefficient matrices with the least squares

method to Yule-Walker equation.

We use Taylor expansion of m(Xi,t) around x0 and local polynomial fitting method to
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estimate m(x0) in model (2):

min
∑
i∈Λn

∑
t∈Tn

{
Yi,t −m(x0)− [m

′
(x0)]

T(Xi,t − x0)
}2

Ki,t,

where Ki,t = (1/(h1 · · ·hl))K((Xi,t − x0)/h) is the non-negative weight function on Rl, the

bandwidth of nonparametric method h is equal to (h1, · · · , hl)T, and (Xi,t − x0)/h is a vector

representation of the difference betweenXi,t(j) and x0(j) for j = 1, · · · , l, which are the element

of Xi,t and x0 respectively, it has the short form of following formula:

Xi,t − x0

h
=

(
Xi,t(1)− x0(1)

h1
, · · · ,

Xi,t(l)− x0(l)

hl

)T

.

Based on the results of the weighted least square method, we can obtain the estimator

m̂(x0) = eT1

{
1

n∗
XTW0X

}−1{ 1

n∗
XTW0Y

}
≡ eT1U

−1
n Jn, (3)

where

X =


1

(
X1,1−x0

h

)T
...

...

1
(
Xn̄,n0−x0

h

)T
 , Y =


Y1,1
...

Yn̄,n0

 ,
and the weight matrix W0 =diag(K1,1, · · · ,Kn̄,n0), the (l + 1) × 1 unit vector e1 with 1 as

its first element. On the other hand, applying the local polynomial fitting method to estimate

error value of each observation location in model (1), the mechanism of weight function Ki,t

will fail when x0 equal to Xi,t, a common practice in practical studies is to use leave-one-out

method to avoid that failure case, see, e.g., Linton and Xiao (2007). Then our objective here

in practical cases is to solve the minimization problem

min
x0 ̸=Xi,t

∑
i∈Λn

∑
t∈Tn

{
Yi,t −m(x0)− [m

′
(x0)]

T(Xi,t − x0)
}2

Ki,t.

By Theorem 1 in Section 3, the resulting estimator of Ri,t is a zero mean autoregressive

random field which admits the following expression:

R̂i,t = Yi,t − m̂(Xi,t).

In the first step, we use the methodology above to obtain m̂(Xi,t) in the process of estimate

error term. Throughout this paper, Rt is referred to as a strictly stationary process defined by

(2).

2.2 Generalized Yule-Walker estimator

With the banded condition of model above, the information from farther locations be-

come redundant, though there may be non-zero correlations among all component series of Rt.

This reflects that bandwidth of banded model is the distance of dependency between differ-

ent locations, and the optimal bandwidth parameter k0 is case-dependent, we use a Bayesian

information criterion method to estimate it in the following content.

5



Let Σj = Cov(Rt+j ,Rt) for any j ≥ 0, and E(Rt) = 0, then the Yule-Walker equations

below follows from (2) and properties of stationary process that

Σj = (In̄ −D0)
−1

p∑
k=1

DkΣj+k, 0 ≤ j < p,

Σj = (In̄ −D0)
−1

p∑
k=1

DkΣj−k, j ≥ p,

which ensure the feasibility of second moment. Let In̄ −D0 be invertible, where In̄ is a n̄× n̄

identity matrix. To avoid the endogeneity and inconsistent estimators, we convert the original

estimation problem to estimate the coefficient matrix of Yule-Walker equation of Σp. Take the

i0th row of the Σp,

ΣT
p ei0 =

p∑
j=0

ΣT
p−jD

T
j ei0 =

p∑
j=0

ΣT
p−jd

j
i0
≡ Vi0βi0 , i0 = 1, · · · , n̄, (4)

where ei0 denotes the n̄× 1 unit vector with the i0th element equal to 1. The τi0 × 1 vector βi0

consists of dj
i0
after removing the zero element for j = 0, · · · , p, e.g., βi0 = ((d0′

i0
)T, · · · , (dp′

i0
)T)T,

in which there are some vectors dj′

i0
with non-zero elements from dj

i0
. Similarly, we stack the

corresponding columns of ΣT
p−j horizontally for j = 0, · · · , p to construct the n̄ × τi0 matrix.

For the banded area of a matrix, there are three regions divided by two boundaries, the number

of elements is constant in the middle region, and the number of elements in the remaining two

regions changes inversely with each other, then the actual formulas of τi0 can be written as

τi0 ≡ τi0(k0) =


(p+ 1)(k0 + i0)− 1 1 ≤ i0 ≤ k0,

(p+ 1)(2k0 + 1)− 1 k0 < i0 ≤ n̄− k0,

(p+ 1)(k0 + n̄+ 1− i0)− 1 n̄− k0 < i0 ≤ n̄.

(5)

Since the stationary process Rt is a zero mean field, we replace Σj by the sample (au-

to)covariance matrices

Σ̂j =
1

n0

n0∑
t=p+1

Rt−p+jR
T
t−p, j = 0, · · · , p, (6)

which omit finite terms is reasonable to ensure the validity of (9) when n0 → ∞. Consequently,

the least squares estimator of βi0 based on (4) is

β̂i0 = (V̂
T

i0V̂i0)
−1V̂

T

i0 ẑi0 , i0 = 1, · · · , n̄,

where ẑi0 = Σ̂T
p ei0 , and the hat values denote the corresponding sample values. More explicitly,

ẑi0 =
1

n0

n0∑
t=p+1

Rt−pRi0,t = V̂i0βi0 +
1

n0

n0∑
t=p+1

Rt−pεi0,t, (7)

V̂i0 =
1

n0

n0∑
t=p+1

Rt−p(rT )
T, (8)
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where the 1×τi0 vector (rT )T = ((rTp)
T, (rTp−1)

T, · · · , (rT0)
T) and Tj = t−p+j, the sub-vector

rTj consists of Rq,Tj for q ∈ Si0 when j = p and for q ∈ S+
i0

when j ̸= p , where

Si0 = {q : 1 ≤ q ≤ n̄, 1 ≤ |i0 − j0| ≤ k0} and S+
i0
= {q : 1 ≤ q ≤ n̄, |i0 − j0| ≤ k0} .

Then it holds that

β̂i0 − βi0 =
1

n0
(V̂

T

i0V̂i0)
−1V̂

T

i0

n0∑
t=p+1

Rt−pεi0,t, i0 = 1, · · · , n̄. (9)

In addition, the mean of corresponding residual sum of squares for the estimation of xth

row of Yule-Walker equation is expressed in Euclidean norm as

RSSi0(k0) =
1

n̄

∥∥∥ẑi0 − V̂i0β̂i0

∥∥∥2
2
, i0 = 1, · · · , n̄. (10)

The number of elements of whole coefficient matrices which we need to estimate is a function

of the bandwidth k0, we observe the specific expression of (5) imply that this is a under-

determined case in the sense that the number of estimation equations is less than the number

of estimation parameters, especially in the case of small sample size. Note that there are n̄+ 1

parameters to be estimated with n̄ equations in (4) when k0 equals to n̄+2
4 which is an extreme

value and satisfies boundary condition (< n̄) for p = 1 and i0 = k0, a similar under-determined

situation can also be found in Section 2.2 of Dou et al. (2016) and Gao et al. (2019). In order

to improve the estimation accuracy, we estimate parameters using the following r Yule-Walker

equations:
ΣT

p

ΣT
p+1
...

ΣT
p+r−1

 =


ΣT

p

ΣT
p+1
...

ΣT
p+r−1

DT
0 +


ΣT

p−1

ΣT
p
...

ΣT
p+r−2

DT
1 + · · ·+


ΣT

0

ΣT
1
...

ΣT
r−1

DT
p , (11)

then the i0th row of equation (11) implies

z
′
i0 ≡


ΣT

p

ΣT
p+1
...

ΣT
p+r−1

 ei0 =

p∑
j=0


ΣT

p−j

ΣT
p−j+1
...

ΣT
p−j+r−1

dj
i0
≡ V

′
i0βi0 , (12)

where the definition of V
′
i0 is similar toVi0 . For ease of calculation, we also replace Σj by the

corresponding sample matrices, hence V̂
′

i0 could be written as

V̂
′

i0 =



1
n0

n0∑
t=p+1

Rt−p(r(1),T )
T

1
n0

n0∑
t=p+1

Rt−p(r(2),T )
T

...

1
n0

n0∑
t=p+1

Rt−p(r(r),T )
T


.
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where (r(k),T )
T = ((r(k),Tp+k−1

)T, (r(k),Tp+k−2
)T, · · · , (r(k),Tk−1

)T), the sub-vector r(k),Tj
consists

of Rq,Tj for q ∈ Si0 when j = p + k − 1 and for q ∈ S+
i0

when j ̸= p + k − 1. Similarly, by the

least squares method, we obtain the estimator

β̂
′
i0 =

(
(V̂

′

i0)
TV̂

′

i0

)−1

(V̂
′

i0)
Tẑ

′

i0 . (13)

Denote a n̄r×1 vector fεi0 = ( 1
n0

n0∑
t=p+1

RT
t−pεi0,t, · · · , 1

n0

n0∑
t=p+1

RT
t−pεi0,t−r+1)

T, then it holds

that for i0 = 1, · · · , n̄,

β̂
′
i0 − βi0 =

(
(V̂

′

i0)
TV̂

′

i0

)−1

(V̂
′

i0)
Tfεi0 .

The multiple generalized Yule-Walker estimator has the same properties as n0 → ∞ and

n̄→ ∞, and we usually take r = 1 for calculation convenience, we can increase r appropriately

if there is lack of accuracy. But it is important that it performs better than generalized Yule-

Walker estimator when there exists under-determined case.

2.3 A consistent estimator for high dimensional vector

When n̄/
√
n0 → ∞, the estimator (7) presents a convergence rate different from standard

rate 1/
√
n0 by Theorem 3 in Section 3. For a high dimensional vector zi0 , we know the value

of k0 is finite, then the dimension of estimator is far less than n̄, this is a traditional over-

determined scenario. The probability of over-determined situation increases with the value of

r × n̄, we have to decrease the numerical value r × n̄ for the objective accuracy of estimation

parameters, that means we should omit some columns of (r) Yule-Walker equations. Borrowing

the idea from Dou et al. (2016), we propose an alternative estimator to restore the standard
√
n0-consistency and the asymptotic normality.

