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Abstract 
There is still limited understanding of how waters mix, where waters come from and for how long they reside in tropical catchments. In this study, we used a tracer-aided model (TAM) and a gamma convolution integral model (GM) to assess runoff generation, mixing processes, water ages and transit times (TT) in the pristine humid tropical rainforest Quebrada Grande catchment in central Costa Rica. Models are based on a four-year data record (2016 to 2019) of continuous hydrometric and stable isotope observations. Both models agreed on a young water component of fewer than 95 days in age for 75% of the study period. The streamflow water ages ranged from around two months for wetter years (2017) and up to 9.5 months for drier (2019) years with a better agreement between the GM estimated TTs and TAM water ages for younger waters. Such short TTs and water ages result from high annual rainfall volumes even during drier years with 4,300 mm of annual precipitation (2019) indicating consistent quick near-surface runoff generation with limited mixing of waters and a supra-regional groundwater flow of likely unmeasured older waters. The TAM in addition to the GM allowed simulating streamflow (KGE > 0.78), suggesting an average groundwater contribution of less than 40% to streamflow. The model parameter uncertainty was constrained in calibration using stable water isotopes (δ2H), justifying the higher TAM model parameterization. We conclude that the multi-model analysis provided consistent water age estimates of a young water dominated catchment. This study represents an outlier compared to the globally predominant old water paradox, exhibiting a tropical rainforest catchment with higher new water fractions than older water.
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1. Introduction
Central America has recently been identified as a tropical climate change hot spot (Giorgi, 2006; Gonzalez, Georgescu, Lemos, Hosannah, & Niyogi, 2017). Observed temperature and precipitation regime changes in Central America (Aguilar et al., 2005; Knutson et al., 2006) can cause prolonged droughts (Sheffield, & Wood, 2008), which result in water scarcity (Bouroncle et al., 2017). In Costa Rica, increased precipitation (P) variability has led in parts to more frequent dry conditions (Hannah et al., 2017) with negative impacts on the agricultural sector (FAO, 2016) and increased water resources conflicts (Esquivel-Hernández, Sánchez-Murillo, Birkel, & Boll, 2018; Kuzdas et al., 2016; Kuzdas, Wiek, Warner, Vignola, & Morataya, 2014). Additionally, more frequent heavy rainfall events in the wet season have caused urban flooding in the Metropolitan Area of Costa Rica (FAO, 2016; Waylen, & Laporte, 1999). However, the increased risk of hydrometeorological extremes causing socio-economic losses (Prager, Rios, Schiek, Almeida, & Gonzalez, 2020) can only be mitigated through a robust knowledge of hydrological processes such as runoff generation and groundwater recharge (Bierkens, & van den Hurk, 2007). Recent efforts aiming for a better understanding of these processes in Costa Rica (Birkel et al., 2021; Correa et al., 2020; Sánchez-Murillo, & Birkel, 2016) are fundamental to allow stakeholders and governments to prioritize efforts, manage resources and establish regulations for watersheds in affected regions (Sánchez‐Murillo et al., 2020). A better understanding of runoff mechanisms, even in inaccessible and poorly monitored systems, facilitates more efficient conservation and management plans (Bruijnzeel, & Scatena, 2011). However, Costa Rica and other tropical countries are severely constrained by limited monitoring efforts (Wohl et al., 2012) to systematically study the hydrological cycle, particularly in protected and pristine rainforest catchments that provide crucial resources to downstream systems (L. A. Brujinzeel, 2001; Lawrence, 1992; Zadroga, 1981). Quantifiable knowledge of the hydrological services provided by rainforests is important to guide conservation efforts such as the operating Payment for Ecosystem Services (PES) scheme (Tognetti, Aylward, & Bruijnzeel, 2011) in Costa Rica, which suffers from the lack of hydrological data to objectively evaluate the efficiency of their economic investments. 
The Quebrada Grande catchment forms a part of this PES scheme with the potential for drinking water use (Wallbott, Siciliano, & Lederer, 2019). Nevertheless, recently identified elevated dissolved organic carbon (DOC) concentrations (6.7 ± 0.1 g * m-2 * year-1) in the Quebrada Grande river have adverse effects on the drinking water purpose of the catchment (Sánchez-Murillo et al., 2019a). Assessments of the flow pathways, transit times and source areas of DOC are crucially missing in this catchment and in most parts of the Latin American tropics (Muñoz-villers, & Mcdonnell, 2012; Sánchez-Murillo et al., 2019a).
In this regard, natural water tracers (e.g. δ2H) provide additional information to traditional hydrometeorological data about the hydrological cycle (Berman, Levin, Landais, Li, & Owano, 2013; Bony, Risi, & Vimeux, 2008; Bowen, 2008), the rainfall-runoff relation (Uhlenbrook, Frey, Leibundgut, & Maloszewski, 2002) and hydrogeological connectivity in complex tropical landscapes (Sánchez-Murillo, & Durán-Quesada, 2019; Sánchez‐Murillo et al., 2020). If further implemented in tracer-aided hydrologic models, tracers can – despite inherent model uncertainty (Birkel, & Soulsby, 2015) - be a useful tool to assess catchment dynamics of mixing, transport and storage mechanisms and ecohydrological water partitioning (Hrachowitz, Savenije, Bogaard, Tetzlaff, & Soulsby, 2013; Hrachowitz, Soulsby, Tetzlaff, Dawson, & Malcolm, 2009a; Knighton, Saia, Morris, Archiblad, & Walter, 2017). The information gain of the tracer needs to be carefully evaluated against uncertainties arising with more calibrated model parameters to incorporate tracer mixing and transport (Uhlenbrook, & Hoeg, 2003). This information gain often represents a trade-off at the expense of slightly decreased streamflow simulation performance (Delavau, Stadnyk, & Holmes, 2017; Seibert, Rodhe, & Bishop, 2003). Such TAM models can also be used to track water ages, which are linked to water quality (Sprenger et al., 2019) and particularly DOC for an integrated view on catchment functioning and vulnerability (Birkel et al., 2021). 
In the present study, we apply two different model strategies: a minimal parameter lumped convolution integral model with a steady-state assumption and a more complex but dynamic TAM. They are applied to simulate streamflow isotope composition, transit times (derived from GM) and streamflow water age (derived from TAM) dynamics of a pristine tropical rainforest catchment under conservation for drinking water supply to learn more about the dominant flow pathways and runoff generation.
The specific objectives were to:
i) Development of a conceptual and relatively simple tracer-aided model capable of simultaneously simulating water and tracer fluxes in a small tropical rainforest catchment;
ii) Calibration and independently validation the developed model with observed hydrometric and stable isotope data in streamflow, soils and groundwater;
iii) Analysis of the estimated transit times from the convolution integral model in comparison to the TAM-tracked water flux ages.

