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Abstract

The bifurcation, stability and stabilization analysis of permanent magnet syn-
chronous motor (PMSM) systems are investigated in this paper. To begin, a new class
of delay-dependent sufficient conditions is suggested with respect to the informa-
tion of the membership function, a relevant Lyapunov-Krasovskii functional (LKF),
and the overall information connected with the real sampling pattern, so that the
fuzzy system is ensured to be stable with a weighted dissipativity efficiency. Second,
sampled-data control is intended to stabilize the Takagi-Sugeno (T-S) fuzzy sys-
tem with specified integral inequalities based on the obtained results. The required
conditions are stated in terms of the feasibility of linear matrix inequalities (LMIs)
under the dissipativity output index, and can readily be verified by MATLAB tool-
box. Finally, verification examples are contributed to demonstrated the efficacy of
the techniques established in this paper.
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1 INTRODUCTION

Due to their simple design, high performance, low manufacturing cost, high power density, and strong torque-to-inertia ratio,
permanent magnet synchronous motor (PMSM) are widely used in a variety of industrial fields1,2,3. PMSM exhibit complex
behaviors such as Hopf bifurcations, limit cycles, and even chaos because they are nonlinear, multivariable, and tightly coupled1.
In addition, PMSM behavior in an industrial environment can be affected by many uncertainties, including unknown system
parameters, frictional forces, external load disturbances, and unmodeled uncertainties. These uncertainties can significantly
reduce the performance quality of PMSM systems in4.
On the other hand, both stability analysis and stabilization of Takagi-Sugeno (T-S) fuzzy model’s have received a plenty of

interest in5. The T-S fuzzy model in6, which represents a highly nonlinear dynamic system with fuzzy mixing structure of local
linear sub-models. Owing to its particular advantages that can be closely compared to any high-precision nonlinear system, the
technique has been recognized as major fundamental procedures to dealing with nonlinear control systems. As a result, in recent
years, a significant number of theoretical findings and functional implementations of T-S fuzzy systems have been published
in7,8. For example, the T-S fuzzy complex dynamical networks9,10 have solved the synchronization analysis in view of the
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finite-time approach. Recently, in11,12 sampled-data stabilization for T-S fuzzy systems have been studied. In13,14 the authors
extensively analyzed the exponential time-varying gains in the sense of fault tolerant sampled-data fuzzy observer. The majority
of real-world systems include a nonlinear system’s stability analysis. Furthermore, since time delay is inherent in many practical
applications such as control systems, state-feedback, and actuator dynamics, it can degrade control efficiency15,16,17. The topic
of dissipativity analysis is of primary importance in the design of PMSM model because it ensures that dynamical systems
performance and satisfactory response18. So far, several theoretical achievements for extended dissipative analysis related to
T-S fuzzy structures with or without time delays have been elaborated in the literature.
The sampled-data control (SDC) technique has recently been the hottest topic of dynamical systems. It is a sampling process

in which the control signal is kept constant during the sampling time period and only allowed to adjust at the time of sampling.
Furthermore, in SDC systems, selecting the right sample space is crucial for planning suitable controllers. Many researchers
have recently analyzed into the standard model’s case. As a result of its use in a variety of functional approaches, time-varying
sampling is commonly used. The SDC technique has been recognized as a useful mechanism for controlling T-S fuzzy methods
in19,20,21,22. However, a large variety of results have been stated on SDC system. For example, secure communication23, Chua’s
circuit24, wind-turbine system25, and autonomous surface vehicle systems26 in practice. Fuzzy sampled-data stabilization, which
only samples at the sampling instant and does not require signals to be sent continuously, has dramatically reduced the number
of transmitted signals. The principle objective of sampled-data stabilization is to acquire a relatively larger sampling interval
such that the system is stable27,28. Many interesting results related for sampled-data stabilization T-S fuzzy systems have been
reported in the literature. Some examples are given below. In29, the authors have been investigated for the stabilization of T-
S fuzzy systems with actuator failures and sampled-data fuzzy stabilization. The literature30 developed a nonlinear delayed
distributed parameter systems by using sampled-data fuzzy stabilization. In31, the researchers discussed the issue of sampled-
data synchronization of T-S fuzzy reaction-diffusion neural networks.
Furthermore, dissipativity is a general principle of passivity, which is significant in both theoretical and functional aspects of