Since the lth row of V̂
′

i0 is eTl V̂
′

i0 , which is the sample covariance between Rl,t−p and rT(k),T .

Then define a non-negative parameter for k = 1, · · · , r,

δ
(l)
k =

∥∥∥∥eTl V̂′

i0

∥∥∥∥
1

=

∥∥∥∥∥∥ 1

n0

n0∑
t=p+1

Rl,t−p(r(k),T )
T

∥∥∥∥∥∥
1

,

which can be rewritten as the lth row of the sum of all |Σ̂j |, the sum of δ
(l)
k presents the whole

strength of correlation between Rl,t−p and r(k),Tj
in this situation that more than one Yule-

Walker equations. When δ(l) =
r∑

k=1

δ
(l)
k is close to 0, the lth row of all |Σ̂j | is also close to 0,

that implies parameters which we are estimating are meaningless, hence we may only keep the

lth equation in (12) with the di0 largest δ(l), and di0 is a prescribed number.

Let m(i0),t−p be the di0 × 1 sub-vector of Rt−p, and it consists of the corresponding di0

largest δ(l), we replace Rt−p with the informative m(i0),t−p in the process of estimation here.

Then the new estimator is defined as

β̃
′
i0 = (M̃

T

i0M̃i0)
−1M̃

T

i0 z̃i0 , i0 = 1, · · · , n̄,
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where

M̃i0 =



1
n0

n0∑
t=p+1

m(i0),t−p(r(1),T )
T

1
n0

n0∑
t=p+1

m(i0),t−p(r(2),T )
T

...

1
n0

n0∑
t=p+1

m(i0),t−p(r(r),T )
T


and z̃i0 =



1
n0

n0∑
t=p+1

m(i0),t−pRi0,t

1
n0

n0∑
t=p+1

m(i0),t−pRi0,t+1

...

1
n0

n0∑
t=p+1

m(i0),t−pRi0,t+r−1


. (14)

Thus

β̃
′
i0 − βi0 = (M̃

T

i0M̃i0)
−1M̃

T

i0 f̃εi0 ,

where f̃εi0 = ( 1
n0

n0∑
t=p+1

mT
(i0),t−pεi0,t, · · · ,

1
n0

n0∑
t=p+1

mT
(i0),t−pεi0,t−r+1)

T. Theorem 5 in Section 3

shows the asymptotic normality of the above estimator as long as the condition di0 = o(
√
n0)

holds uniformly for all i0, and we have proved that the consistent estimator is effective in

the section of simulation study. Compared with Gao et al. (2019), we adjusted the order

of extracting sample information, and the over-determined and under-determined phenomena

can be balanced in part by increasing the amount of information first and then restricting the

estimation with convergence rate.

2.4 Determination of optimal bandwidth

The bandwidth is unknown and we need to estimate k0 actually. We propose to determine

the optimal bandwidth k0 based on the marginal Bayesian information criterion,

BICi0(k) = logRSSi0(k) +
1

n0
pτi0(k)Cn0 log(n̄ ∨ n0), i0 = 1, · · · , n̄,

where (n̄∨n0) = max(n̄, n0), and Cn0 is some positive constant which diverges with n0, similar

ideas can be found in Guo et al. (2016) and Lam and Yao (2012). We know the corresponding

BIC is minimal for k = k0 when all the sample covariance matrices Σ̂j are replaced by the true

Σj . Then the hat value of optimal bandwidth k0 is defined as

k̂0 = max
1≤i0≤n̄

arg min
1≤k≤K

BICi0(k),

where K ≥ 1 is a prescribed upper boundary of bandwidth, and our numerical study shows

that it is insensitive to the choice of K provided that K ≥ k0. In practice, we often choose

the upper boundary K to be [
√
n̄] which is integer. The ratio-based method was also used to

determine optimal bandwidth in Gao et al. (2019), but the results of simulation show BIC

method performs better in this model.
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3 Theoretical properties

3.1 Regularity conditions

A strictly stationary of spatial process Ri,t
′ is α-mixing at any fixed time t

′
if

α(d(E1, E2)) = sup
A∈FE1

,B∈FE2

|P (A)P (B)− P (AB)| ≤ ψ(|E1|, |E2|)φ(d(E1, E2)) → 0,

as d(E1, E2) → ∞, where d(E1, E2) is the ordinary Euclidean distance, FE denotes the σ-

algebra generated by {Ri,t′ : i ∈ E}, and ψ : N2 → R+ is a symmetric positive function which

is non-decreasing in each variable, the monotonically decreasing function φ(x) → 0 as x → ∞
and satisfies φ(0) = 1.

Similarly, the strictly stationary of time process Ri′ ,t is α-mixing at any fixed location i
′
if

α
′
(d(E

′
1, E

′
2)) = sup

A∈F
E
′
1
,B∈F

E
′
2

|P (A)P (B)− P (AB)| ≤ ψ
′
(|E′

1|, |E
′
2|)φ

′
(d(E

′
1, E

′
2)) → 0,

as d(E
′
1, E

′
2) → ∞, where FE′ denotes the σ-algebra generated by {Ri′ ,t : t ∈ E

′}, ψ′
and φ

′
are

similar to ψ and φ above in setting of condition. Some regularity conditions are now in order.

A1. The random field {Xi,t} is strictly stationary. For all distinct (i, t) and (j, τ) in

Λn × Tn, the {Xi,t} and {Xj,τ} admit a joint density f(i,t)(j,τ) and f denotes the marginal

density of Xi,t.

A2. The support of K(·) is [−c, c]l as c <∞ and K(·) is a bounded function.

A3. m(x) is twice differentiable, denoting by m
′
(x) and m

′′
(x) its gradient and matrix of

its second derivatives at x respectively, and m
′
(x) is continuous for x ∈ Rl.

A4. h → 0, and
√
n∗h1 · · ·hlh2

max → 0 as n → ∞.

A5. (a) The innovations εt are independent and identically distributed satisfying E(εi,t) =

0 and Cov(Rt, εt) = 0 for i ∈ Λn, t ∈ Tn.

(b) The process Rt in models (1) and (2) is α-mixing satisfying
∞∑
k=1

α(k)
γ

4+γ <∞ for some

constant γ > 0 and E(Ri,t) = 0 for i ∈ Λn, t ∈ Tn.

(c) For γ > 0 in (b) above,

sup
1≤j≤n̄

E
∣∣∣eTj ΣkRt−k

∣∣∣4+γ
<∞, sup

1≤j≤n̄
E
∣∣∣eTj Rt−k

∣∣∣4+γ
<∞, sup

1≤i0≤n̄
E |εi0,t|

4+γ <∞

for k ∈ {0, · · · , p}.
A6. The matrix I−D0 is invertible. And for each j = (1, · · · , p), (i)

∥∥(I−D0)
−1Dj

∥∥
2
< 1,

(ii)dji0,j0 and the diagonal elements of Ki0 ,Pi0P
T
i0 and P̃i0P̃

T

i0 are all bounded uniformly, where

Ki0 ,Pi0 and P̃i0 are specified in (15), (16) and (17), respectively. (iii)|dji0,i0−k0
| or |dji0,i0+k0

| is

greater than
√
Cn0k0n

−1
0 log(n̄ ∨ n0), where (n̄Cn0 log(n0))/n0 → 0 and (C2

n0
log n0)/n0 → ∞

as n0 → ∞.

A7. For any finite number of columns of Vi0 , denoted by Fi0 and Hi0 in matrix form and

Fi0 ̸= Hi0 , λ1 ≤ λmin{FT
i0(I−Hi0(H

T
i0Hi0)

−1HT
i0)Fi0} ≤ λmax{FT

i0(I−Hi0(H
T
i0Hi0)

−1HT
i0)Fi0} <

λ2 for some positive constants λ1 < λ2, and the rank of Vi0 is equal to τi0 .
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Remark 1. Condition A1 is standard in this context; it has been used, for instance, by

Masry (1986) in the serial case, and by Tran (1990) in the spatial context. Conditions A2-A4

are proposed in Wang et al. (2012) as standard for nonparametric estimation process, Condition

A2 is just for the minor convenient process of proof, it can be extended to the infinite support

set in practice as is the good case in Wang et al. (2012), and Condition A4 is required such that

the bias goes to zero faster than the standard error, and thus is a suboptimal nonparametric

bandwidth choice. Condition A5 limits the dependence across different spatial locations. It is

implied by, for example, the conditions imposed in Yu et al. (2012). Condition A6 ensures that

the bandwidth k0 is asymptotically identifiable, as
√
n−1
0 log(n̄ ∨ n0) is the minimum order of a

non-zero coefficient to be identifiable, see, e.g., Guo et al. (2016). Similar to the Condition A4

in Gao et al.(2019), Condition A7 guarantees that the boundaries of RSSi0(k) are identifiable,

and the rank is equal to the number of parameters we need to estimate, then ensure the validity

of estimation with generalized Yule-Walker equations.

3.2 Asymptotic properties

We first state the asymptotic properties of hat value of the error term R̂x0,t.

Theorem 1. Let Conditions A1-A5 hold, then

(i)E(R̂i,t) = 0

(ii)
√
n∗h1 · · ·hl(Ri,t − R̂i,t) →d N(0, σ2eT1U

−1Σ(U−1)Te1),

where

U =

[
f(x0)

∫
Rl K(z)dz f(x0)

∫
Rl z

TK(z)dz

f(x0)
∫
Rl zK(z)dz f(x0)

∫
Rl zz

TK(z)dz

]
,

Σ =

[
f(x0)

∫
Rl K

2(z)dz f(x0)
∫
Rl z

TK2(z)dz

f(x0)
∫
Rl zK

2(z)dz f(x0)
∫
Rl zz

TK2(z)dz

]
.

Remark 2. Theorem 1 indicates that R̂i,t has the same expectation as Ri,t, and the

nonparametric estimator of unobserved Ri,t also performs well, then the analyses of simulation

and case study are fairly reliable.

Theorem 2. Let conditions A1-A7 hold and n̄ = o(n0), then P (k̂0 = k0) → 1 as n0 → ∞.