2. Study area description
The Wildlife Refuge Cerro Dantas study area is the headwater catchment of the river Quebrada Grande on the Caribbean slope of central Costa Rica and is located within the Braulio Carrillo National Park (Figure 1; Salas-Navarro, Sánchez-Murillo, Esquivel-Hernández, & Corrales-Salazar, 2019). Most rocks are of basaltic and andesitic composition due to the location within the Barva volcano complex. This volcanic rock is quickly converted into sandy loam andosols with relatively high porosity. The shallow groundwater table sits on average at 80 cm below ground level at the catchment outlet (blue triangle, Figure 1). The catchment drains towards the Caribbean basin. The hydraulic conductivity across the sampled hillslope transects range from 5.8 x 10-7 to 5.7 x 10-6 m/s (Sánchez-Murillo et al., 2019a).

[Insert Table 1]

[Insert Figure 1]

The vegetation is a mix of primary and secondary forests with minimum anthropogenic activity over the last 100 years. The mountainous river is characterized by abrupt stream channel and riparian slope changes, large cobbles, high debris flows, and low electric conductivity (Sánchez-Murillo et al., 2019a). The climate is mainly influenced by the seasonal movement of the Intertropical Convergence Zone (ITCZ), constant and year-round moisture flow and resulting precipitations from the north-easterly trade winds, indirect and direct hurricane and tropical storm activity mainly from June to November and northern hemisphere cold front outbreaks into tropical regions mainly from December until March (Durán-Quesada, Sorí, Ordoñez, & Gimeno, 2020). Precipitation patterns are also subject to modifications by regional oceanic-atmospheric circulations such as the El Niño Southern Oscillation (ENSO). The Oceanic Niño Index (ONI) classifies over average warm or cold climate events in the tropical Pacific into El Niño and La Niña respectively (Climate Prediction Center Internet Team, 2020). 

3. [bookmark: _Toc66975539]Methods and data
3.1 Sampling and Data
The catchment is intensively monitored since October 2015; this includes data on meteorology, streamflow, soil and water chemistry. Meteorological data is recorded with a Vantage Pro2 Plus weather station (Davis Instruments, USA). Meteorological variables (precipitation, air temperature, relative humidity, radiation and wind speed) were recorded every 30 minutes (Location at the blue triangle, Figure 1). Potential evapotranspiration (ET) is estimated using a vegetation-adapted version of the Penman-Monteith equation (Allen, 2005). Stream stage and temperature (± 0.01°C) are logged every 15 min with a pressure transducer combined with a thermometer (AS950, Hach). Moreover, once per week, discharge (n=138) is measured by a tracer test, i.e., analysing the breakthrough curve of an instantaneous salt injection. This data enabled us to derive a robust stage-discharge relationship (Sánchez-Murillo et al., 2019a) to calculate a continuous discharge time series (mm/ 15 min). The stable isotopes δ2H and δ18O of the daily rainfall were sampled using a passive collector (Palmex Ltd, Croatia) (Gröning et al., 2012). Daily streamwater was sampled (2016) using a Sigma 900 MAX autosampler (HACH, USA), while weekly samples were collected manually (2017-2019). Groundwater samples were collected by manually purging a dug-well (blue triangle, Figure 1). All samples were filled with no headspace in 30 ml bottles to avoid exchange with atmospheric moisture and were stored at 5°C hermetically sealed until analysis. Prior to analysis, all samples were filtered with a 0.45 μm syringe polytetrafluorethylene (PTFE) membrane.
Weekly soil samples (500g) were collected in 2018 at 15 cm depth (Figure 1, green triangles) and stored in sealed polyethylene bags at 5°C. Subsamples were transferred to 50 ml centrifuge tubes (Eppendorf, Germany) and centrifuged at 5°C and 11,000 rpm for 1.5 hours using a 5804 R centrifuge (Eppendorf, Germany) extracting the mobile water content. The supernatant water was extracted with a micropipette (Eppendorf, Germany), filtered through a 0.45 µm PTFE filter and transferred into a 2 ml injection vial.
Stable isotope analysis was conducted at the Stable Isotope Research Group facilities of the Universidad Nacional of Costa Rica using a Cavity Ring-Down Spectroscopy water isotope analyser (L2120‐i, Picarro Inc.) and a water isotope analyser (LWIA‐45P, Los Gatos Research Inc.). The analytical long‐term uncertainty was ± 0.5 ‰ for δ2H and ± 0.1 ‰ for δ18O (Ramírez-Leiva et al., 2017). Spectral contamination identification was applied to soil samples to avoid organic interference on isotope ratios.
Stable isotope compositions are presented in delta notation δ18O [‰] and δ2H [‰] relating the ratios of 18O/ 16O and 2H/ 1H relative to Vienna Standard Mean Ocean Water. 

