References:
1. Cohen J, Normile D. New SARS-like virus in China triggers alarm.
American Association for the Advancement of Science; 2020.
2. World-Health-Organization. WHO Coronavirus (COVID-19) Dashboard 2021
[Available from: https://covid19.who.int/.
3. McKee M, Stuckler D. If the world fails to protect the economy,
COVID-19 will damage health not just now but also in the future. Nature
Medicine. 2020;26(5):640-2.
4. Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential
therapy for COVID-19. The Lancet Infectious Diseases.
2020;20(4):398-400.
5. Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al. Treatment of 5
critically ill patients with COVID-19 with convalescent plasma. Jama.
2020;323(16):1582-9.
6. Huang Y, Yang C, Xu X-f, Xu W, Liu S-w. Structural and functional
properties of SARS-CoV-2 spike protein: potential antivirus drug
development for COVID-19. Acta Pharmacologica Sinica. 2020:1-9.
7. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et
al. Cryo-EM structure of the 2019-nCoV spike in the prefusion
conformation. Science. 2020;367(6483):1260-3.
8. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D.
Structure, function, and antigenicity of the SARS-CoV-2 spike
glycoprotein. Cell. 2020.
9. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor
binding of 2019-nCoV. Biochemical and biophysical research
communications. 2020.
10. Ni L, Ye F, Cheng M-L, Feng Y, Deng Y-Q, Zhao H, et al. Detection of
SARS-CoV-2-specific humoral and cellular immunity in COVID-19
convalescent individuals. Immunity. 2020.
11. Krammer F, Simon V. Serology assays to manage COVID-19. Science.
2020;368(6495):1060-1.
12. Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A. A
sequence homology and bioinformatic approach can predict candidate
targets for immune responses to SARS-CoV-2. Cell host & microbe. 2020.
13. Lv H, Wu NC, Tsang OT-Y, Yuan M, Perera RA, Leung WS, et al.
Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV
infections. Cell Reports. 2020:107725.
14. Iwasaki A, Yang Y. The potential danger of suboptimal antibody
responses in COVID-19. Nature Reviews Immunology. 2020:1-3.
15. Meyer B, Drosten C, Müller MA. Serological assays for emerging
coronaviruses: challenges and pitfalls. Virus research. 2014;194:175-83.
16. Amanat F, Stadlbauer D, Strohmeier S, Nguyen TH, Chromikova V,
McMahon M, et al. A serological assay to detect SARS-CoV-2
seroconversion in humans. Nature medicine. 2020:1-4.
17. Zeng W, Ma H, Ding C, Yang Y, Sun Y, Huang X, et al.
Characterization of SARS-CoV-2-specific antibodies in COVID-19 patients
reveals highly potent neutralizing IgA. Signal transduction and targeted
therapy. 2021;6(1):35.
18. Zhang BZ, Hu YF, Chen LL, Yau T, Tong YG, Hu JC, et al. Mining of
epitopes on spike protein of SARS-CoV-2 from COVID-19 patients. Cell
research. 2020;30(8):702-4.
19. Ladner JT, Henson SN, Boyle AS, Engelbrektson AL, Fink ZW, Rahee F,
et al. Epitope-resolved profiling of the SARS-CoV-2 antibody response
identifies cross-reactivity with endemic human coronaviruses. Cell
reports Medicine. 2021;2(1):100189.
20. Poh CM, Carissimo G, Wang B, Amrun SN, Lee CY-P, Chee RS-L, et al.
Two linear epitopes on the SARS-CoV-2 spike protein that elicit
neutralising antibodies in COVID-19 patients. Nature Communications.
2020;11(1):1-7.
21. Pinto D, Park Y-J, Beltramello M, Walls AC, Tortorici MA, Bianchi S,
et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV
antibody. Nature. 2020:1-6.
22. Yuan M, Wu NC, Zhu X, Lee C-CD, So RT, Lv H, et al. A highly
conserved cryptic epitope in the receptor binding domains of SARS-CoV-2
and SARS-CoV. Science. 2020;368(6491):630-3.
23. Mu J, Xu J, Zhang L, Shu T, Wu D, Huang M, et al. SARS-CoV-2-encoded
nucleocapsid protein acts as a viral suppressor of RNA interference in
cells. Science China Life Sciences. 2020:1-4.
24. Kang S, Yang M, Hong Z, Zhang L, Huang Z, Chen X, et al. Crystal
structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals
potential unique drug targeting sites. Acta Pharmaceutica Sinica B.
2020.
25. Khan MT, Zeb MT, Ahsan H, Ahmed A, Ali A, Akhtar K, et al.
SARS-CoV-2 nucleocapsid and Nsp3 binding: an in silico study. Archives
of Microbiology. 2020:1-8.