For i0 = 1, · · · , n̄, let

ΣR,εi0
(j) = Cov(Rt−p+jεi0,t+j ,Rt−pεi0,t), j = 0, 1, 2, · · · ,

ΣR,εi0
= ΣR,εi0

(0) +

∞∑
j=1

[ΣR,εi0
(j) +ΣT

R,εi0
(j)].

Meanwhile, define

Ui0 ≡



ITSi0
ΣpΣR,εi0

ΣT
p ISi0

ITSi0
ΣpΣR,εi0

ΣT
p−1IS+

i0

· · · ITSi0
ΣpΣR,εi0

Σ0IS+
i0

IT
S+
i0

Σp−1ΣR,εi0
ΣT

p ISi0
IT
S+
i0

Σp−1ΣR,εxΣ
T
p−1IS+

i0

· · · IT
S+
i0

Σp−1ΣR,εi0
Σ0IS+

i0

...
...

. . .
...

IT
S+
i0

Σ0ΣR,εi0
ΣT

p ISi0
IT
S+
i0

Σ0ΣR,εi0
ΣT

p−1IS+
i0

· · · IT
S+
i0

Σ0ΣR,εi0
Σ0IS+

i0
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and

Ki0 ≡



ITSi0
ΣpΣ

T
p ISi0

ITSi0
ΣpΣ

T
p−1IS+

i0

· · · ITSi0
ΣpΣ0IS+

i0

IT
S+
i0

Σp−1Σ
T
p ISi0

IT
S+
i0

Σp−1Σ
T
p−1IS+

i0

· · · IT
S+
i0

Σp−1Σ0IS+
i0

...
...

. . .
...

IT
S+
i0

Σ0Σ
T
p ISi0

IT
S+
i0

Σ0Σ
T
p−1IS+

i0

· · · IT
S+
i0

Σ0Σ0IS+
i0


, (15)

where ISi0
is the n̄ × |Si0 | matrix obtained by the stacking ej for all j ∈ Si0 parallel, in other

words, ISi0
= (ej , j ∈ Si0). Similarly, IS+

i0

is consisting of ej for all j ∈ S+
i0
.

Theorem 3. Let conditions A1-A7 hold.

(i) As n0 → ∞, n̄→ ∞, and n̄ = o(
√
n0). If k0 is fixed, then

√
n0U

− 1
2

i0
Ki0(β̂i0 − βi0) →d N(0, Iτi0 ), i0 = 1, · · · , n̄.

If k0 = o
(
C−1
n0
n0/ log(n̄ ∨ n0)

)
, then∥∥∥β̂i0 − βi0

∥∥∥
2
= Op(

√
k0
n0

), i0 = 1, · · · , n̄.

(ii) As n0 → ∞, n̄→ ∞, and n̄ = O(
√
n0), andn̄ = o(n0). If k0 is fixed, then∥∥∥β̂i0 − βi0

∥∥∥
2
= Op(

n̄

n0
), i0 = 1, · · · , n̄.

If k0 = o
(
C−1
n0
n0/ log(n̄ ∨ n0)

)
, then∥∥∥β̂i0 − βi0

∥∥∥
2
= Op(

n̄

n0

√
k0), i0 = 1, · · · , n̄.

Remark 3. Theorem 3 indicates that the standard convergence rate prevails as long as

n̄ = o(n0). However the convergence rate may be slower when n̄ is of higher orders than
√
n0.

To present the convergence rate for the estimation errors, Theorem 4 consider the L1 norm

of estimation errors.

Theorem 4. Let conditions A1-A7 hold.

(i) As n0 → ∞, n̄→ ∞, and n̄ = O(
√
n0). If k0 is fixed, then∥∥∥β̂i0 − βi0

∥∥∥
1
= Op(

n̄

n0
), i0 = 1, · · · , n̄.

If k0 = o
(
C−1
n0
n0/ log(n̄ ∨ n0)

)
, then∥∥∥β̂i0 − βi0

∥∥∥
1
= Op(

n̄k0
n0

), i0 = 1, · · · , n̄.

(ii) As n0 → ∞, n̄→ ∞, and n̄ = o(
√
n0). If k0 is fixed, then∥∥∥β̂i0 − βi0

∥∥∥
1
= Op(

1
√
n0

), i0 = 1, · · · , n̄.

If k0 = o
(
C−1
n0
n0/ log(n̄ ∨ n0)

)
, then∥∥∥β̂i0 − βi0

∥∥∥
1
= Op(

k0√
n0

), i0 = 1, · · · , n̄.
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(iii) As n0 → ∞, n̄→ ∞, n̄√
n0

→ ∞, and n̄ = o(n0). If k0 is fixed, then∥∥∥β̂i0 − βi0

∥∥∥
1
= Op(

n̄

n0
), i0 = 1, · · · , n̄.

If k0 = o
(
C−1
n0
n0/ log(n̄ ∨ n0)

)
, then∥∥∥β̂i0 − βi0

∥∥∥
1
= Op(

n̄k0
n0

), i0 = 1, · · · , n̄.

Theorem 4 indicates that the L1-norm of estimation errors tend to 0 when those conditions

above hold, and the convergence rates for L1-norm of estimation errors keep different correlation

with n̄, n0 and k0 under different setting conditions.

To derive the asymptotic properties of estimator β̂
′
i0
, define the element

Qi0(j1, j2) = Cov(Rt−pεi0,t+1−j1 ,Rt−pεi0,t+1−j2)

+
∞∑
j=1

[Cov(Rt−p+jεi0,t+1+j−j1 ,Rt−pεi0,t+1−j2)

+ Cov(Rt−pεi0,t+1−j1 ,Rt−p+jεi0,t+1+j−j2)]

of r × r matrix Qi0 for j1, j2 ∈ {1, · · · , r}. Furthermore,

Pi0 =


ITSi0

Σp ITSi0
Σp+1 · · · ITSi0

Σp+r−1

IT
S+
i0

Σp−1 IT
S+
i0

Σp · · · IT
S+
i0

Σp+r−2

...
...

. . .
...

IT
S+
i0

Σ0 IT
S+
i0

Σ1 · · · IT
S+
i0

Σr−1

 . (16)

In addition, the Condition A7 need to be adapted under the multiple Yule-Walker equations,

then Condition A8 was built to establish Theorem 5.

A8. For any finite number of columns of V
′
i0 , denoted by Fi0 and Hi0 in matrix form and

Fi0 ̸= Hi0 , λ1 ≤ λmin{FT
i0(I−Hi0(H

T
i0Hi0)

−1HT
i0)Fi0} ≤ λmax{FT

i0(I−Hi0(H
T
i0Hi0)

−1HT
i0)Fi0} <

λ2 for some positive constants λ1 < λ2, and the rank of V
′
i0 is equal to τi0 .

Theorem 5. Let conditions A1-A7 hold.

(i) As n0 → ∞, n̄→ ∞, and n̄ = o(
√
n0). If k0 is fixed, then

√
n0(Pi0Qi0P

T
i0)

− 1
2Pi0P

T
i0(β̂

′
i0 − βi0) →d N(0, Iτi0 ), i0 = 1, · · · , n̄.

If k0 = o
(
C−1
n0
n0/ log(n̄ ∨ n0)

)
, then∥∥∥β̂′

i0 − βi0

∥∥∥
2
= Op(

√
k0
n0

), i0 = 1, · · · , n̄.

(ii) As n0 → ∞, n̄→ ∞, and n̄ = O(
√
n0), andn̄ = o(n0). If k0 is fixed, then∥∥∥β̂′

i0 − βi0

∥∥∥
2
= Op(

n̄

n0
), i0 = 1, · · · , n̄.

If k0 = o
(
C−1
n0
n0/ log(n̄ ∨ n0)

)
, then∥∥∥β̂′

i0 − βi0

∥∥∥
2
= Op(

n̄

n0

√
k0), i0 = 1, · · · , n̄.
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To derive the asymptotic properties of estimator β̃i0 , redefine the (auto)covariance matrices,

Σ
′

(i0),j
= Cov(Rt,m(i0),t−j), Σ̂

′

(i0),j
= Cov(Rt−p+j ,m(i0),t−p).

By some similar notations as that of Theorem 5, define the element

Q̃i0(j1, j2) = Cov(m(i0),t−pεi0,t+1−j1 ,m(i0),t−pεi0,t+1−j2)

+

∞∑
j=1

[
Cov(m(i0),t−p+jεi0,t+1+j−j1 ,m(i0),t−pεi0,t+1−j2)

+ Cov(m(i0),t−pεi0,t+1−j1 ,m(i0),t−p+jεi0,t+1+j−j2)
]

of r × r matrix Q̃i0 for j1, j2 ∈ {1, · · · , r}, and

P̃i0 =


ITSi0

Σ
′

(i0),p
ITSi0

Σ
′

(i0),p+1 · · · ITSi0
Σ

′

(i0),p+r−1

IT
S+
i0

Σ
′

(i0),p−1 IT
S+
i0

Σ
′

(i0),p
· · · IT

S+
i0

Σ
′

(i0),p+r−2

...
...

. . .
...

IT
S+
i0

Σ
′

(i0),0
IT
S+
i0

Σ
′

(i0),1
· · · IT

S+
i0

Σ
′

(i0),r−1

 . (17)

Similarly, the Condition A5(c) and A7 just do not suit the new estimator, then we adapt

them for Condition A8 in order to establish Theorem 6.

A9. For γ > 0 specified in A5(b),

sup
1≤j≤n̄

E
∣∣∣eTj Σ′

kmt−k

∣∣∣4+γ
<∞, sup

1≤j≤n̄
E
∣∣∣eTj Rt−k

∣∣∣4+γ
<∞, sup

1≤i0≤n̄
E |εi0,t|

4+γ <∞

for k = (0, · · · , p) and i0 = (1, · · · , n̄).
A10. For any finite number of columns of M̃i0 , denoted by Fi0 and Hi0 in matrix form and

Fi0 ̸= Hi0 , λ1 ≤ λmin{FT
i0(I−Hi0(H

T
i0Hi0)

−1HT
i0)Fi0} ≤ λmax{FT

i0(I−Hx(H
T
i0Hi0)

−1HT
i0)Fi0} <

λ2 for some positive constants λ1 < λ2, and the rank of M̃i0 is equal to τi0 .

