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Abstract- The optimal pinning node selection for multi-agent 

flocking is a NP-hard problem. The current pinning node selection 

strategies mainly depend on complex network node characteristics 

which are lack of rigorous mathematical proof for flocking control. 

This paper studies the effect and selection strategy of pinning node 

based on matrix eigenvalue theory. Firstly, the effect on the 

eigenvalue of Laplacian matrix by pinning node is analyzed. 

Secondly, the synchronization index which reflects topology 

uniformity of multi-agent system is proposed to exert maximum 

influence on the system synchronizability. A practicable optimal 

pinning node selection method based on synchronization index is 

proposed and analyzed by the eigenvalue perturbation method. 

Finally, the simulations show the rate of system convergence by 

using optimal synchronizability pinning node is better than the 

maximum degree centrality. 

 

Keywords-multi-agent, pinning control, flocking control ， 

synchronization index 

I. INTRODUCTION 

Bees swarm need only a few individuals( about 5%) to lead 

the whole group to fly to a new nest [1]. Inspired, some scholars 

have proposed pinning control method [2], [3]. Pinning control 

method is of great application value for unmanned aerial 

vehicles swarms and other multi-agent systems. In practical 

engineering system, for the limitations of communication, only 

a few nodes may be used as pinning nodes, even one pinning 

node in the extreme case. There are also some surveys, such as 

[4] and [5] reviewed the pinning control and pinning 

synchronization on complex dynamical networks, while [6]  

focus on pinning-based consensus and flocking control of 

mobile multi-agent networked systems. 

How to choose the best pinning node is a key research topic, 

and is currently an unsolved problem in recent years. Many 

scholars[7]–[11]  have studied on how to find the minimum 

amount of control input node-set to ensure the system is 

structurally controllable. On directed graphs, YY Liu provided 

a criterion to determine whether a set of driving nodes can make 

the system controllable, namely, "minimum input theorem"[12]. 

However, how to choose the minimum set of pinning nodes is 
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still an NP-hard problem[13]–[15]. There is no direct solution 

of the best or the minimal pinning node set[11]. 

The existing approximate solutions can be roughly divided 

into the following categories: 

1) Brute force search. Permutate and combine of all nodes in 

a set, and then select the best-performing set. This method can 

provide a globally optimal solution，but it is of the worst 

efficiency, especially for large networks. 

2) Heuristic search method. Select the pinning node 

according to some important features (degree, intermediate 

degree, compact center degree, swarming coefficient, and 

etc.). The advantage of this method is high computational 

efficiency, but the disadvantage is that the controllability and 

performance of the system cannot be proved directly [12]. E. 

N. Sanchez et al.used recurrent high order neural networks to 

identify system parameters[16].  F.-D. Kong and J.-P. 

Suninvestigated the synchronization problem of complex 

dynamical networks on time scales, but the problem how to 

determine the number of pinned nodes is still unsolved[17]. 

3) Evolutionary optimization algorithm. Evolutionary 

optimization algorithms select pinning node by calculating an 

objective function namely the synchronization criterion. As 

shown in literature [18], a Cat Swarm Optimization (CSO) 

method is used for spatial search. The downside is that the 

number of calculations also grows exponentially with the size 

of the network. Therefore, this method can only be applied to 

relatively small networks. 

4) The Laplacian matrix eigenvalue method. The eigenvalues 

of the Laplacian matrix are taken as the measure of 

controllability. For example, in literature [11], a centrality 

measurement method based on the sensitivity analysis of the 

Laplacian matrix is proposed to obtain the approximate solution 

of the optimal set. As merely one eigenvalue decomposition 

calculation on the Laplacian matrix is required, the 

computational efficiency is very high. 

In this paper, a simple flocking control strategy for second-

order multi-agent systems is proposed. The Lyapunov method 

is used to prove that the multi-agent swarm can realize stable 

and collision-free flocking motion. The influence of the 

dynamic performance of the system by adding a pinning node 
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is analyzed. It provides a theoretical basis for selecting the 

optimal control node. 

The main contributions of this paper are as follows: 

An optimal selection method of pinning node for flocking 

synchronizability convergence is proposed in this article. The 

smallest eigenvalue of dynamic matrix plays the dominant rule 

in system convergence. From this reason, the change range of 

the smallest eigenvalue after pinning node added is estimated 

by eigenvalue perturbation theory. So, the pinning node that has 

the greatest impact is selected to accelerate convergence.  