3.2 Model Setup
3.2.1 Convolution Integral Transit Time Model
A first approach to simulate the observed stream isotope compositions is based on a simple convolution integral transit time model (equation 1):
	
	Eq. 1


 This approach converts the input of daily precipitation isotopes into an approximation of the stream isotope compositions δout(t) using a transfer function g(τ). The daily precipitation amount was adjusted by subtracting the daily potential evapotranspiration (PET) for the input function δin (t-τ) to the convolution integral assuming no fractionation affects the surface waters. The latter assumption was supported by the streamwater isotope samples being consistent with the Local Meteoric Water Line (LMWL, Figure 3). Previous work by (Sánchez-Murillo et al., 2019a) tested a simple exponential model as transfer function g(τ) for data from 2017, but in the present study, we settled on the more versatile two-parameter gamma distribution following (Hrachowitz et al., 2009b):
	
	Eq. 2



with the shape parameter α (-) and the scale parameter β (days). The model bases on a steady-state assumption, which is rarely the case for catchment-scale hydrological processes (McGuire and McDonnell, 2006). However, given the fact that it relies on only two calibrated parameters, it allows for a simple model test and a traceable uncertainty.
The GM model was calibrated for the entire study period (2016-2019) and for every single year with a warm-up period of a looped 2019 dataset each. The Mean Transit Time (MTT) is calculated based on the best fitting α and β parameters. Due to the limitations of stable isotope tracers to detect long transit times beyond 5 years (Stewart, Morgenstern, & McDonnell, 2010), the scale parameter was limited to 1825 days.
We attempted to select the best 100 parameter sets for simulations based on the Nash-Sutcliffe-Efficiency (NSE; Nash, & Sutcliffe, 1970). The Differential Evolution algorithm (DEoptim R package; Ardia, Mullen, Peterson, Ulrich, & Boudt, 2020) was used for calibration with a maximum of 10,000 iterations, starting values of α and β of 0.5 and 1000, respectively, and a stop criterion of 0.01. The stop criterion forced the algorithm to terminate the model when no improvement in performance has been achieved beyond the second decimal of the NSE performance criterion. 

3.2.2 Tracer-aided Model Calibration and Evaluation
The conceptual tracer-aided hydrological model, simultaneously simulating streamflow (Qsim) and stream isotope composition (δ2H), was set up according to previous empirical knowledge about the studied catchment from Sánchez-Murillo et al. (2019a) using geochemical data. Their model concept hypothesized a shallow runoff generation via a saturated riparian area and a slightly deeper (< 1m) more constant interflow contribution to streamflow (Figure 2). Based on this previous work, in the present study, a simple model structure linearly drains an upper reservoir (Sup) into an inferior reservoir (SGW) generating a groundwater flow (QGW) to the stream. The Sup linearly simulates runoff (Qup) to the riparian reservoir (Srip) that non-linearly generates saturation overland flow (Qrip) to Qsim.
[Insert Figure 2]
The isotope mass balance (Figure 2) is directly coupled with a mixing-cell approach to the dynamic water storage and transport of the rainfall-runoff model calibrated by eight parameters (Table 2). Three calibrated mixing volumes (MVup, MVGW, MVrip) for each of the three storage volumes (Sup, SGW, Srip) contain the isotope storage for complete mixing and transport without affecting the water storage and transport:
	
	Eq. 3



with c being the isotope compositions of storage components (‰) in j storage inflows Ij (e.g. Pup and Prip, Qup, Recharge QR) and k outflow Ok components (e.g. ETup and ETrip, QGW, and Qrip), which characterize the catchment storage S dynamics (sum of dynamic and additional storage available for mixing) and associated isotope compositions c. The model storage isotope compositions were initiated with the mean of measured isotopes and storage volumes of 1 mm. 
[Insert Table 2]
We then ran 500 parameter populations over 100 generations with a total of 50,000 iterations in each step for reproducibility (Deb, Member, Pratap, Agarwal, & Meyarivan, 2002). The model performance is evaluated using the Kling-Gupta Efficiency (KGE; Gupta, Kling, Yilmaz, & Martinez, 2009; Kling, Fuchs, & Paulin, 2012) and belonging standard deviations (SD) calculated by the R package hydroGOF (Zambrano-Bigiarini, 2020) accounting for correlation coefficient (r), variability (γ) and bias (β) (equation 4): 
	
	Eq. 4



Simultaneous calibration minimized the KGE criteria for streamflow and stream deuterium compositions of measured vs. simulated values from the TAM using eight parameters and wide parameter intervals based on model tests and previous applications. We retained the best 500 parameter combinations, i.e. those with the highest KGE for discharge and stream deuterium simulations of the three-year and the single-year calibration periods (2017, 2018 and 2019). The resulting Pareto fronts and simulation envelopes serve as uncertainty indicators for model parameters and thus water and tracer budgets as well as water ages. The parameter distributions from the calibration periods were compared to qualitatively assess parameter sensitivity and variability. The parameter set derived from the three-years calibration (2017-2019) was applied to simulate 2016 for model validation.