mechanism and control theory32,33. The theory of passivity is a generalization of dissipativity in electrical networks and other
dynamical systems that dissipate energy in some abstract context. Dissipativity theory is a crucial method for studying the con-
sistency and passivity of control systems34,35 provides a framework for control system design and analysis using an input–output
description based on energy-related considerations. As a result, it is assumed that when approximating a high-order T–S fuzzy
systemwith reduced-ordermodels, dissipativity has beenmaintained. By utilizing T-S fuzzymodel, the researchers in36 explored
the sampled-data control performance for nonlinear systems using passivity and passification approaches. However, the results
reported in37,38,39 cannot have a merit because those obtained results have not focused on exogenous disturbances (2). Further-
more, when considering exogenous disturbances, the system’s output analysis is an important problem for sampled-data T-S
fuzzy systems, since it can be considered whether the system can accommodate a certain amount of chaos. When exogenous
disruptions are considered, the issue of stabilization analysis and control synthesis becomes more complex and difficult. How-
ever, the problems of stability analysis and weighted dissipativity efficiency for sampled-data T-S fuzzy PMSM system have not
been studied up to this stage. This structural model is difficult to attain, but it is of considerable importance and attention, which
motivates us to conduct this research.
With the above in mind, the problem of extended dissipative analysis of sampled-data fuzzy PMSM system using the enhanced

integral inequality methodology is investigated in this paper. As a result, in this note, LKF is constructed with the information of
sampling delay to ensure the extended dissipative conditons are provided. To do this, numerical examples are addressed to man-
ifest the superiority of the developed stability criteria. The following key points represent the highlights and main contributions
of this paper:
(H1) To stabilize a complex PMSM system, we will use the sampled-data controller.
(H2) The sampled-data method is investigated using the T-S fuzzy model, taking into account dissipativity efficiency, actual

sampling pattern, and the development of a delay-dependent criterion, such that the considered system is extended dissipative.
(H3) By using the desired controller scheme and selecting a proper Lyapunov–Krasovskii functional, which can fully capture

the information of sampling.
(H4) All of the necessary conditions are represented as LMIs, which can be solved quickly with MATLAB tools. With these

conditions, the gain matrices are calculated.
(H5) Compared with the stability criteria in [28], [29], the obtained stability results in this paper, improve control execution

of the system and loosen up the limitations on the system by utilizing our SDC strategy and has been illustrated in the simulation
results section.
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Notations: Throughout the paper,ℝn denotes the n dimensional Euclidean space andℝm×n is the set of allm×n real matrices,
respectively. "*" indicates as symmetric block matrix.

2 CASE STUDY FOR PERMANENT MAGNET SYNCHRONOUS MOTOR (PMSM):

AC induction motors actually power the majority of pumps and fans used in industrial and commercial applications. ‘ACIM”
stands for alternating current induction motor, and it is an asynchronous motor that turns the rotor using electric current. Electric
current in the rotor generates torque. The magnetic field of the stator windings generates electromagnetic induction, which
generates the electric current. The rotor of an ACIM rotates at a slower rate than the magnetic field. A permanent magnet
synchronous motor, or PMSM, uses magnets to drive the rotor, which spins at the same speed as the PMSM’s internal rotating
magnetic field in3.

FIGURE 1 AC Induction Motors and Permanent Magnet Synchronous Motors in3.

Now, consider the voltage conditions of a PMSM’s in a mn-outline, as seen in40, and the following differential equation
governs the mathematical model:

vn = rsin + Ln i̇n + !sLmim + !s�q
vm = rsim + Lm i̇m − !sLmim, (1)

where vm and vn represented asmn-frame voltages and currents, im and in denoted asmn-frame currents,Lm andLn denote outline
inductances, and rs is winding resistance. !s denotes electrical rotor speed, and �q denotes the flux connection constructed by
permanent magnet.
The electromagnetic torque produced by the PMSMs is as follows:

Te =
(3
2

)(P
2

)

[�qin + (Ln − Lm)inim]. (2)

A PMSM’s mechanical equation is:

Te = J
( 2
P

)

!̇s + B
( 2
P

)

!s + TL, (3)

where J denotes inertia and B denotes the PMSM’s damping coefficient, respectively. The input torque is denoted by TL and
P indicated as magnetic pole number. In order to make the better controller, we usually define the m-axis current to zero. The
electromagnetic torque of PMSM can thus be precisely limited by tuning the n-axis present.
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TABLE 1 PMSM Parameters