Theorem 6. Let conditions A1-A5(a,b), A6 and A9-A10 hold. As n0 → ∞, n̄ → ∞, and

di0 = o(
√
n0). If k0 is fixed, then

√
n0(P̃i0Q̃i0P̃

T

i0)
− 1

2 P̃i0P̃
T

i0(β̃
′
i0 − βi0) →d N(0, Iτi0 ), i0 = 1, · · · , n̄.

If k0 = o
(
C−1
n0
n0/ log(n̄ ∨ n0)

)
, then∥∥∥β̃′

i0 − βi0

∥∥∥
2
= Op(

√
k0
n0

), i0 = 1, · · · , n̄.

Theorem 6 indicates that the estimator β̃
′
i0

are asymptotic normal with the standard rate

as long as di0 = o(
√
n0). If the positive integer r equals to 1, we can also achieve the standard

convergence rate in Theorem 3.

4 Simulation study

In this section, we conduct two simulations as follows to evaluate the finite-sample proper-

ties of the proposed methods. For the sake of simplicity, we simulate Yi,t from the model

Yi,j,t = m(Xi,j,t) +Ri,j,t,

Rt = D0Rt +D1Rt−1 + εt,
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with d = 2, l = p = 1, where innovations are iid from a standard normal distribution. To

simulate the spatio-temporal process νi,j,t, we follow the spectral method of Cressie (1993) that

νi,j,t =

(
2

M

) 1
2

M∑
k=1

cos(i · w(1, k) + j · w(2, k) + t · q(k) + r(k)), k = 1, · · · ,M,

where w(i, k), i = 1, 2, and q(k) are iid from a standard normal distribution, independent of

r(k), which are iid uniform random variables on [−π, π]. We apply the data central processing

method to Ri,j,t and set the bandwidth of nonparametric estimation h1 = n∗−
1
5 s(X) where s(X)

is the sample standard deviation of X. For each nonparametric estimation process, we choose

Epanechnikov kernel function K(t) = 0.75(1− t2)I(|t| ≤ 1). Then we consider two settings for

m(·) and coefficient matrices D0 ≡ (d0i0,j0) and D1 ≡ (d1i0,j0).

Scenario 1. m(t) is sin(t) for spatio-temporal process, and {d0i0,j0 , d
1
i0,j0

: |i0−j0| ≤ k0} are

generated independently from U([−2.5,−1]
∪
[1, 2.5]), then rescale D0 and D1 to η0 ·D0/∥D0∥2

and η1 ·D1/∥D1∥2, where η0 and η1 are drawn independently from U(0.4, 1).

Scenario 2. m(t) is (t+5)−
1
2 for spatio-temporal process, and {d0i0,j0 , d

1
i0,j0

: |i0−j0| = k0}
are generated independently from Bernoulli(0.5) on two points {−1.5, 1.5}, {d0i0,j0 , d

1
i0,j0

: |i0 −
j0| < k0} are drawn independently from mixture distribution ξ · χ2(3) + (1 − ξ) · N(0, 1) with

P (ξ = 1) = 0.4 = 1− P (ξ = 0), then rescale D0 and D1 as in Scenario 1 above.

Figure 2: Boxplots of ∥D0 − D̂0∥2 for scenario 1.
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Figure 3: Boxplots of ∥D1 − D̂1∥2 for scenario 1.

For each setting, we replicate the experiment 100 times with M = 1000 and set sample

pize with {i × j × t : i = j = 4, 8, 10, 12, 15, 20; t = 4, 10, 30, 50}, this leads to the 24 different

estimator(i, j, t) combinations. In addition, we choose dx = min(n̄, n0.4670 ) after many numerical

simulation experiments and k0 = 3,K = 7. Figure 2 and Figure 3 depict some boxplots of

estimation errors ∥D0−D̂0∥2 and ∥D1−D̂1∥2 respectively for estimator(14) with r = 1, 3 under

the setting of scenario 1. As indicated clearly in Figures 2 and 3, when the time size is small, the

errors in estimating the coefficient matrices fluctuate with the location size; when the time size

increases to a certain extent, the errors tend to be stable and ignore the change of location size.

Those results above signify that the estimator (14) can balance over-determined and under-

determined in part. Note that the errors in estimating the coefficient matrices based on r = 3

don’t perform worse than the errors based on r = 1, this shows that multiple generalized Yule-

Walker equations can provide more information for estimation process. Moreover, the accuracy

of k̂ increases with the sample size can be found in Table 1, and a dominant proportion of

{k̂ = k0} and {k̂ > k0} usually produces more stable estimation errors. The ultimate goal of

our model is prediction, then the most important index is relative frequencies of occurrence of

the events {k̂ ≥ k0}, and the results of ratio-based method (Gao et al., 2019) are also reported

in parentheses. Both results of two methods tend to 1 with the increase of sample size, and the

probability value is gradually similar. On the other hand, the probability of occurrence of the
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estimated optimal bandwidth equal to the real bandwidth under BIC method is significantly

higher, which is also an important reason why the marginal Bayesian information criterion is

finally used to determine the optimal bandwidth in this paper.

Table 1: Relative frequencies of occurrence (%) of the events {k̂ = k0} and {k̂ >

k0} based on r = 1 by BIC method and ratio-based method (in parentheses).

Scenario 1 Scenario 2

i× j t {k̂ = k0} {k̂ > k0} {k̂ ≥ k0} {k̂ = k0} {k̂ > k0} {k̂ ≥ k0}
4 8 (6) 14 (12) 22 (18) 12 (7) 2 (4) 14 (11)

4× 4 10 17 (13) 5 (8) 22 (21) 21 (13) 2 (7) 23 (20)

30 22 (14) 4 (13) 26 (27) 26 (17) 6 (10) 32 (27)

50 30 (18) 8 (18) 38 (36) 28 (21) 10 (14) 38 (35)

4 21 (17) 4 (7) 25 (24) 13 (13) 16 (15) 29 (28)

8× 8 10 27 (16) 8 (16) 35 (32) 35 (19) 8 (15) 43 (34)

30 32 (24) 14 (24) 46 (48) 38 (25) 10 (26) 48 (51)

50 38 (26) 24 (27) 62 (53) 45 (34) 23 (31) 68 (65)

4 25 (20) 11 (16) 36 (36) 27 (21) 16 (18) 43 (39)

10× 10 10 30 (21) 18 (25) 48 (46) 35 (28) 21 (31) 56 (59)

30 39 (26) 17 (29) 56 (55) 46 (31) 25 (37) 71 (68)

50 43 (32) 32 (34) 75 (66) 46 (38) 42 (36) 88 (74)

4 31 (24) 19 (26) 50 (50) 34 (23) 19 (30) 53 (53)

12× 12 10 37 (24) 29 (41) 66 (65) 38 (25) 24 (35) 62 (60)

30 36 (30) 36 (41) 72 (71) 40 (28) 31 (42) 71 (70)

50 48 (34) 36 (46) 84 (80) 50 (33) 33 (46) 83 (79)

4 41 (26) 29 (42) 70 (68) 37 (26) 22 (34) 59 (60)

15× 15 10 47 (28) 34 (43) 81 (71) 40 (24) 22 (37) 62 (61)

30 53 (33) 27 (48) 80 (81) 44 (30) 37 (49) 81 (79)

50 54 (39) 37 (51) 91 (90) 49 (34) 35 (50) 84 (84)

4 45 (30) 34 (48) 79 (78) 40 (29) 27 (37) 67 (68)

20× 20 10 49 (29) 36 (50) 85 (79) 44 (33) 39 (48) 83 (81)

30 58 (33) 36 (58) 94 (91) 57 (37) 39 (58) 96 (95)

50 60 (42) 39 (57) 99 (99) 57 (41) 43 (57) 100 (98)

To show the estimation errors for scenario 2, we omit the worse results based on r = 1 to

save space, and Figure 4 indicate a similar estimation results to scenario 1, so does Table 1.

Overall, the estimator (14) is stable for the sample size.
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Figure 4: Boxplots of ∥D0 − D̂0∥2 (the top panels) and ∥D1 − D̂1∥2 (the bottom

panels) for scenario 2.

5 Real data analysis

We now illustrate the proposed model via an application to two spatio-temporal data sets

in this section, and the dimension of independent variable is small, then we don’t need to solve

the curse of dimensionality. The settings not mentioned below are same as section 4.

Case 1. We analyze here the monthly air quality index (AQI) for Beijing-Tianjin-Hebei

urban agglomeration of China in the period of Jan 2014–Nov 2019, and PM2.5, PM10, SO2,

CO, NO2, O3, temperature, speed of the winds, rainfall of the corresponding period as in-

dependent variables. Data can be availabled from https://www.aqistudy.cn/historydata/ and

http://hj.zc12369.com/. For this data set, location size n̄ = 14, time size n0 = 71. Figure

5 presents the time series plots of the monthly estimated error terms at three cities Beijing,

Chinwangtao and Kalgan. To fit the banded model with p = 1,K = 7 and r = 3, we might

need to arrange the 14 cities in a certain order and here consider the operating frequency of

trains to Beijing as the ordering.

According to the Air Quality Standard in China, the AQI is marked at 6 different levels, the

higher AQI indicates the worse air quality, and Figure 1 depicts the AQI level for consecutive

months. For general public the prediction for a specific AQI value is more significant than that
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for the level, the estimated bandwidth k̂ and the mean squared predictive errors of one-step

ahead and two-step ahead predictions based on the spatio-temporal error models with known

spatial weight matrix (STEM) and spatio-temporal models with autoregressive errors(STBEM)

are reported in Table 2, and the known spatial matrix was set to spatial contiguity matrix. It

is easy to see from Table 2 that the STBEM has the greater prediction accuracy than STEM.

Figure 5: Time series plots of monthly estimated error terms at, from top to bottom,

Beijing, Chinwangtao and Kalgan.

Case 2. Now we consider the yearly effect of public capital, private capital, employment

and the rate of unemployment on gross state product of 48 states (except Hawaii and Alaska) in

the United States over the years 1970-1984. Data can be availabled from https://www.ceicdata.com/zh-

hans. Note that now location size n̄ = 48 and time size n0 = 15. With the logarithmic trans-

formation to the data of variables (except the rate of unemployment), Figure 6 shows the time

series plots of the estimated error terms from those transformed data at six randomly selected

states. In order to fit the banded model with p = 1,K = 15, r = 3, and detect the importance of

location order to prediction, we just arrange them in alphabetical order. Moreover, we choose

the spatial contiguity matrix in this case to predict based on the STEM. The mean squared

predictive errors of one-step and two-step ahead for two different methods are both reported

in three different directions in Table 2. According that, STBEM has the better one-step ahead

predictions clearly in three different directions, and the two-step ahead predictions are not worse

than that of STEM.