3.3 Water Flux Age Tracking
Water age estimation uses a flux tracking approach that requires each precipitation event to be tagged with a time stamp. Depending on the mixing and flow processes, water can stay longer in storage before contributing to streamflow as a flux, thereby increasing its age. We only calculated and analysed the matrix of streamflow flux ages for the whole period (2016-2019) and single years, performed with the three-year calibration (2017-2019) only, using the best 500 parameter sets. The resulting matrix was used to derive transit time distributions, which equate to the flux water age.
This flux tracking approach was implemented according to (Birkel, Soulsby, & Tetzlaff, 2015; Hrachowitz et al., 2013):
	
	Eq. 5



with  representing the distribution of water age of all contributing fluxes Qn to the total discharge Q, with tj being the time of exit at the catchment outlet and ti the time of entry with P.

4. Results
4.1 Hydrometeorology and Stable Isotope Characteristics
The climate is dominated by the influence of Caribbean trade winds (Table 3; Sánchez-Murillo, & Birkel, 2016), causing intense humidity, which is almost at saturation over the year (supporting information, Figure S1 A). The precipitation maxima of this circulation process are registered in two peaks: The first rainfall maximum in May/June and the second one in August until October. Cold fronts between December and February may also result in large rainfall amounts, leading to cold pulses in air and stream temperature (e.g. Feb 2016, Jan 2018, supporting information, Figure S1 C). The two main maxima are divided by the Mid-Summer Drought in July (Magaña, Amador, & Medina, 1999; Maldonado, Alfaro, Fallas-López, & Alvarado, 2013) and a slightly drier period from mid of February to April. The drier months are accompanied by higher irradiation rates (supporting information, Figure 10 B). 
The average and annual ranges of measured hydrometric and isotope data are displayed in Table 3. 

[Insert Table 3]

The annual water balance indicated a regional loss of water because measured inputs (P) were much higher than measured outputs (sum of Q and PET) (Table 3). The water balance mismatch was up to 64%. These large water volumes were corrected annually for modelling (correction factor: ), yielding a new corrected discharge Qcorr (Table 4). This was necessary because the modelling approach does not account for such a supra-regional groundwater flow. Measured streamflow ranged from 918 mm/a in the drier year 2019 to 1947 mm/a in the wetter year 2017.

[Insert Table 4]

The almost constant cloud cover over the hilltops limits the irradiation energy input and thus evapotranspiration loss is limited to around 10% of the rain input (Table 4, Figure S1 C, supporting information). Overall, mean annual PET ranged from 555 mm/a to 653mm/a with a likely high contribution of transpiration to PET in the completely forested study catchment.
 
[Insert Figure 3]

The calculated LMWL based on daily isotopes of rainwater plots slightly above the Global MWL in the dual isotope plot (Figure 3) with δ2H = 8.26 + 14.75 (r² = 0.98, n = 906). The regression lines for both surface and soil water isotopes were similar and almost identical to the LMWL (Figure 3). All sampled water sources (streamflow, soil and groundwater) were similar to meteoric waters with little to no evidence for evaporative fractionation. Identical mean isotope values for rainfall and streamflow indicated an isotopic mass equilibrium (Table 3). The isotope ranges decreased from rainfall to soil water and groundwater with streamflow being masked between soil and groundwater isotopes. However, the range of streamflow isotopes showed little damping compared to rainfall input variability indicating a quickly responding system with limited mixing.

[Insert Figure 4] 

The GM reasonably simulated the streamflow isotope compositions (mean α = 0.51, mean β =170 d of the best fitting parameter sets) matching the peak events as well as more slowly receding periods (Figure 4). The rainfall input and slightly damped but quickly following streamflow output deuterium compositions showed a bimodal pattern (W‐mode type) every year, which reflects the rainfall seasonality (Figure 4). The drier months (January‐February), dominated by north-easterly trade winds, and the mid‐summer drought, so-called “Veranillo” (July‐August), produced isotopically enriched rainfall across the region. Two depleted pulses during the wet seasons (May and October/November) bring depleted deuterium precipitation composition into the system (Sánchez-Murillo et al., 2019a; Sánchez-Murillo, & Birkel, 2016).
The 2016 hydrological year was characterized by one of the strongest El Niño years on record and started with a strong dry season as a carry-over effect of the drought from the end of 2015 (Climate Prediction Center Internet Team, 2020). Even though, the category 3 hurricane “Otto” caused a large isotopic depletion in November 2016 (Sánchez-Murillo et al., 2019b). Similarly, the tropical storm Nate in October 2017 caused the most depleted deuterium rainfall input in the whole four years period. The year 2018 was a typical La Niña event, resulting in an above average humid year but with no specific storms in contrast to the drier El Niño year 2019.
 
4.2 Tracer-aided Model Simulations, Parameter Uncertainty and Independent Evaluation
The model performance of isotope and discharge simulations were evaluated with the KGE. The resulting Pareto fronts (Figure 5) of the retained 500 best fitting simulations show the two-dimensional space of the objective functions (KGE Q and KGE δ2H) for the three-years calibration (2017- 2019), compared to the calibration of the individual years 2017, 2018, 2019. The year 2016 was used as a model warm-up to fill storages and initiate isotope compositions in storages and therefore omitted from the calibration. The single year calibrations showed little difference in model performance compared to the three-years simulation, with overall high KGEs > 0.90 for isotope simulations and > 0.75 for discharge. The Pareto front for 2018 showed the sharpest gradient, indicating a model performance close to optimal values with virtually no trade-off between either discharge or isotope performance. The driest year 2019 exhibited the smallest isotope input variability, which also resulted in the most modest model performance. The three-years calibration yielded a reasonable performance balancing the individually calibrated years and was used for the simulation of the whole data series and validation (Figure 5).