Symbols Value Unit

rs 2.87 Ω

Lm 0.0085 H

Ln 0.0085 H

�q 0.175 W b

J 0.008 kg.m2

B 0.001 kg.m2∕s

P 4

The n-axis inductance in the PMSM architecture is similar to the m-axis inductance (Ln ≅ Lm). The electromagnetic torque
in (2) can be reduced to the following:

Te =
(3
2

)(P
2

)

�qin. (4)

The dimensionless mathematical model of PMSM is given in1:

i̇n =
1
Ln

(

vn − rsin − !sLmim − !s�q
)

i̇m =
1
Lm

(

vm − rsim + !sLnin
)

!̇s =
1
J

[P
2
(Te − TL) − B!s

]

=
(3P 2
8J

�qin −
B
J
!s −

P
2J
TL

)

. (5)

3 DYNAMICAL ANALYSIS

For numerical analysis, we consider (5) in the following system parameter values which is tabulated in TABLE 2. For specific

TABLE 2 Numerical calculation parameters of (5).

R 9 !
Lm / Ln 34.5 mH / 24.5 mH
�q∕J 0.00175 / 0.08
B / P 0.001 / 2.0031

TL / vn /vm 1.5 / 1.0 / 3.0

ranges of parameter values, the stated system exhibits chaotic oscillations as shown in FIGURE 2 . Notice that the first and
third variables such as in, !s are linearly/exponentially increased with its amplitude. But the time series of in, im are in chaotic
oscillations which are shown in FIGURE 2 (a,c) inset of (a). Moreover, the variable im, has sustained chaotic oscillations which
are shown in FIGURE 2 (b). FIGURE 2 has plotted after removing 1 × 103 of transient data points which is shown that the
asymptotic behaviour of the system has chaotic oscillation.
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FIGURE 2 Numerically computed time trajectories of (5) in the in, im and !s variables. Notice that variables in and !s are
looking exponential form with respect to time but it evolves with stochastic nature (inset).

3.1 Bifurcation Analysis
The bifurcation analysis carried out to understand the global and local dynamics of the proposed system (5). FIGURE 3 shows
(a) Lyapunov exponent spectrum and its corresponding (b) bifurcation diagramwith respect to the co-efficientLn. For calculation
of Lyapunov exponent (It quantitatively estimates the rate of separation of infinitesimally closed orbits) is described as:

� = lim
t→∞

lim
|�Z0|→0

1
t
ln

|�Z(t)|
|�Z0|

(6)

�Z0 denotes the initial separation of two nearby trajectories in the phase space. It actually provides the divergence rate. The
average divergence rate after ttℎ iterations are defined as, |�Z(t)| ≈ e�t|�Z0| and Lyapunov exponent indicated as �. In general,
the rate of separation varied for different orientations of initial detachment vectors. Results, the Lyapunov exponent has an
equal number of dimensions of the phase space. A positive maximal Lyapunov exponent is used as a piece of evidence that the
system is chaotic (provided some other conditions are met, e.g., phase space compactness). FIGURE 3 (a) shown the maximal
Lyapunov exponent with respect to the state variable Ln. Notice that the positive value regime of Lyapunov exponent shows
the occurrence of the chaotic oscillations in a wide range of parameter province. Similarly it reflect in the bifurcation diagram
3 (b). For the bifurcation plot (FIGURE 3 (b)), the maximal peak amplitude of the variable im considered with the removal of
transients.
For getting better clarity of the existence of chaotic attractor in the other parameter regimes, bifurcation analysis was carried

out for the system by changing another control parameters of the proposed system (5). FIGURE 4 (a,b) shows the bifurcation
diagram ofRs andLm with respect to the state variable |im|. The chaotic oscillation regimes were identified from the bifurcation
plots of Rs ∈ (0, 0.2) (FIGURE 4 (a)) and Lm ∈ (0, 8) (FIGURE 4 (b) ) with the densely random dots. The rest of the system
parameters are fixed as per Table 2. Moreover, the Lyapunov exponent spectrum can be plotted in these bifurcation diagrams
for the sake of simplicity those plots are avoided here.