6 Concluding remark

We propose in this paper a new class of semiparametric banded spatio-temporal models

with autoregressive errors. No matter what form of the implied auto-covariance matrices, the
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Figure 6: Time series plots of yearly estimated error terms at six randomly selected

states in the United States.

Table 2: The estimated bandwidth and mean squared predictive errors for case

1 and case 2.

Case 1 Case 2

STBEM STEM STBEM STEM

No One-step ahead 2.9715 3.1290 0.0026 0.0034

particular Two-step ahead 5.4154 6.4205 0.0054 0.0054

order k̂ 7 13

Northeast One-step ahead 1.4954 3.8940 0.0025 0.0035

to Two-step ahead 2.4314 5.3306 0.0053 0.0056

southwest k̂ 7 13

Southeast One-step ahead 1.1075 1.5415 0.0023 0.0035

to Two-step ahead 4.2776 4.5084 0.0048 0.0056

northwest k̂ 7 15

setting can include as many panels as possible. The coefficient matrices are estimated based

on generalized Yule–Walker equations, and the optimal bandwidth of the coefficient matrices

is determined by the marginal Bayesian information criterion. Both the asymptotic properties

and numerical results show that the proposed models perform well.
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Appendix. Proofs

Lemma 1. Under conditions A1, A2, and A4, we have

1

n∗
X

TW0X →p U.

Lemma 1 is similar to Lemma 2.1 in Hallin et al. (2004), so we omit the proof. For our purposes, we

make a new notation before Lemma 2.

Hn =

 1
n∗

∑
i∈Λn

∑
t∈Tn

Ki,t(ρi,t +Ri,t)

1
n∗

∑
i∈Λn

∑
t∈Tn

(
Xi,t−x0

h )Ki,t(ρi,t +Ri,t)


where ρi,t = m(Xi,t)−m(x0)− hTm

′
(x0).

Lemma 2. If conditions A1-A4 hold, then

(n∗h1 · · ·hl)
1
2E(Hn) → 0.

Proof. It suffices to prove

(n∗h1 · · ·hl)
1
2
1

n∗

∑
i∈Λn

∑
t∈Tn

E (Ki,t(ρi,t +Ri,t)) → 0.

We first rewritten ρi,t by the Taylor expansion,

ρi,t = (Xi,t − x0)
Tm

′′
(x0 + ρ(Xi,t − x0))(Xi,t − x0),

where |ρ| < 1. Since the explanatory variable is independent of the error term, E(Ki,tRi,t) = E(Ki,t)E(Ri,t) =

0, and their expectations are both exist. By condition A4,

(n∗h1 · · ·hl)
1
2
1

n∗

∑
i∈Λn

∑
t∈Tn

E (Ki,t(ρi,t +Ri,t))

= (n∗h1 · · ·hl)−
1
2

∑
i∈Λn

∑
t∈Tn

E

{
K(

Xi,t − x0

h
)(ρi,t +Ri,t)

}
≤ h2

max(n
∗h1 · · ·hl)−

1
2

∑
i∈Λn

∑
t∈Tn

E {K(u)ρi,t(u)}

= h2
max(n

∗h1 · · ·hl)
1
2 f(x0)

∫
Rl

K(u)ρi,t(u)du

≤ Ch2
max(n

∗h1 · · ·hl)
1
2 → 0.

This completes the proof of Lemma 2.

21



Proof of Theorem 1. By equation (3), we have

Ri,t − R̂i,t = m̂(x0)−m(x0)

=
1

n∗
eT1U

−1
n XW0


ρ1,1 +R1,1

...

ρn̄,n0 +Rn̄,n0



=
1

n∗
eT1U

−1
n XW0


ρ1,1
...

ρn̄,n0

+
1

n∗
eT1U

−1
n XW0


R1,1

...

Rn̄,n0


≡ A1 +A2

for the first part. In addition, we can easily derive that the equation above equals eT1U
−1
n Hn. Then, to

prove the zero mean, it suffices to prove E(
√
n∗h1 · · ·hleT1U

−1
n Hn) = 0. The Lemma 1 means that we

just need to prove that for any vector c = (c0, · · · , cl)T, it holds

E
(
(n∗h1 · · ·hl)

1
2 cTHn

)
= 0. (18)

It is easy to prove that holds by Lemma 2. Next, we consider the asymptotic behaviour of the first part

by observing A1 and A2. After that, we know that it suffices to prove

(n∗h1 · · ·hl)
1
2A1 → 0 (19)

and

(n∗h1 · · ·hl)
1
2A2 →L N(0, σ2eT1U

−1Σ(U−1)Te1).

Without loss of generality, we take d = 2 in the proof process, then i can be rewritten (i, j). Similar to

the proof of Lemma 2.1 in Hallin et al. (2004), by Taylor expansion, conditions A2 and A4,

(n∗h1 · · ·hl)
1
2A1

= (
h1 · · ·hl
n∗

)
1
2 eT1U

−1
n XW0


ρ1,1
...

ρn̄,n0



= (n∗h1 · · ·hl)−
1
2 eT1U

−1
n


∑

i∈Λn

∑
t∈Tn

{
K(

Xi,t−x0

h )ρi,t

}
∑

i∈Λn

∑
t∈Tn

{
Xi,t−x0

h K(
Xi,t−x0

h )ρi,t

}


=
eT1U

−1
n

n∗h1 · · ·hl


∑

i∈Λn

∑
t∈Tn

{
K(

Xi,t−x0

h )(Xi,t − x0)
Tm

′′
(x0 + ρ(Xi,t − x0))(Xi,t − x0)

}
∑

i∈Λn

∑
t∈Tn

{
Xi,t−x0

h K(
Xi,t−x0

h )(Xi,t − x0)
Tm

′′
(x0 + ρ(Xi,t − x0))(Xi,t − x0)

}


→p (n∗h1 · · ·hl)
1
2h2

max


1
2f(x0)

l∑
i=1

l∑
j=1

∂2m(x0)
∂x0i

∂x0j

∫
Rl zizjK(z)dz

1
2f(x0)

l∑
i=1

l∑
j=1

∂2m(x0)
∂x0i

∂x0j

∫
Rl zizjzK(z)dz


→p 0.

To prove (20), similar to (18), it suffices to prove that for any vector c = (c0, · · · , cl)T = (c0, (c
′
)T)T, it

holds

∆ = (n∗h1 · · ·hl)−
1
2

∑
i∈Λn

∑
t∈Tn

{[
c0 + (c

′
)T(

Xi,t − x0

h
)

]
K(

Xi,t − x0

h
)Ri,t

}
→d N(0, σ2cTΣc). (20)
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We know the expectation of ∆ is zero already from the front, and similar to the proof of Lemma 1, it is

easy to prove the variance of ∆ is equal to σ2cTΣc. By conditions A1-A5, (20) is hold. Thus, the proof

of Theorem 1 is completed.

Proof of Theorem 2.

Our goal is to prove that P (k̂0 = k0) → 1. It is sufficient to show that P (k̂0 < k0) → 0 and

P (k̂0 > k0) → 0. Our proof follows the arguments in Wang et al. (2009).

Without loss of generality, we take p = 1 in the proof process. Consider the first case. Since

k̂0 = max
1≤i0≤n̄

k̂i0 , then it holds that P (k̂0 < k0) ≤ P (k̂i0 < k0) for some i0 ∈ {1, · · · , n̄}, and the event

(k̂i0 < k0) implies

Ψi0,n0 ≡ min
k<k0

BICi0(k) < BICi0(k0).

That means we just need to prove P (Ψi0,n0) → 0 for some x. We observe the situation under k = k0

first. By (4), we have

V̂i0 = (Σ̂T
p , · · · , Σ̂0), βi0 = ((d0′

i0)
T, · · · , (dp′

i0
)T)T,

which all correspond to the non-zero elements of ((d0
i0
)T, · · · , (dp

i0
)T)T. It follows from the compatibility

of matrix L2 norm and some properties of projection matrix that

RSSi0(k0) =
1

n̄

∥∥∥ẑi0 − V̂i0 β̂i0

∥∥∥2
2

=
1

n̄

∥∥∥∥∥V̂i0βi0 +
1

n0

n0∑
t=p+1

Rt−pεi0,t − V̂i0 β̂i0

∥∥∥∥∥
2

2

=
1

n̄

∥∥∥∥∥(I−Hi0)
1

n0

n0∑
t=p+1

Rt−pεi0,t

∥∥∥∥∥
2

2

≤ 1

n̄
∥I−Hi0∥

2
2

∥∥∥∥∥ 1

n0

n0∑
t=p+1

Rt−pεi0,t

∥∥∥∥∥
2

2

≤ 1

n̄

∥∥∥∥∥ 1

n0

n0∑
t=p+1

Rt−pεi0,t

∥∥∥∥∥
2

2

,
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where Hi0 = V̂i0(V̂
T

i0V̂i0)
−1V̂

T

i0 . By proposition 2.5 of Fan and Yao (2003), we have

E

(
1

n0

n0∑
t=p+1

Rt−pεi0,t

)2

= Var

(
1

n0

n0∑
t=p+1

eTj Rt−pεx,t

)
+ E2

(
1

n0

n0∑
t=p+1

eTj Rt−pεi0,t

)

= Var

(
1

n0

n0∑
t=p+1

eTj Rt−pεi0,t

)
+ 0

=
1

n20

n0∑
t=p+1

Var

(
n0∑

t=p+1

eTj Rt−pεi0,t

)
+

1

n20

∑
t ̸=s

Cov(eTj Rt−pεi0,t, e
T
j Rs−pεi0,s)

=
C

n0
+

1

n20

∑
t ̸=s

8α(|t− s|)
γ

4+γ

(
E|eTj Rt−pεi0,t|2+

γ
2

) 2
4+γ ×

(
E|eTj Rs−pεi0,s|2+

γ
2

) 2
4+γ

≤ C

n0
+
C

n20

∑
t ̸=s

α(|t− s|)
γ

4+γ

≤ C

n0
+
C

n0

n0∑
j=1

α(j)
γ

4+γ

= O(
1

n0
)

for j = 1, · · · , n̄, where α(j) is the mixing coefficient, and it is easy to prove that
∑∞

j=1 α(j)
γ

4+γ < ∞
for some positive constant γ by Theorem 2.1 of Pham and Tran (1985). Meanwhile, the constant C is

independent of n̄, then we obtain∥∥∥∥∥ 1

n0

n0∑
t=p+1

Rt−pεi0,t

∥∥∥∥∥
2

2

=

n̄∑
j=1

(
1

n0

n0∑
t=p+1

Rt−pεi0,t

)2

= Op(
n̄

n0
).