[Insert Figure 5]

The posterior distribution of the eight 500 best-fit parameters retained in each of the calibrations is displayed in Figure 6. The posterior distribution indicates how constrained a parameter range is after calibration as a proxy for parameter identifiability. The most constrained parameters were a, b, c and α for the five-parameter rainfall-runoff model and the upper passive mixing volume MVup (Figure 6 A, B, D, E, F) for tracer transport (compare Table 2). The riparian area mixing volume MVrip (Figure 6 G) was still identifiable but variable for the different calibrations. The median of the groundwater-related parameters R and MVGW (Figure 6 C, H) hit against the upper limit, which could be an indication for lower identifiability and increased parameter uncertainty since these parameters present little impact on the model output. The latter was supported by a fast through-flow from the upper reservoir, which drained into the groundwater storage quickly. The deeper storage is responsible for the contributions of older water.

[Insert Figure 6]

 [Insert Figure 7]

The simulated discharge and deuterium composition of the TAM matched the seasonal variability as well as the peaks and minima of the measured discharge (Figure 7 C) and deuterium composition (Figure 7 F) reasonably well for 2017 to 2019 (KGE = 0.91). The pattern of outflow simulations (Figure 7 C, F) follow these of rainfall (Figure 7 A), indicating a quick system response to inputs. For soil water (Figure 7 D) and groundwater isotopes (Figure 7 E), there were relatively fewer observations available and we used these as an independent evaluation of internal model fluxes, which the model matched well (Figure 7 D, E). 
The relative groundwater contribution to streamflow (Figure 7 B), represented by the baseflow index (BFI), is given in percent of total discharge and yielded a four-year average of 37% (2016: 41,9%; 2017: 36,2%; 2018: 35,4%; 2019: 34,6%). The hydrograph separation within the TAM supported by the isotopic tracers resulted in a near-surface dominated system of upper soil water flow paths that quickly convert rainfall with little mixing into streamflow (Figure 8). 

[Insert Figure 8]

An additional independent model evaluation resulted from examining the most prominent extreme events of the measurement period (Fig 8. B-D). Hurricane Otto (November 2016, Figure 8 B) and the tropical storm Nate with rainfall of more than 300 mm in 48 hours (Figure 8 C) caused large peak flows with significant surface flows (event average of 80%) and very short water flux ages in the order of few days. The TAM simulated the Otto peak flow event with a two-day delay in comparison to the observations (Figure 8 B). This delay is not observable in the case of the Nate extreme event (Figure 8C). The re-wetting event after a dry period in 2019 with 100% groundwater contribution to streamflow (Figure 8 D) was also matched by the model with an immediate response of near-surface runoff. The largest peak flow event in January 2018 was associated with the prolonged intense rainfall of a cold front.

4.3 Transit Time and Water Flux Age Estimations
Figure 9 shows the simulated daily streamwater flux ages together with discharge for comparison purposes. The non-stationary nature of the water flux ages was clearly reflected by the fluctuations between few days old waters during peak flow events and water ages up to a maximum of one year during two drier periods in mid-2016 and the beginning of 2019. 

[Insert Figure 9]

[bookmark: _Hlk66368343]Table 5 shows a direct comparison of the TT estimates of the GM and the mean flux ages of the TAM with associated standard deviations (SDage) as well as model performance statistics (KGE, SDKGE for streamflow deuterium simulations). The mean annual water ages of the TAM range from 39 days in 2016 up to 71 days in 2019 (Table 5).

[Insert Table 5]

The KGEs of the GM and associated standard deviations SDKGE showed an overall good performance. KGEs of the wetter and more variable years 2017 and 2018 were slightly better (KGE > 0.93). The TTs of the GM were slightly longer compared to the TAM but can be still characterized as young waters (Mean annual TT = 9.5 months in 2019). The concordance between the two models was greater for younger age estimates and diverged for 2019 with a TT of 289 days of the GM compared to a flux age of 71 days of the TAM. The TAM calculated slightly lower ages for 2016 compared to the four-year average. This might be caused by the Hurricane Otto leading to a direct surface flow with very short transit times. 2017 resulted in the shortest TTs given that it was a wet La Niña year with the influence of the tropical storm Nate. All SDage for the ages were higher (up to 2 months) for the more highly parameterized TAM compared to the two-parameter GM.

5. Discussion
5.1 Runoff Generation and Mixing Processes in a Very Humid Rainforest Catchment
The annual average precipitation of approximately 5,000 mm/a in our study area (Table 4) exceeds the country-wide average of about 3,000 mm/a (Sánchez-Murillo, Durán-Quesada, Birkel, Esquivel-Hernández, & Boll, 2017). The measured average δ18O signatures of rainfall correspond to those of the Caribbean slope of -5.0 ± 2.4‰, which are generally slightly more enriched than the δ18O rainfall signatures on the Pacific side (Sánchez-Murillo et al., 2020). The isotopic composition of the rainwater is dominantly influenced by the amount and the altitude effect (Sánchez-Murillo et al., 2020). 
[bookmark: _Hlk69658078]Only a weak damping effect of the isotope composition in streamflow compared to rainfall (Table 3) indicated a rapid runoff generation with limited isotope mixing in soils and groundwater, similar and even more pronounced compared to other rainforest catchments in Costa Rica (Birkel et al., 2021). Similar to other case studies in headwater catchments of tropical high-rainfall areas (Goller et al., 2005), rainfall intensity is a major driver of the rapid streamflow response (Bonell, Barnes, Grant, Howard, & Burns, 1998).