3.2 Effect of Initial Conditions
The bifurcation analysis proves, the presence of chaotic oscillations in a wide range of system parameter as well as the various
parameters in the proposed system (5). In this section, the sensitivity analysis performed to know the basin of the system state
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FIGURE 3 (a) Maximal Lyapunov exponent spectra in the Ln −�1 plane and its corresponding; (b) Bifurcation diagram in the
Ln − |im| plane.

space coordinates. For that, the dynamics (chaotic regimes) of the system is investigated with the different sets of initial condi-
tions (in, im, ws) scanning with fixed system parameters. FIGURE 5 exhibits the maximum peak amplitude of the state variable
im(i.e, |im|) with respect of initial conditions (a)in , (b) im and (c) ws planes. The system parameters are fixed as the system
exhibits chaotic oscillations (Table-II). From this initial condition scanning (basin) diagram symmetry exists only by varying
the initial condition in (mirror image exists).
The chaotic oscillations are getting larger when the absolute values of initial conditions are in higher values in magnitude. The

bounded chaotic attractor is getting smaller in size when the initial conditions are picked up near to zero values. Particularly. near
to the regime of trivial equilibrium points, i.e, (in, im, ws)∗ =(0,0,0) the system has no oscillation. The system has a symmetric
nature of oscillation in the in ∗ initial condition scanning. The rest of the initial conditions plot i.e, im and ws has an asymmetry
nature. From this basin study, the system exhibits a wide range of chaotic oscillations in its basin.

3.3 Chaos confirmation: 0-1 Test
Using the ‘0-1’ measure, the time series data of im is considered for the validation of the chaotic oscillation. Gottwald etal
suggested determining whether a time series is chaotic or sporadic by measuring the asymptotic rate of growth K (periodic
K = 0 and chaoticK = 1). The state portrait of transnational coefficients p, q confirms the time series’ existence in half (smooth:
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FIGURE 4 (a) Bifurcation diagram in the Rs − |im| plane and (b) Lm − |im| plane.

periodic, random walk: chaotic). The time series (FIGURE 6 (a)) is considered has 2 × 104 data length. The approximation
is performed with 0.01 step iterations. The genomics components p − q visualize the Brownian motion and partly affirm the
chaotic motion, as seen in FIGURE 6 b. The normalized varianceM(n) computed from the translation components to find the
diffusive behavior of the given time series (for periodic,M(n) is bounded; for chaotic, it linearly increases with time) is shown
in FIGURE 6 c. The asymptotic rates of growth are seen in FIGURE 6 (d) , which settles about 1 (we obtain K =0.9941 sim
1), confirming the existence of chaos in the specified im time sequence.
To ensure that the current monitoring error merges to zero, the state variables are described as follows:

�1 = ∫ [r(t) − z(t)]dt ⇒ z(t) = !s, (7)



8 vadivel ET AL

FIGURE 5 Initial conditions (IC) scanning with respect to the maximum peak amplitude of the state variable |im|. (a) IC:
in ∗ −|im| plane (b) IC: im ∗ −|im| plane and (c) IC: ws ∗ −|im| plane.

where r(t) is the target value of !s. With (1)-(5), the PMSM’s state equations can be defined as follows:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

!̇s
i̇n
i̇m
�̇1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−B
J

3P 2

8J
�q 0 0

− �q
Ln

− rs
Ln

−Lm
Ln
!s 0

0 Ln
Lm
!s − rs

Lm
0

−1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

!s
in
im
�1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0
1
Ln

0

0 1
Lm

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

vn
vm

]

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−PTI
2J

0

0

u1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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FIGURE 6 The 0-1 test: (a) time series data of im, (b) phase portraits of translational components in the (p − q) plane; (c)
displacementM(n); (d) asymptotic growth rate: K .

ẋ(t) = A(x(t)) + Bu(t) + �(t), (8)

where

A(x(t)) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−B
J

3P 2

8J
�q 0 0

− �q
Ln

− rs
Ln

−Lm
Ln
!s 0

0 Ln
Lm
!s − rs

Lm
0

−1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0
1
Ln

0

0 1
Lm

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and �(t) represents the PMSM system’s disturbance. The disturbance are defined as follows:

�(t) = Bww(t), Bw =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

− P
2J
0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, w(t) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

TI
0

0

u1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

The disturbance is designated as w(t) in the above-mentioned device framework. The PMSM model’s performance is as
follows:

z(t) =
[

1 0 0 0
]

⎡

⎢

⎢

⎢

⎢

⎢

⎣

!s
in
im
�1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= Cx(t). (9)
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4 T-S FUZZY MODEL