Hence

RSSi0(k0) = Op(
1

n0
). (21)

For k < k0, we set

V̂i0 = (A
(1)
i0,k

, Σ̂T
p,k,A

(2)
i0,k

,A
(3)
i0,k

, Σ̂T
p−1,k,A

(4)
i0,k

, · · · ,A(2p+1)
i0,k

, Σ̂0,k,A
(2p+2)
i0,k

),

βi0 =
(
(d

0(1)
i0,k

)T, (d0
i0,k)

T, (d
0(2)
i0,k

)T, (d
1(1)
i0,k

)T, (d1
i0,k)

T, (d
1(2)
i0,k

)T, · · · , (dp(1)
i0,k

)T, (dp
i0,k

)T, (d
p(2)
i0,k

)T
)T

,

where V̂i0,k = (Σ̂T
p,k, · · · , Σ̂0,k) and βi0 = ((d0

i0,k
)T, · · · , (dp

i0,k
)T)T, which correspond to τi0(k) non-

zero elements of ((d0
i0
)T, · · · , (dp

i0
)T)T. Meanwhile, note Ai0,k = (A

(1)
i0,k

,A
(2)
i0,k

, · · · ,A(2p+2)
i0,k

) and di0,k =
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((d
0(1)
i0,k

)T, (d
0(2)
i0,k

)T, · · · , (dp(1)
i0,k

)T, (d
p(2)
i0,k

)T)T. By (10) and (7),

RSSi0(k) =
1

n̄

∥∥∥ẑi0 − V̂i0,k(V̂
T

i0,kV̂i0,k)
−1V̂

T

i0,kẑi0

∥∥∥2
2

=
1

n̄
∥(I−Hi0,k)ẑi0∥

2
2

=
1

n̄

∥∥∥∥∥(I−Hi0,k)(V̂i0,kβi0,k +Ai0,kdi0,k +
1

n0

n0∑
t=p+1

Rt−pεi0,t)

∥∥∥∥∥
2

2

=
1

n̄

∥∥∥∥∥(I−Hi0,k)Ai0,kdi,k + (I−Hi0,k)
1

n0

n0∑
t=p+1

Rt−pεi0,t

∥∥∥∥∥
2

2

=
1

n̄
∥(I−Hi0,k)Ai0,kdi0,k∥

2
2 +

1

n̄

∥∥∥∥∥(I−Hi0,k)
1

n0

n0∑
t=p+1

Rt−pεi0,t

∥∥∥∥∥
2

2

+
2

n̄
dT
i0,kA

T
i0,k(I−Hi0,k)

1

n0

n0∑
t=p+1

Rt−pεi0,t, (22)

where Hi0,k = V̂i0,k(V̂
T

i0,kV̂i0,k)
−1V̂

T

i0,k. For the orthogonal matrix P and diagonal matrix Λ, it follows

from condition A7 and properties of spatial weight matrix that

1

n̄
∥(I−Hi0,k)Ai0,kdi0,k∥

2
2 =

1

n̄
dT
i0,kA

T
i0,k(I−Hi0,k)Ai0,kdi0,k

=
1

n̄
dT
i0,kP

TΛPdi0,k

≥ 1

n̄
dT
i0,kP

Tλ1IPdi0,k

≥ 1

n̄
λ1

p∑
j=0

((dji0,i0−k0
)2 + (dji0,i0+k0

)2).

And it is easy to get the upper boundary λ2∥βi0∥22/n̄. We can further relax the boundaries of the first

term of (22) to

Cn0k0λ1 log(n̄ ∨ n0)
n̄n0

≤ 1

n̄
∥(I−Hi0,k)Ai0,kdi0,k∥

2
2 ≤ λ2k0O(1)

n̄
(23)

by conditions A6. The order of second term is same as that of RSSi0(k0), and the third term can be

bounded by the sum of the first and the second terms by Cauchy-Schwarz inequality. Therefore, under

the condition of k0 is fixed,

Cn0k0λ1 log(n̄ ∨ n0)
n̄n0

+Op(
1

n0
) ≤ RSSi0(k) ≤

O(1)λ2
n̄

.

For the deviance of number of elements between different bandwidth k, we have τi0(k0) − τi0(k) =

µ(n̄+ 1) with a positive constant µ by (5). Then we get that

min
k<k0

BICi0(k)−BICi0(k0)

= log
RSSi0(k)

RSSi0(k0)
+

1

n0
Cn0 log(n̄ ∨ n0)(τi0(k)− τi0(k0))

≥ log(1 +
Cn0k0λ1 log(n̄ ∨ n0)

n̄
)− 1

n0
µCn0(n̄+ 1) log(n̄ ∨ n0) → ∞

with the lower bound of RSSi0(k). Therefore, we obtain P (Ψi0,n0) → 0. The lower bound of RSSi0(k)

stays same for k0 = o
(
C−1

n0
n0/ log(n̄ ∨ n0)

)
, it means the result of (24) still holds.

Similarly, we also know P (k̂0 > k0) ≤ P (k̂i0 > k0) for some i0 ∈ {1, · · · , n̄}, and the event (k̂i0 > k0)

implies

Φi0,n0 ≡
min
k>k0

BICi0(k)

BICi0(k0)
< 1,
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it suffices to prove P (Φi0,n0
) → 0 for some i0. Let

V̂i0,k = (B
(1)
i0,k

, Σ̂T
p ,B

(2)
i0,k

,B
(3)
i0,k

, Σ̂T
p−1,B

(4)
i0,k

, · · · ,B(2p+1)
i0,k

, Σ̂0,B
(2p+2)
i0,k

),

βi0,k =
(
(b

0(1)
i0,k

)T, (d0′

i0)
T, (b

0(2)
i0,k

)T, (b
1(1)
i0,k

)T, (d1′

i0)
T, (b

1(2)
i0,k

)T, · · · , (bp(1)i0,k
)T, (dp′

i0
)T, (b

p(2)
i0,k

)T
)T

,

then the residual sum of squares can be rewritten as

RSSi0(k) =
1

n̄
min
v1v2

∥∥∥ẑi0 − V̂i0v1 −Bi0,kv2

∥∥∥2
2
, (24)

where Bi0,k = (B
(1)
i0,k

,B
(2)
i0,k

, · · · ,B(2p+1)
i0,k

,B
(2p+2)
i0,k

). By the least squares method, we obtain

v̂1 = (V̂
T

i0V̂i0)
−1V̂

T

i0

[
I−Bi0,k(G

T
i0,kGi0,k)

−1GT
i0,k

]
ẑi0 ,

v̂2 = (GT
i0,kGi0,k)

−1ST
i0,k( I−Hi0)ẑi0 = (GT

i0,kGi0,k)
−1GT

i0,kẑi0 ,

where Gi0,k = ( I −Hi0)Si0,k. Obviously, we can see that ẑTi0Gi0,kv̂2 = v̂T
2G

T
i0,kẑx = v̂T

2G
T
i0,kGi0,kv̂2.

It follows from (21) and (24) that

RSSi0(k) =
1

n̄

∥∥∥ẑi0 − V̂i0 v̂1 −Bi0,kv̂2

∥∥∥2
2

= RSSi0(k0)−
1

n̄
∥Gi0,kv̂2∥22

≤ Op(
1

n0
) +

1

n̄
∥Gi0,k(G

T
i0,kGi0,k)

−1GT
i0,k∥

2
2∥

1

n0

n0∑
t=p+1

Rt−pεi0,t∥22

= Op(
1

n0
). (25)

It is briefly that τi0(k)− τi0(k0) = µ(n̄+ 1), and the constant µ > 0. Hence

min
k>k0

BICi0(k)

BICi0(k0)
=

− log n0 +
1
n0
Cn0(τi0(k0) + µ(n̄+ 1)) log(n̄ ∨ n0)

−logn0 +
1
n0
Cn0τi0(k0) log(n̄ ∨ n0)

=
Op(

1
n0
µCn0(n̄+ 1))− 1

Op(
1
n0
Cn0τi0(k0))− 1

= 1.

Therefore, we obtain P (min
k>k0

BICi0(k) = BICi0(k0)) → 1, it is equal to P (Φi0,n0) → 0 for all types of

k0. The proof of Theorem 2 is completed.

Proof of Theorem 3.

Under the condition n̄ = o(n0) of Theorem 3, the result of Theorem 2 holds. To prove Part (i)

of Theorem 3 for a fixed bandwidth k0 over the conclusion of Theorem 2, it is equivalent to prove
√
n0U

− 1
2

i0
Ki0(V̂

T

i0V̂i0)
−1V̂

T

i0
1
n0

∑n0

t=p+1 Rt−pεi0,t is asymptotically normal, then we just need to verify

the assertion (1) and (2) below by (8).

(1)

√
n0U

− 1
2

i0



1
n0

n0∑
t=p+1

(Rj,t)j∈Si0
RT

t−p

(
1
n0

n0∑
t=p+1

Rt−pεi0,t

)
1
n0

n0∑
t=p+1

(Rj,t−1)j∈S+
i0

RT
t−p

(
1
n0

n0∑
t=p+1

Rt−pεi0,t

)
...