The TAM identified quickly draining water from the upper soil water storage at the hillslopes directly into the riparian zone. From there, it rapidly contributed to the simulated streamflow reflected by high values for the linear rate coefficients such as a and a higher non-linear parameter α (Figure 6). The comparison of different calibration periods and storage parameters showed that only the upper hillslope represented larger mixing volumes (Figure 6 F), but that water passes too fast to noticeably dampen the isotope output variability. The variability in some storage parameters could be related to the rainfall volumes from the individual years (Figure 6 F) with lower rainfalls and subsequently less storage resulting in more insensitive parameters. Such behaviour of quick near-surface runoff generation was previously observed in other catchments with a different climate such as in the Scottish Highlands (Soulsby et al., 2015). However, here the observed and simulated catchment response was quicker and with even less mixing. In contrast to Soulsby et al. (2015), the hydrograph separation (Figure 8) indicated a constant GW contribution to the perennial stream, but only with an average BFI of 37% (Figure 8B), supporting the notion of a system dominated by surface runoff and shallow interflow as described in previous studies (Sánchez-Murillo et al., 2019a). A BFI of 37% is much lower than for other studies in Costa Rica, e.g. catchment Sarapiquí with a BFI of 55–85% (Birkel, Soulsby, & Tetzlaff, 2012; Westerberg, & Birkel, 2015) and other tropical catchments, showing a mean BFI of 77% (Beck et al., 2013; Peña-Arancibia, Van Dijk, Mulligan, & Bruijnzeel, 2010), that are dominated by high groundwater contributions to total streamflow. Therefore, our study site is one of the few examples of a natural catchment (Klaus, & McDonnell, 2013) that does not correspond to the old water paradox (Barthold, & Woods, 2015; Sidle et al., 2000). The latter describes the rapid mobilization of previously stored “old” water via subsurface flow paths during storm events, identified by a strongly damped tracer output composition (Kirchner, 2003). Such behaviour was explained by a replacement of the water in the previously saturated riparian areas during storm events that presses out the older, pre-event groundwater (Goller et al., 2005; Ward, 1984). In comparison to (Muñoz-Villers, & McDonnell, 2012), the topography of the Quebrada Grande catchment is less steep and with less developed soils, but equally driven by lateral sub-surface flow pathways as no empirical evidence of surface stormflow exists, albeit with less mixing and much shorter transit times. Another possible reason for a low BFI is the observed regional groundwater loss of the annual water balance (Table 4). This indicates that a fraction of the water infiltrates into the highly permeable soils and further percolates into the volcanic bedrock through preferential flow paths, which causes that it cannot be measured at the outlet of the catchment (Table 4). This headwater loss could potentially be found in the floodplains draining to the Caribbean Sea as indicated by tracer (Genereux, Nagy, Osburn, & Oberbauer, 2013) and modelling (Zanon, Genereux, & Oberbauer, 2014) studies nearby. 

5.2 The Role of Non-stationary Water Ages as an Indicator of Catchment Functioning
The GM (KGE > 0.88) and TAM (KGE > 0.91) models performed much better compared to other applications with similarly measured daily isotope datasets and conceptual models in Costa Rica (Birkel, & Soulsby, 2016). The independent model evaluation against soil and groundwater isotope measurements (Figure 7 D, E) further increased confidence in the findings (Birkel, Soulsby, & Tetzlaff, 2014; Kuppel, Tetzlaff, Maneta, & Soulsby, 2018). Furthermore, the model split sample test showed relative robustness for different calibration periods resulting in overall good performance of streamflow and stream isotope simulations (Figure 5). Surely, uncertainties due to data errors and model assumptions cannot be neglected, but the small Quebrada Grande catchment scale resulted to be less prominent compared to other modelling studies in the tropics (e.g. (Westerberg et al., 2014)). The water flux age tracking, performed on the back of streamflow and isotope simulations, benefited from the overall less and quantifiable TAM uncertainties. Despite some general doubts concerning the underestimation of TTs (DeWalle, Edwards, Swistock, Aravena, & Drimmie, 1997; Kirchner, 2016), for our catchment, characterized by relatively short TTs and water flux ages, the approach has the potential to provide a first reasonable approximation of the hydraulically active catchment-scale storage. The TT and flux age estimates are mathematically not equivalent (Hrachowitz et al., 2013). The TT is based on damped tracer compositions and flux ages on the tagged model input-output time lag. Yet, both estimates reflect climate patterns of drier and wetter years influenced by extreme events (Hrachowitz, Soulsby, Tetzlaff, & Malcolm, 2011) and shorter TTs and flux ages reflect the increasing dominance of near-surface or direct runoff contributing younger waters to streamflow. The longest annual MTT of 9.5 months (2019) of the GM resulted from slightly decreased input-output isotope variability. Similarly, for the TAM drier periods with small discharge amounts increasingly fed by older groundwater resulted in slightly older streamflow ages (Fig 8 D). The TAM flux age calculation overcomes the weaknesses of the steady-state assumption of the simpler GM (Hrachowitz et al., 2013) but carries the danger of non-unique solutions due to more calibrated parameters (8 TAM versus 2 GM). However, the GM estimated short TTs resulted from an almost globally comparable alpha parameter of 0.5 (Godsey et al., 2010). The eight calibrated TAM parameters cause a wider posterior parameter range in comparison to the GM, hence the TAM SDage of flux ages resulting from the retained parameters after calibration is more disperse. Nonetheless, the similar TT and water flux age results of the two independent models increase the confidence in a viable and trustworthy solution.