Consider a family of T-S fuzzy systems resulting from a nonlinear system
P lant Rule i ∶ IF ̃̃'1(t) isMi1, ̃̃'2(t) isMi2, ⋅ ⋅ ⋅, and ̃̃'p(t) isMip,
THEN

ẋ(t) = Aix(t) + Biu(t) + Bww(t)
z(t) = Cix(t), (10)

where

Ai =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−B
J

3P 2

8J
�q 0 0

− �q
Ln

− rs
Ln

−Lm
Ln
di 0

0 Ln
Lm
di − rs

Lm
0

−1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Bi =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0
1
Ln

0

0 1
Lm

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Bw =

⎡

⎢

⎢

⎢

⎢

⎣

− P
2J
0 0 0

0 0 0 0
0 0 0 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

,

Ci =
[

1 0 0 0
]

, i = 1, 2

where ̃̃'i(t), i ∈  ≜ {1, 2, ..., p} are the premises variables; r stated number of fuzzy rules;Mil, l = 1, 2, ..., p is the fuzzy sets;
x(t) ∈ ℝn, u(t) ∈ ℝm, and w(t) ∈ ℝp indicated as state vector, control input, and disturbance input which belongs to 2[0,∞)
respectively; z(t) ∈ ℝq means the output. The system dynamics are described by

ẋ(t) =
r
∑

i=1
�i (̃̃'̃(t))

[

Aix(t) + Biu(t) + Bww(t)
]

,

z(t) =
r
∑

i=1
�i('̃(t))Cix(t), i ∈  (11)

where

�i('̃(t)) =
�i('̃(t))
r
∑

i=1
�i('̃(t))

, �i('̃(t)) =
r

∏

j=1
Mij('̃j(t)),

andMij(.) is the grade membership function of ('̃j(t)) inMij . Let �i('̃(t)) ≥ 0,
r
∑

i=1
�i('̃(t)) > 0 for any ('̃(t)). Hence �i('̃(t))

satisfies

�i('̃(x(t)) ≥ 0 for i ∈ , and
r
∑

i=1
�i('̃(x(t))) = 1.

The system (11) will be considered as the model to be controlled in the next section.

5 FUZZY SAMPLED-DATA CONTROL

Only discrete x(t) measurements can be used for sampled-data power, which means we only have measurements x(tk) at the
sampling moment tk. Utilizing zero-order hold (ZOH) with

0 = t0 < t1 <⋯ < tk <⋯

and tk → ∞ as t → ∞. For t ∈ [tk, tk+1), the control signal has a constant value u(t). Based on the facts provided above, the
fuzzy sampled-data control is stated as follows:
Controller Rule j: IF ̃̃'1(t) isMj1, ̃̃'2(t) isMj2, ⋅ ⋅ ⋅, and ̃̃'p(t) isMjp, THEN

u(t) = Kjx(tk), tk ≤ t < tk+1, (12)
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where Kj means the control gain matrices and tk indicates the sampling instant and satisfies lim
k→∞

tk = +∞. The sampling
intervals tk ≤ t < tk+1 are bounded such that tk+1 − tk = ℎk ≤ ℎ, k ≥ 0 and t − tk = ℎ(t). Thus, we give the controller

u(t) =
r
∑

j=1
�j('̃(tk))Kjx(tk). (13)

Combining (13) with (11), we obtain

⎧

⎪

⎨

⎪

⎩

ẋ(t) =
r
∑

i=1

r
∑

j=1
�i('(t))�j('(tk))

[

Aix(t) + BiKjx(tk) + Bww(t)
]

,

z(t) =
r
∑

i=1
�i('̃(t))Cix(t), i ∈ .

(14)

End of this section introduces the following Definition and Lemmas are utilized to get the main results:
Definition 1. 35 For the given matrices �̃1, �̃2, �̃3 and �̃4 satisfying �̃1 = �̃T1 ≤ 0, �̃3 = �̃T3 > 0, �̃4 = �̃T4 ≥
0,

(

||�̃1|| + ||�̃2||
)

.||�̃4|| = 0, the system (14) is said to be extended dissipative, if for any � > 0 such that, for all tf ≥ 0, the
following inequality is satisfied with respect to the zero initial condition:

tf

∫
0

(zT (t)�̃1z(t) + 2zT (t)�̃2w(t) +wT (t)�̃3w(t))dt ≥ sup
0≤t≤tf

yT (t)�̃4y(t) + �. (15)