1
n0

n0∑
t=p+1

(Rj,t−p)j∈S+
i0

RT
t−p

(
1
n0

n0∑
t=p+1

Rt−pεi0,t

)


→d N(0, Iτi0 ),

(2)

Ki0(V̂
T

i0 V̂i0)
−1 →p Iτi0 ,
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To prove assertion (1), we just need to prove that for any nonzero vector a = (aT
0 , · · · ,aT

p ), where

a0 ∈ RSi0 and aj ∈ RS+
i0 for other values of j, the linear combination

√
n0a

T



1
n0

n0∑
t=p+1

(Rj,t)j∈SxR
T
t−p

(
1
n0

n0∑
t=p+1

Rt−pεi0,t

)
1
n0

n0∑
t=p+1

(Rj,t−1)j∈S+
i0

RT
t−p

(
1
n0

n0∑
t=p+1

Rt−pεi0,t

)
...

1
n0

n0∑
t=p+1

(Rj,t−p)j∈S+
i0

RT
t−p

(
1
n0

n0∑
t=p+1

Rt−pεi0,t

)


is asymptotic normal. Let us consider one term for each j ∈ Si0 in the first block of (26) first, thus we

have

1

n0

n0∑
t=p+1

Rj,tR
T
t−p(

1

n0

n0∑
t=p+1

Rt−pεi0,t)

=
1

n0

n0∑
t=p+1

(Rj,tR
T
t−p − E(Rj,tR

T
t−p))

1

n0

n0∑
t=p+1

Rt−pεi0,t

+
n0 − 1

n0
E(Rj,tR

T
t−p)

1

n0

n0∑
t=p+1

Rt−pεi0,t

=

[
1

n0

n0∑
t=p+1

RT
t−p(e

T
j Rt)− eTj Σp

]
1

n0

n0∑
t=p+1

Rt−pεi0,t

+
n0 − 1

n0
eTj Σ1

1

n0

n0∑
t=p+1

Rt−pεi0,t

= E1 + E2.

By similar method of (21) for term E1 and k = 1, · · · , n̄, we have

E

[
1

n0

n0∑
t=p+1

(
(eTkRt−p)(e

T
j Rt)− eTkΣ

T
pej
)]2

≤ O(
1

n0
).

Then, ∥∥∥∥∥ 1

n0

n0∑
t=p+1

(
Rt−p(e

T
j Rt)− eTkΣ

T
pej
)∥∥∥∥∥

2

2

= Op(
n̄

n0
).

Thus,

E1 ≤

∥∥∥∥∥ 1

n0

n0∑
t=p+1

(
Rt−p(e

T
j Rt)− eTkΣ

T
pej
)∥∥∥∥∥

2

∥∥∥∥∥ 1

n0

n0∑
t=p+1

Rt−pεi0,t

∥∥∥∥∥
2

= Op(
n̄

n0
). (26)

Similarly, we obtain E2 = O( 1√
n0

). Under the condition n̄ = o(
√
n0), it holds that

√
n0E1 = op(1) and

√
n0E2 = Op(1). Hence,

1
√
n0

n0∑
t=p+1

Rj,tR
T
t−p(

1

n0

n0∑
t=p+1

Rt−pεi0,t) = eTj Σp
1

√
n0

n0∑
t=p+1

Rt−pεi0,t + op(1), j ∈ Si0 .

Similarly, we obtain

1
√
n0

n0∑
t=p+1

Rj,t−qR
T
t−p(

1

n0

n0∑
t=p+1

Rt−pεi0,t) = eTj Σp−q
1

√
n0

n0∑
t=p+1

Rt−pεi0,t + op(1), j ∈ S+
i0
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for q = 1, · · · , p. Now it suffices to prove

Sn̄,n0 ≡ aT
0 I

T
Si0

Σp
1

√
n0

n0∑
t=p+1

Rt−pεi0,t +

p−1∑
j=0

aT
p−jI

T
S+
i0

Σj
1

√
n0

n0∑
t=p+1

Rt−pεi0,t

is asymptotic normal.

Obviously, the mean of Sn̄,n0 is zero. Next, we calculate the variance of one term of Sn̄,n0 first,

Var(aT
0 I

T
Si0

Σp
1

√
n0

n0∑
t=p+1

Rt−pεi0,t)

= aT
0 I

T
Si0

Σp
n0 − p

n0
ΣR,εi0

(0)ΣT
p ISi0

a0

+aT
0 I

T
Si0

Σp

n0−p−1∑
j=1

(1− p+ j

n0
)
[
ΣR,εi0

(j) +ΣT
R,εi0

(j)
]
ΣT

p ISi0
a0. (27)

We note that it holds that

E|eTj ΣpRt−pεi0,t|
4+γ
2 ≤ [E|eTj ΣpRt−p|4+γ ]

1
2 [E|εi0,t|4+γ ]

1
2 ≤ ∞.

by the probability form of Cauchy inequality. It follows from the discrete form of Hölder inequality that

sup
n̄

∞∑
j=1

∣∣∣aT
0 I

T
Si0

Σp

[
ΣR,εi0

(j) +ΣT
R,εi0

(j)
]
ΣT

p ISi0
a0

∣∣∣
≤ C sup

j1,j2≤n̄

∞∑
j=1

∣∣eTj1ΣpΣR,εi0
(j)ΣT

pej2
∣∣

≤ C sup
j1,j2≤n̄

∞∑
t−s=1

α(j)
γ

4+γ

[(
E
∣∣eTj1ΣpRt−pεi0,t

∣∣4+γ
) 1

4+γ
(
E
∣∣eTj2ΣpRs−pεi0,s

∣∣4+γ
) 1

4+γ

]2
≤ C sup

l≤n̄

[
E
∣∣eTl ΣpRt−p

∣∣4+γ
E |εi0,t|

4+γ
] 1

4+γ
∞∑
j=1

α(j)
γ

4+γ

< ∞. (28)

Similarly, we obtain the same boundary results of all covariance and variance of other terms. Back to

the variance of Sn̄,n0 , there exit control functions for each term by the proof of (28). it follows from

dominate convergence theorem that Var(Sn̄,n0) = aTUi0a.

To prove the asymptotic normality of Sn̄,n0 by Lévy continuity theorem, we employ the small-block

and large-block arguments as follows. We partition the set {1, · · · , n0} into 2k
′
+ 1 subsets with large

blocks of size l
′
, small blocks of size s

′
and the last remaining set of size n0 − k

′
l
′ − k

′
s
′
. Then we have

Sn̄,n0 = aT
0

1
√
n0

k
′∑

j=1

ξ
(0)
j + aT

0

1
√
n0

k
′∑

j=1

η
(0)
j + aT

0

1
√
n0
ζ(0)

+ aT
1

1
√
n0

k
′∑

j=1

ξ
(1)
j + aT

1

1
√
n0

k
′∑

j=1

η
(1)
j + aT

1

1
√
n0
ζ(1)

+ · · ·

+ aT
p

1
√
n0

k
′∑

j=1

ξ
(p)
j + aT

p

1
√
n0

k
′∑

j=1

η
(p)
j + aT

p

1
√
n0
ζ(p),

28



where

ξ
(0)
j =

jl
′
+(j−1)s

′∑
t=(j−1)(l′+s′ )+1

ITSi0
ΣpRt−pεi0,t, η

(0)
j =

j(l
′
+s

′
)∑

t=jl′+(j−1)s′+1

ITSi0
ΣpRt−pεi0,t,

ζ
(0)
j =

n0∑
t=k′ (l′+s′ )+1

ITSi0
ΣpRt−pεi0,t, · · · , ξ

(p)
j =

jl
′
+(j−1)s

′∑
t=(j−1)(l′+s′ )+1

IT
S+
i0

Σ0Rt−pεi0,t,

η
(p)
j =

j(l
′
+s

′
)∑

t=jl′+(j−1)s′+1

IT
S+
i0

Σ0Rt−pεi0,t, ζ
(p)
j =

n0∑
t=k′ (l′+s′ )+1

IT
S+
i0

Σ0Rt−pεi0,t.

Put

l
′
=

√
n0

lnn0
, s

′
= (

√
n0 lnn0)

χ, k
′
=

n0
l′ + s′

,

where γ
4+γ ≤ χ < 1. Also

∑∞
j=1 α(j)

γ
4+γ <∞, we can easily obtain α(n0) = o(n

4+γ
γ

0 ) by using harmonic

series, then it holds that k
′
α(s

′
) = o(1). By using the Hölder inequality successively for each θt, we have

that

|Cov(θt,θt+r)| ≤ α(r)1−
2
δ [E|θ1|δ]

2
δ < O(r−1)[E|θ|δ] 2δ = O(

1

r
),

where θt = eTj ΣpRt−pεx,t and δ =
γ+4
2 . It follows from Theorem 2.17 of Fan and Yao (2003) that

1

n0

∣∣∣∣∣∣∣E
 k

′∑
j=1

η
(i)
j

2
∣∣∣∣∣∣∣ =

1

n0
E

 k
′∑

j=1

η
(i)
j

2

≤ Ck
′
s
′

n0
→ 0

for i = 0, · · · , p. Similarly, it holds that

1

n0

∣∣∣∣E (ζ(i))2∣∣∣∣ = 1

n0
E
(
ζ(i)
)2

≤ C

n0
[n− k

′
(s

′
+ l

′
)] → 0

for i = 0, · · · , p. Thus, Sn̄,n0 can be rewritten as

Sn̄,n0 = aT
0

1
√
n0

k
′∑

j=1

ξ
(0)
j + · · ·+ aT

p

1
√
n0

k
′∑

j=1

ξ
(p)
j + op(1) ≡ Tn̄,n0 + op(1).

Similar to (27) and (28), w can calculate the variance of Tn̄,n0 and it holds that

Var

(
Tn̄,n0√
aTUi0a

)
→ 1.

Next, we just need to prove the asymptotic normality of Tn̄,n0 . We partition Tn̄,n0 into two parts via

truncation. Specifically, we define

ξ
(0)L
j =

jl
′
+(j−1)s

′∑
t=(j−1)(l′+s′ )+1

ITSi0
ΣpRt−pεi0,tI{∥ITSi0

ΣpRt−pεi0,t∥2≤L},

ξ
(0)R
j =

jl
′
+(j−1)s

′∑
t=(j−1)(l′+s′ )+1

ITSi0
ΣpRt−pεi0,tI{∥ITSi0

ΣpRt−pεi0,t∥2>L}.
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Similarly, we can define ξ
(i)L
j and ξ

(i)R
j for i = 0, · · · , p. Then

Tn̄,n0 =

aT
0

1
√
n0

k
′∑

j=1

ξ
(0)L
j + · · ·+ aT

p

1
√
n0

k
′∑

j=1

ξ
(p)L
j + op(1)


+

aT
0

1
√
n0

k
′∑

j=1

ξ
(0)R
j + · · ·+ aT

p

1
√
n0

k
′∑

j=1

ξ
(p)R
j + op(1)


≡ TL

n̄,n0
+ TR

n̄,n0
.