26. Amrun SN, Lee CY-P, Lee B, Fong S-W, Young BE, Chee RS-L, et al.
Linear B-cell epitopes in the spike and nucleocapsid proteins as markers
of SARS-CoV-2 exposure and disease severity. EBioMedicine.
2020;58:102911.
27. Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F, et al. Profiling
early humoral response to diagnose novel coronavirus disease (COVID-19).
Clinical Infectious Diseases. 2020.
28. To KK-W, Tsang OT-Y, Leung W-S, Tam AR, Wu T-C, Lung DC, et al.
Temporal profiles of viral load in posterior oropharyngeal saliva
samples and serum antibody responses during infection by SARS-CoV-2: an
observational cohort study. The Lancet Infectious Diseases. 2020.
29. Buchholz UJ, Bukreyev A, Yang L, Lamirande EW, Murphy BR, Subbarao
K, et al. Contributions of the structural proteins of severe acute
respiratory syndrome coronavirus to protective immunity. Proceedings of
the National Academy of Sciences. 2004;101(26):9804-9.
30. Pang H, Liu Y, Han X, Xu Y, Jiang F, Wu D, et al. Protective humoral
responses to severe acute respiratory syndrome-associated coronavirus:
implications for the design of an effective protein-based vaccine.
Journal of general virology. 2004;85(10):3109-13.
31. Liang M-f, Du R-l, Liu J-z, Li C, Zhang Q-f, Han L-l, et al. SARS
patients-derived human recombinant antibodies to S and M proteins
efficiently neutralize SARS-coronavirus infectivity. Biomedical and
Environmental Sciences. 2005;18(6):363.
32. Zhu M-S, Pan Y, Chen H-Q, Shen Y, Wang X-C, Sun Y-J, et al.
Induction of SARS-nucleoprotein-specific immune response by use of DNA
vaccine. Immunology letters. 2004;92(3):237-43.
33. Gao W, Tamin A, Soloff A, D’Aiuto L, Nwanegbo E, Robbins PD, et al.
Effects of a SARS-associated coronavirus vaccine in monkeys. The Lancet.
2003;362(9399):1895-6.
34. Kim TW, Lee JH, Hung C-F, Peng S, Roden R, Wang M-C, et al.
Generation and characterization of DNA vaccines targeting the
nucleocapsid protein of severe acute respiratory syndrome coronavirus.
Journal of virology. 2004;78(9):4638-45.
35. Dutta NK, Mazumdar K, Gordy JT. The nucleocapsid protein of
SARS–CoV-2: a target for vaccine development. Journal of virology.
2020;94(13).
36. Ahlén G, Frelin L, Nikouyan N, Weber F, Höglund U, Larsson O, et al.
The SARS-CoV-2 N protein is a good component in a vaccine. Journal of
Virology. 2020;94(18).
37. Palanivelu P. Analyses of the Spike Proteins of Severe Acute
Respiratory Syndrome-Related Coronaviruses. Microbiology Research
Journal International. 2020:32-50.
38. Xia X. Domains and Functions of Spike Protein in Sars-Cov-2 in the
Context of Vaccine Design. Viruses. 2021;13(1).
39. Broer R, Boson B, Spaan W, Cosset FL, Corver J. Important role for
the transmembrane domain of severe acute respiratory syndrome
coronavirus spike protein during entry. J Virol. 2006;80(3):1302-10.
40. Li Y, Lai DY, Zhang HN, Jiang HW, Tian X, Ma ML, et al. Linear
epitopes of SARS-CoV-2 spike protein elicit neutralizing antibodies in
COVID-19 patients. Cellular & molecular immunology. 2020;17(10):1095-7.
41. He Y, Zhou Y, Wu H, Luo B, Chen J, Li W, et al. Identification of
immunodominant sites on the spike protein of severe acute respiratory
syndrome (SARS) coronavirus: implication for developing SARS diagnostics
and vaccines. Journal of immunology. 2004;173(6):4050-7.
42. Chow SC, Ho CY, Tam TT, Wu C, Cheung T, Chan PK, et al. Specific
epitopes of the structural and hypothetical proteins elicit variable
humoral responses in SARS patients. Journal of clinical pathology.
2006;59(5):468-76.
43. Li Y, Ma ML, Lei Q, Wang F, Hong W, Lai DY, et al. Linear epitope
landscape of the SARS-CoV-2 Spike protein constructed from 1,051
COVID-19 patients. Cell Rep. 2021:108915.
Table 1 . Amino acid sequences of peptide sets employed in
Pepscan analysis