Remark 1. The weighting matrices can be given values, and the principle of extended dissipativity can be used to find a general
solution. (1) 2 − ∞ performance: �̃1 = 0, �̃2 = 0, �̃3 = 
̃2I, �̃4 = I, and � = 0, (2) H∞ performance: �̃1 = −I, �̃2 =
0, �̃3 = 
̃2I, �̃4 = 0, and � = 0, (3) Passivity performance: �̃1 = 0, �̃2 = I, �̃3 = 
̃ , �̃4 = 0, and � = 0, (4) Mixed Passivity
and ∞ performance: �̃1 = 
̃−1�I, �̃2 = (1 = �)I, �̃3 = 
̃I , �̃4 = 0 and � = 0.4, and (5) (̃ − ̃ − ̃) Dissipativity:
�̃1 = ̃, �̃2 = ̃ , �̃3 = ̃ − �̃I, and �̃4 = 0.
Lemma 1. 15 For a given matrix  > 0, the subsequent inequality holds for all continuously differential function x in [
1, 
2]→
ℝn:


2

∫

1

ẋT (s) ẋ(s)ds ≥ 1

2 − 
1

V T1 (t) V1(t) +
3


2 − 
1
V T2 (t) V2(t)

where V1(t) = x(
2) − x(
1), V2(t) = x(
2) + x(
1) −
2


2−
1
∫ 
2

1
x(s)ds.

6 MAIN RESULTS

In this part, we will focus on the extended dissipativity criterion for the system (14) as follows. Let us consider the following
block matrices:

Θij = [Ai BiKj Bw − I 0],

and the corresponding block entry matrices as

E1 = [I 0 0 0 0]T , E2 = [0 I 0 0 0]T , E3 = [0 0 I 0 0]T , E4 = [0 0 0 I 0]T , E5 = [0 0 0 0 I]T ,

�T (t) =
[

xT (t) xT (tk) wT (t) ẋT (t) 2
t−tk

∫ t
tk
xT (s)ds

]

.

Theorem 1. Given gains Kj , j ∈ , scalars ℎ > 0, 
 > 0, and matrices �̃1, �̃2, �̃3, �̃4 the closed-loop system (14) is extended
dissipative, if there exist matrix P > 0, Q > 0, matrices Y , ℕ1,ℕ2,ℕ3, and ℕ4 with adjustable dimensions such that the
following LMIs are feasible with ℎ(t) = {0, ℎ}:

P − CT �̃4C ≥ 0, (16)
Ψij < 0, i, j ∈ , (17)
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where

Ψij =ET1 PE4 + ET4 P
TE1 + ℎ2ET4QE4 + [E

T
1 Y + ℎ(t)E

T
2 Y + ET4 Y ]Θij + ([E

T
1 Y + ℎ(t)E

T
2 Y + ET4 Y ]Θij)

T

− ET1 [C
T �̃1C]E1 − 2ET1C

T �̃2E3 − ET3 �̃3E3 − (E1 − E2)TQ(E1 − E2) − (E1 + E2 − E5)TQ(E1 + E2 − E5).

Proof. Consider the following LKF candidate:

V (xt) = xT (t)Px(t) + ℎ

0

∫
ℎ

t

∫
t+�

ẋT (s)Qẋ(s)d�ds. (18)

Now calculate the derivative of V (xt) along the trajectory of the system (14), we derive:

V̇ (xt) =xT (t)P ẋ(t) + ẋT (t)Px(t) + ℎ2ẋT (t)Qẋ(t) − ℎ

t

∫
t−ℎ

ẋT (s)Qẋ(s)ds,

≤xT (t)P ẋ(t) + ẋT (t)Px(t) + ℎ2ẋT (t)Qẋ(t) − (t − tk)

t

∫
tk

ẋT (s)Qẋ(s)ds. (19)

Based on the Lemma 1, the above inequality in (19) becomes

−(t − tk)

t

∫
tk

ẋT (s)Qẋ(s)ds ≤ −
[

Γ1
Γ2

]T [Q 0
0 3Q

] [

Γ1
Γ2

]

,

where Γ1 = x(t) − x(tk), Γ2 = x(t) + x(tk) −
2
t−tk

∫ t
tk
x(s)ds.