Similar to computing the variance of Sn̄,n0 and Tn̄,n0 , note that

Var

(
TL
n̄,n0

σL

)
→ 1, Var

(
TR
n̄,n0

σR

)
→ 1,

where we denote σL as the asymptotic variance of TL
n̄,n0

, and σR as the asymptotic variance of TR
n̄,n0

.

Define

Mn̄,n0
=

∣∣∣∣∣E exp

(
itTn̄,n0√
aTUi0a

)
− exp

(
− t

2

2

)∣∣∣∣∣ ,
where i =

√
−1 now. We bound Mn̄,n0 as follows

Mn̄,n0
≤ E

∣∣∣∣∣exp
(

itTL
n̄,n0√

aTUi0a

)[
exp

(
itTR

n̄,n0√
aTUi0a

)
− 1

]∣∣∣∣∣
+

∣∣∣∣∣∣E exp

(
itTL

n̄,n0√
aTUi0a

)
−

k
′∏

j=1

E exp

 it
(
aT0

1√
n0
ξ
(0)L
j + · · ·+ aTp

1√
n0
ξ
(p)L
j

)
√

aTUi0a

∣∣∣∣∣∣
+

∣∣∣∣∣∣
k
′∏

j=1

E exp

 it
(
aT0

1√
n0
ξ
(0)L
j + · · ·+ aTp

1√
n0
ξ
(p)L
j

)
√
aTUi0a

− exp

(
− t

2

2

σ2
L

aTUi0a

)∣∣∣∣∣∣
+

∣∣∣∣exp(− t22 σ2
L

aTUi0a

)
− exp

(
− t

2

2

)∣∣∣∣ . (29)

For the first term of (29), according to the property of characteristic function that |E(eitX)| ≤ 1, we

have

E

∣∣∣∣∣exp
(

itTL
n̄,n0√

aTUi0a

)[
exp

(
itTR

n̄,n0√
aTUi0a

)
− 1

]∣∣∣∣∣ ≤ E

∣∣∣∣∣exp
(

itTR
n̄,n0√

aTUi0a

)
− 1

∣∣∣∣∣→ 0

when L is enough large. The last term of (29) may also have the same result by choosing large L as well.

By proposition 2.6 of (Fan and Yao2003), the second term of (29) is bounded by 16(k
′ − 1)α(s

′
), which

converges to 0. In addition, we can rewritten the third term of (29) as follows,∣∣∣∣∣∣
k
′∏

j=1

E exp

 it
(
aT0

1√
n0
ξ
(0)L
j + · · ·+ aTp

1√
n0
ξ
(p)L
j

)
√

aTUi0a

− exp

(
− t

2

2

σ2
L

aTUi0a

)∣∣∣∣∣∣
= E exp

 it
∑k

′

j=1

(
aT0

1√
n0
ξ
(0)L
j + · · ·+ aTp

1√
n0
ξ
(p)L
j

)
√
aTUi0a

− exp

(
− t

2

2

σ2
L√

aTUi0a

)

= E exp

(
itTL

n̄,n0√
aTUi0a

)
− exp

(
− t

2

2

σ2
L√

aTUi0a

)
.
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Now it suffices to prove
TL
n̄,n0

σL
→d N(0, 1). Under the condition that all ξj are mutually independent, we

just need to prove

aTi
1

√
n0

k
′∑

j=1

ξ
(i)L
j →d N(0, ν2i )

for all i = 0, · · · , p by the additive property of normal distribution , where ν2i is the asymptotic variance

of the term above, and σ2
L =

p∑
i=0

ν2i . It follows from Theorem 2.20 of Fan and Yao (2003) and (27) that

1

l′
Var(ξ

(0)L
1 ) → Var

(
ITSi0

ΣpRt−pεi0,t

)
+ 2

∞∑
j=1

Cov
(
ITSi0

ΣpR0εi0,1, I
T
Si0

ΣpRjεi0,j+1

)
<∞,

then we obtain Var(ξ
(0)L
1 ) = O(l

′
). Meanwhile,

E
(
(ξ

(0)L
1 )2 · I(|ξ(0)L1 | > ϵ

√
n0ϕ)

)
≤

∣∣∣E ((ξ(0)L1 )2 · I(|ξ(0)L1 | > ϵ
√
n0ϕ)

)∣∣∣
≤

√
E[(ξ

(0)L
1 )4]

√
E
[
I2(|ξ(0)L1 | > ϵ

√
n0ϕ)

]
=

√
E[(ξ

(0)L
1 )4]P (|ξ(0)L1 | > ϵ

√
n0ϕ),

where ϕ = ν1√
aTa

and ϵ > 0 is arbitrarily positive number. For the probability term above, we have

P (|ξ(0)L1 | > ϵ
√
n0ϕ) = P ((ξ

(0)L
1 )2 > n0ϵ

2ϕ2) ≤ E[(ξ
(0)L
1 )2]

n0ϵ2ϕ2
=

O(l
′
)

n0ϵ2ϕ2
.

Thus,

E
(
(ξ

(0)L
1 )2 · I(|ξ(0)L1 | > ϵ

√
n0ϕ)

)
≤
√
O(l′2)

O(l
′
)

n0ϵ2ϕ2
= O(

l
′2

n0
).

Therefore, the Lindberg condition can be bounded as follows,

lim
k′→∞

1

n0ϕ2

k
′∑

j=1

E
{
(ξ

(0)L
j )2 · I(|ξ(0)Lj | > ϵ

√
n0ϕ)

}
≤ lim

k′→∞

1

n0ϕ2
k

′
O(

l
′2

n0
) → 0.

Similar proof for the rest items of the third term of Mn̄,n0 , we can obtain the similar conclusion, and

summing up them. Hence the third term of (29) converges to 0. By the Lévy continuity theorem, it

holds that

√
n0a

T



1
n0

n0∑
t=p+1

(Rj,t)j∈Si0
RT

t−p

(
1
n0

n0∑
t=p+1

Rt−pεi0,t

)
1
n0

n0∑
t=p+1

(Rj,t−1)j∈S+
i0

RT
t−p

(
1
n0

n0∑
t=p+1

Rt−pεi0,t

)
...

1
n0

n0∑
t=p+1

(Rj,t−p)j∈S+
i0

RT
t−p

(
1
n0

n0∑
t=p+1

Rt−pεi0,t

)


/
√
aTUi0a →d N(0, 1).

Substituting a by (U
− 1

2
i0

)Ta, then assertion (1) holds.
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To prove assertion (2), let us look at one element of V̂
T

x V̂x first. For some j1, j2 ∈ Si0 ,

1

n0

n0∑
t=p+1

eTj1RtR
T
t−p

1

n0

n0∑
t=p+1

Rt−pR
T
t ej2

=

(
1

n0

n0∑
t=p+1

eTj1RtR
T
t−p − eTj1Σp

)(
1

n0

n0∑
t=p+1

Rt−pR
T
t ej2 −ΣT

pej2

)

+ eTj1Σp

(
1

n0

n0∑
t=p+1

Rt−pR
T
t ej2 −ΣT

pej2

)

+

(
1

n0

n0∑
t=p+1

eTj1RtR
T
t−p − eTj1Σp

)
ΣT

pej2

+ eTj1ΣpΣ
T
pej2 . (30)

Using the same arguments as (26), the first term is Op(
n̄
n0

), the second and third terms are of order

Op(
1√
n0

). Hence given n̄ = o(n0), it holds that

1
n0

∑n0

t=p+1 e
T
j1
RtR

T
t−p

1
n0

∑n0

t=p+1 Rt−pR
T
t ej2

eTj1ΣpΣT
pej2

→ 1.

Applying the same arguments to the other elements of V̂
T

i0 V̂i0 , it holds that

Ki0(V̂
T

i0 V̂i0)
−1 →p Iτi0 .

When k0 = o
(
C−1

n0
n0/ log(n̄ ∨ n0)

)
, we have λmin(V̂

T

i0 V̂i0) ≥ c with probability tending to 1. By (5)

and (26), ∥∥∥β̂i0 − βi0

∥∥∥
2

=

∥∥∥∥∥ 1

n0
(V̂

T

i V̂i0)
−1V̂

T

i0

n0∑
t=p+1

Rt−pεi0,t

∥∥∥∥∥
2

≤ 1

c

∥∥∥∥∥ 1

n0
V̂

T

x

n0∑
t=p+1

Rt−pεi0,t

∥∥∥∥∥
2

=
1

c

√√√√ τi0∑
j=1

[
Op(

n̄

n0
) +Op(

1
√
n0

)

]2

= Op(

√
k0
n0

), i0 = 1, · · · , n̄.

If k0 is not fixed in the part (ii) of Theorem 3, we obtain∥∥∥β̂i0 − βi0

∥∥∥
2
≤ 1

c

∥∥∥∥∥ 1

n0
V̂

T

i0

n0∑
t=p+1

Rt−pεi0,t

∥∥∥∥∥
2

= Op(

√
k0n̄

n0
), i0 = 1, · · · , n̄.

The required asymptotic result for a fixed k0 follows from the above result directly. This completes

the proof of Theorem 3.

Proof of Theorem 4.

By Theorem 3, it holds that∥∥∥β̂i0 − βi0

∥∥∥
1

=

∥∥∥∥∥ 1

n0
(V̂

T

i0V̂i0)
−1V̂

T

i0

n0∑
t=p+1

Rt−pεi0,t

∥∥∥∥∥
1

≤ C

∥∥∥∥∥ 1

n0
V̂

T

i0

n0∑
t=p+1

Rt−pεi0,t

∥∥∥∥∥
1

= C

τi0∑
j=1

∣∣∣∣Op(
n̄

n0
) +Op(

1
√
n0

)

∣∣∣∣
for i0 = 1, · · · , n̄. The required asymptotic result follows from the above result easily.
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