All annual water flux ages, derived by the TAM, can be classified as young streamflow, i.e. less than three months old (Jasechko, Kirchner, Welker, & McDonnell, 2016). Such young water estimates support previous results for a single year (2017) with an MTT of around 96 days that used a simple exponential model (Sánchez-Murillo et al., 2019a). Our results are also in line with other studies (Ala-aho, Tetzlaff, McNamara, Laudon, & Soulsby, 2017; Hrachowitz et al., 2013; Piovano et al., 2019; Remondi, Kirchner, Burlando, & Fatichi, 2018) supporting the detected non-stationary nature of water ages depending on antecedent wetness and amount of water in storage (Harman, 2015). Young streamflow usually results from short resident times in the subsurface and is composed of a minimal groundwater portion (Jasechko et al., 2016). Therefore, this catchment showed to be an extremely fast responding system only comparable to steep, wet catchments with thin soils on an impermeable bedrock such as in western Scotland (Hrachowitz et al., 2009a). Our water ages and TT estimates are also quite short for Costa Rican conditions as previous works in other steep rainforest catchments showed fast responding systems, but with more sub-surface mixing involved and therefore slightly longer TT and older water age estimates around one-year (Birkel, & Soulsby, 2016; Correa et al., 2020). Non-stationary and short water ages revealed by the two models provide knowledge on solute transport as e.g. in the context of potential source and transport pathways for DOC. The capacity of DOC attenuation by sorption and microbial degradation decreases with short and quick flow paths and lower BFI (Schwendenmann, & Veldkamp, 2005). Moreover, rapid streamflow generation with limited mixing causes high DOC mobilization, increasing the chlorine demand for disinfection and a potential formation of chlorine by‐products in drinking water (Bower, 2014).

6. Conclusions
This study showed how long-term hydrometric and isotopic data sets can be used in two different model approaches to simulate streamflow and its isotope compositions plus resulting transit times and water flux ages. The simple GM together with the hydrometeorological understanding of the rainfall-runoff transformation already resulted in broad insights into the catchment functioning of our remote tropical landscape. The relatively parsimonious tracer-aided rainfall-runoff model (TAM) further enhanced these findings by a simultaneous simulation of streamflow and stream isotopes together with an internal hydrograph separation and water flux age estimates. 
Both models demonstrated the non-stationarity of catchment water age and transit times at daily to annual time scales. The models also agreed on young water contributions, around three months old, for 75% of the measurement period from 2016 to 2019. The TAM showed a significant sensitivity for more extreme wet and dry periods. In drier periods, despite the simulated contribution of older groundwater that ensures constant flows of the Quebrada Grande, the BFI (< 37%) is much lower than in comparable catchments. 
The comparison of different calibration periods and storage parameters showed that only the upper hillslope represented larger water storage available for mixing, but that water passes too fast to significantly moderate solute transport, as indicated by the measured isotope variability. This also means, that groundwater recharge is potentially activated throughout rainy periods rather than extreme events, and that large amounts of rainfall input contributes to a regional groundwater flow invisible at the catchment outlet. 
The combination of these hydrological processes results in an extremely fast responding system and likely more vulnerable to climatic variability and forecasted increase of weather extremes. Despite some limitations of tracer simulations and inevitable model uncertainties, the combined analysis of hydrometric and isotopic data integrated into hydrological models helps to understand the dominant catchment hydrological processes in the quest for a more complete picture of water quantity and quality dynamics in the tropics.
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TABLES
Table 1 Summary statistics of the physiographic catchment characteristics, climate, vegetation and soil types in the study area. (Murillo, Esquivel, Antillón, & Navarro, 2019; Ortiz-Malavasi, 2014).
	Physiographic Characteristic (Unit)
	Mean (Range)

	Topography
	

	Area (km²)
	3.9

	Stream length (km)
	4.0

	Catchment length (km)
	3.6

	Slope (°)
	9.59 (1 to 43)

	Altitude (m.a.s.l.)
	2,222 (1,765 to 2,350)

	Climate and Vegetation
	

	Climate Zone
	Humid tropics (Aw)

	Soil cover
	Montane rainforest

	Soil type
	andosols (young volcanic soils)




Table 2: The TAM model flux equations, and initial and boundary values for model parameters.
	Flow direction
	Equation
	Model Parameter
	Initial value
	Boundaries (lower-upper)

	Hillslope→ Riparian area
	Qup=a*Sup
	a
	0.21
	0.1- 0.9

	Groundwater→ Qsim
	QGW =b*SGW
	b
	0.009
	0.0001-0.1

	Hillslope→ Groundwater
	QR=R*Sup
	R
	0.5
	0.1- 0.9

	Riparia area→ Qsim
	Qrip=c*Srip(1+α)
	c
	0.019
	0.0001-0.5

	
	
	α
	0.2
	0.1- 0.9

	Isotope mixing volumes
	
	
	

	
	
	MVup
	1000
	1-2000

	
	
	MVrip
	1
	1- 500

	
	
	MVGW
	1
	100-5000





Table 3: Summary of measured hydrometric data and isotope compositions in rain-, soil-, stream- and groundwater (GW) with the number of samples (n).
	Hydrometric Data (mm)
	