According to system (14), for any adjustable dimension matrix Y , we have

=2[xT (t) + (t − tk)xT (tk) + ẋT (t)]Y T
[

− ẋ(t) +
r
∑

i=1

r
∑

j=1
�i(x(t))�j(x(tk))

[

Aix(t) + BiKjx(tk) + Bww(t)
]

]

. (20)

Now, combining (19)–(20) and according to J (t) = zT (t)�̃1z(t) + zT (t)�̃2w(t) +wT (t)�̃3w(t), we get

V̇ (xt) − J (t) ≤
r
∑

i=1

r
∑

j=1
�i�j�

T (t)[Σij]�(t) < 0. (21)

Since V (xt) is continuous in t. Integrating (21) on both sides from t0 to t, we have
t

∫
t0

J (s)ds ≥ V (xt) − V (xt0) ≥ xT (t)Px(t),∀t ≥ 0 (22)

To meet Definition 1, we must demonstrate that the following inequality is true:
tf

∫
t0

J (t)dt − sup
t0≤t≤tf

zT (t)�̃4z(t) ≥ 0, (23)

First, choose ||�̃4|| ≠ 0, it is obvious that following (22), we have
tf

∫
t0

J (t)dt ≥ 0.
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Secondly, we choose that ||�̃4|| > 0. As stated in Assumption 1, the matrices in this situation as �̃1 = 0, �̃2 = 0 and �̃3 > 0
and for any t0 ≤ t ≤ tf

tf

∫
t0

J (s)ds ≥ xT (t)Px(t)

≥ xTCT �̃4Cx(t)
≥ zT (t)�̃4z(t)

V̇ (x(t)) − J (t) ≤ −�|�(t)|2 ≤ −�|x(t)|2,
i.e., V̇ (x(t)) ≤ J (t) − �|x(t)|2.

Based on the preceding cases ||�̃4|| = 0 and ||�̃4|| > 0, the proposed closed-loop system (14) is extended dissipative for any
non-zero w(t) ∈ L2[0,∞) regarding Definition 1. Hence, we completed the proof.

The sampled-data stabilization plan technique for fuzzy system (14) is given in the following theorem, which is based on
Theorem 1.

Theorem 2. Given scalars ℎ > 0 , 
 > 0, and matrices �̃1, �̃2, �̃3, �̃4, the fuzzy system (14) is extended dissipative, if there exist
matrices P > 0, Q > 0, matrices Y , andHj with appropriate dimensions such that the following LMIs hold with ℎ(t) = {0, ℎ}:

P − CT �̃4C ≥ 0, (24)

Σij =

[

Ψij Y
T
CT

∗ −�̃−11 I

]

< 0, i, j ∈ , (25)

where

Ψij =ET1 PE4 + ET4 P
T
E1 + ℎ2ET4QE4 + [E

T
1 Y + ℎ(t)E

T
2 Y + ET4 Y ]Θij + ([E

T
1 Y + ℎ(t)E

T
2 Y + ET4 Y ]Θij)

T

− 2ET1C
T �̃2E3 − ET3 �̃3E3 − (E1 − E2)TQ(E1 − E2) − (E1 + E2 − E5)TQ(E1 + E2 − E5).

The gain matrices Kj are given by Kj = HjY
−1
.

Proof. We calculate Σij = ΠTΣijΠ, with Π = diag{Y , Y , I, Y , Y , I}, where Y = Y −1j , i ∈ . Defining P = Y PY , Q =
Y QY .
The LMI (17) is pre- and post-multiplied by Π, as well as its transpose. After that, we can get LMIs (25). The proof is now

complete.

Remark 2. It merits referencing that SDC system can demonstrate numerous continuous time frameworks, for example, T-S
fuzzy system, networks system models, digital frameworks, etc. Also, the benefits of utilizing SDC are minimal expense of
control equipment, reliability and simple application. Recently, authors have been more attention on the research on wind energy
conversation systems, PMSM system, PMSG system, and etc. To the best of author’s knowledge, authors have not consider the
bifurcation analysis for the PMSM system with the extended dissipatvity performance. Therefore, the results (Theorems and
simulation) is much general and practical than [1,2,38,39].

7 NUMERICAL SIMULATION AND ANALYSIS

The illustrative case has been provided in this section to represent the validity of the built-up theoretical findings using a sampled-
data controller. To evaluate the simulation results, we consider two cases of PMSM study: without controller and with controller.
For the first condition, the sampled data controller can generally be assumed as zero, caused by without disturbance. In the
second study, this type of controller can be chosen by the gain matrix and show the performance of the effectiveness.
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7.1 Case Studys for PMSM without Controller:
The state responses of the PMSM framework dynamics are shown in FIGURES 7 -8 , respectively. When u(t) = w(t) = 0, an
initial condition x(0) = [−10, 10, 10,−10]T and the chaotic behaviors are shown in FIGURES 7 -8 .
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FIGURE 7 The chaotic x1x2 plane of PMSM.
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FIGURE 8 3D plane of PMSM.

7.2 Case Studys for PMSM with Controller:
This section describes the feasibility and effectiveness of the new stability results and lists one example for the extend dissipative
conditions. The input matrices and parameters are defined in (10) and TABLE 1.
L2 − L∞ performance: Now, we consider L2 − L∞ performance, the other cases can be similarly obtained. Choose the

sampling period ℎ = 0.2 and free weight matrix in the concept of extended dissipation as follows: Let �̃1 = 0, �̃2 = 0, �̃3 = 
̃2I,
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and �̃4 = I . In addition, we choose the other parameters involved in the simulation are taken as in Table I. Use the Matlab LMI
Control Toolbox to resolve LMIs (25) and feedback gain matrices

K1 =
[

−0.0131 0.0323 −0.0001 0.0017
0.0082 −0.0207 0.0331 −0.0036

]

, K2 =
[

−0.1681 −1.2810 1.7455 0.0796
−0.2602 −1.7723 −1.3377 0.3039

]

.
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FIGURE 9 State response.
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FIGURE 10 Control response.
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TABLE 3 Four cases of the extended dissipative problems.

Analysis �̃1 �̃1 �̃3 �̃4
L2 − L∞ performance 0 0 
2 I I

H∞ performance -I 0 
2 I 0

Passivity performance 0 I 
2 I 0

Dissipativity performance -I I 
2 I 0

TABLE 4 Control gain matrices for different performance in Table III.

Analysis Control gain matrices

H∞ performance K1 =

[

−0.1482 −3.0937 2.6211 0.0524

−0.4669 −2.6465 −3.2991 0.0434

]

K2 =

[

−0.4305 −4.0731 0.4508 0.0580

−0.2969 −0.3719 −4.3794 0.0107

]

.

Passivity performance K1 =

[

−0.1791 −3.0591 2.6185 0.0838

0.1096 −2.7059 −3.3549 0.0677

]

K2 =

[

−0.0928 −4.0682 0.3737 0.0914

0.1647 −0.3690 −4.4218 0.0156

]

.

Dissipativity performance K1 =

[

−0.1293 −24.1198 9.1775 0.0479

0.1903 −10.5570 −26.9011 0.0317

]

K2 =

[

−0.1375 −25.3935 −0.0128 0.0497

0.2304 0.1148 −27.6836 0.0039

]

.

The state and control response of the PMSM system is shown in FIGURES 9 -10 . From Remark 1, we know that by setting
different values of �̃1, �̃2, �̃3 and �̃4, the extended dissipative performance can be turned into four different performances, which
are shown in TABLE 3. Moreover, initiate the sampling period ℎ = 0.2 and by solving LMIs in Theorem 2, we get the related
controller matrices, which are shown in TABLE 3.
It is concluded from the simulation results that good performances are achieved for the PMSM model under the condition

of the sampled data controller. The extended dissipative performances and other constraints are satisfied with the proposed
controller.
Moreover, none of the above mentioned studies on PMSM system have solved the problem of extended dissipative conditions.

Therefore, the method developed in this study is more general and effective.

8 CONCLUSIONS

In this article, we investigated the bifurcation analysis and Takagi-Sugeno fuzzy sampled-data control of PMSM’s model. The
system’s physical plant was defined as an average weighted sum of local linear subsystems, with membership functions defining
the weighting terms. On the basis of the LKF strategy, a free weighting matrix procedure, a novel effective inequality technique,
and some adequate conditions in the way of LMIs have been obtained, ensuring that the scheme is expanded dissipative and
reduces the conservatism of the established findings. Then, by solving the group of LMIs, the necessary sampled-data fuzzy
controller gains can be obtained. Numerical examples have been used to demonstrate the benefit and feasibility of the proposed
controller design scheme. As a result, in order to conserve computing resources, we could explore more complex systems in the
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future, such as semi-Markov model-based stochastic nonlinear systems and distributed event-triggered performance feedback
controllers.
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