	Period
	Mean
	Range

	Annual Precipitation 
	
	2016-2019
	5,117
	4,314 to 6,146

	Annual Evapotranspiration
	
	2016-2019
	612
	555 to 653

	Annual Stream Discharge 
	
	2016-2019
	1,596
	918 to 1,947

	Isotope Compositions (‰)
	n
	Period
	Mean
	Range

	δ2H in Rain 
	914
	2016-2019
	-30.36
	-161 to 21

	δ2H in Soilwater 
	15
	2018
	-44.51
	-112.3 to -27.7

	δ2H in GW 
	9
	2019
	-33.67
	-37.5 to -28

	δ2H in Stream 
	414
	2016-2019
	-30.34
	-79 to -1.4

	δ18O in Rain 
	914
	2016-2019
	-5.42
	-21 to 0.7

	δ18O in Soilwater 
	15
	2018
	-6.94
	-14.8 to -5

	δ18O in GW 
	9
	2019
	-5.67
	-6.8 to -4.2

	δ18O in Stream 
	414
	2016-2019
	-5.55
	-12 to -2.3




Table 4: Observed water balance (precipitation P, the vegetation adjusted PET and observed streamflow Qobs) and resulting regional groundwater loss (GW loss) annually corrected for model simulations (annual corrected Discharge Qcorr factor).
	Year
	P (mm)
	PET (mm)
	Qobs (mm)
	GW loss
	annual Qcorr factor
	Qcorr (mm)

	2016
	4542
	555
	1773
	49%
	2.25
	3987

	2017
	5466
	603
	1947
	53%
	2.50
	4863

	2018
	6146
	636
	1747
	61%
	3.15
	5510

	2019
	4314
	653
	918
	64%
	3.99
	3661




Table 5: Comparison of model performance statistics (KGE, SDKGE for streamflow deuterium simulations) for the retained best-fit parameters and resulting mean age estimates of the Gamma Model (GM) with corresponding Transit Time (TT) compared to the Tracer-aided Model (TAM with mean flux age). The three-years calibration period from 2017 to 2019 was compared to the single years used for calibration as well as the simulated year 2016 (evaluation of the three-years calibration).
	Model
	GM
	TAM

	Period 
	TT (d)
	Flux age (d)

	2016-2019
	87.47
	49.11

	SDage
	0.02
	44.05

	[bookmark: _Hlk66875831]KGE
	0.88
	0.91

	SDKGE
	0.00
	0.02

	2016 
	96.24
	38.72

	SDage
	0.01
	27.87

	KGE
	0.89
	0.53 †

	SDKGE
	0.00
	0.05 †

	2017
	83.12
	40.64

	SDage
	0.09
	43.02

	KGE
	0.95
	0.94

	SDKGE
	0.00
	0.02

	2018
	94.68
	46.03

	SDage
	0.17
	42.67

	KGE
	0.93
	0.93

	SDKGE
	0.00
	0.03

	2019
	288.51
	71.15

	SDage
	0.60
	62.73

	KGE
	0.89
	0.90

	SDKGE
	0.00
	0.01

	† Validation: performance of 2017-2019 years calibration for 2016




Figure legends
[bookmark: _Hlk65702160]Figure 1: Regional overview of the study area with elevation from a national 10 m grid Digital Elevation Model and sampling locations (B) and location within Costa Rica (A).

[bookmark: _Hlk65702489]Figure 2: The model concept used to simulate streamflow (Qsim) and deuterium compositions in three dynamic storages (Sup, Srip, SGW: upper, lower and groundwater) connecting water and tracer fluxes (Q) with calibrated additional mixing volumes (MVs) using a mass balance approach.

Figure 3: Local Meteoric Water Line of the Quebrada Grande study area and stable water isotope signatures of stream-, soil- and groundwater with fitting regression equations.

Figure 4: Gamma Model simulations of with a 90% confidence interval (blue line with grey band). Observed rainfall (black dots) and streamwater (red dots) deuterium (δ2H) vary with the seasonal impact of classified El Niño / La Niña events (Climate Prediction Center Internet Team, 2020), represented by the shaded background.

Figure 5: Pareto fronts of the retained best-fitting 500 parameter sets in the two-dimensional criteria space of discharge (KGE Q) and stream isotope KGE (KGE δ2H) for the complete calibration period and single calibration years.

Figure 6: Posterior parameter distributions of the retained 500 best parameter sets of the different TAM calibrations visualized as violin plots. The shape of the violin plots depicts the frequency of the final 500 retained parameter sets, whereas the red dots as the centre of a boxplot mark the medians of each parameter and calibration. The ordinate limits were set to the parameter interval for calibration presented in Table 2.

Figure 7: Tracer-aided Model simulation: (A) Model input data: rainfall rates (black bars) with precipitation deuterium compositions (red dots), (B) estimated base flow index, (C) the observed and simulated streamflow with 90% confidence interval, (D) deuterium flux simulations from the riparian storage, (E) simulated groundwater storage and measured soil water/ groundwater isotope composition as an independent model evaluation and (F) simulated and observed streamflow isotope compositions.

Figure 8: (A) Hydrograph separation in near-surface runoff and baseflow by the TAM. (B-D) Three events are emphasized showing the streamflow response and BFI to different extreme rainfall or drought periods. Note that discharge is plotted on a log scale.

Figure 9: (A) Simulated daily streamwater flux age (log-scale) time series with annual mean values plotted against (B) observed streamflow.

Figure S1: Monthly means of 4-years of hydro-meteorological data from 2016 to 2019: (A) Relative humidity, (B) solar irradiation, (C) evapotranspiration (ET), precipitation (bar charts), and stream and air temperature (line plots).
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