The remainder of this paper is organized as follows. In 

Section 2, some related work about flocking control and 

pinning nodes selection strategy are briefly introduced. In 

Section 3, model depiction and related mathematics 

preliminaries are introduced. In Section 4, the control protocol 

is proposed. In Section 5, the optimization index of topology 

uniformity and the effect of pinning node are analyzed. Some 

results are proposed which give us useful insight into the 

problem of pinning controls. In Section 6, some numerical 

examples of second-order multi-agent systems flocking are 

simulated to illustrate effectiveness of the proposed approach. 

Finally, we summarize the main ideas and conclusions in 

Section 7. 

II. RELATED WORK 

A. Pinning nodes Selection Based on Network Topology 

Characteristics 

Various centralities characterizing the structural 

characteristics of the network [19][20] can be used as an 

enlightening basis for the selection of pinning nodes, such as 

distribution degree, correlation degree, degree centrality, 

connectivity centrality, betweenness centrality, proximity 

centrality,  eigenvector centrality, swarming coefficient, and 

bridgeness of edges [21]. Zhou et al. [20] proposed the use of 

pseudo-leaders as pinning nodes, and Gao et al. [21] proposed 

the use of degree central nodes of connected subnets as pinning 

nodes, both of which achieved good results. Some studies have 

even pointed out that the failure or loss of some key nodes can 

lead to network paralysis or the loss of control ability [22]–[24]. 

But degree centrality is not always the best choice, when 

combined with specific network functions. Due to its sparsity, 

the network may have a large number of nodes with the 

maximum degree. Literature [21] did not conduct in-depth 

research on how to choose the pinning node in the case of the 

same degree centrality. One of the main tasks of the pinning 

node is to transfer the information of the virtual leader to other 

nodes. So Maksim et al. [25] proposed to use the important 

index obtained by k-shell decomposition to measure the 

propagation performance of nodes in the network. Some 

important improvements based on this method include mixing 

degree decomposition [26], k-shell decomposition based on the 

gravity point of view[27] and so on. 

B.  Analysis Method Based on Laplacian Matrix Spectrum 

Similarly, the spectrum of the Laplacian matrix contains 

information about the structural properties of the graph, 

including its connectivity (represented by inequalities) and the 

number of spanning trees (represented by identities). When 

edges are added or removed, the spectrum of the Laplacian 

matrix also varies with the structure of the graph. In particular, 

the value of 
2 directly reflects the robustness of graph 

connectivity, and even the convergence of multi-agent 

distributed collaborative control [28].There are several related 

studies. Such as E. Estrada et al. proposed a measure of sub-

graph centrality based on adjacency matrix spectrum[29]. A. M. 

Amani et al. proposed a spectral based measure of centrality to 

evaluate and rank the importance of nodes in pinning control[30] 

and introduced a measurement method to rank nodes according 

to the influence of the network synchronization by the removed 

nodes from the network[31].. T. Watanabe and N. Masuda 

proposed a perturbation strategy node deletion method to 

increase the spectral gap of the graph (i.e. the minimum 

eigenvalue of the second Laplacian matrix) by deleting nodes 

in a certain order to enhance the consistency and convergence 

performance of the network[32].  

Deleting a node from a complex network can be modeled as 

deleting the relevant rows and columns of the Laplacian matrix, 

as well as reducing the number of diagonal entries that represent 

other nodes connected to this node. For large scale networks, 

the removal of a single node is negligible. Therefore, the effect 

of removing node k is approximated by removing row k  and 

column k  of Laplacian matrix.   

III. DYNAMIC MODEL AND MATHEMATICS PRELIMINARY 

A. Multi-agent dynamic model 

Considering that N  agents work in n -dimensional 

Euclidean spaces, their dynamics equations can be written as: 

  

 1,...,
i i

i i

i N
=

=
=

q p

p u
  (1) 

Among them, , , n

i i i q p u are the position vector, velocity 

vector and acceleration vector of the agent respectively[33]. 

An undirected graph ( )tG composed of multiple agents at 

time t  consists of nodes and edges, where the set of nodes is 

represented by  1, ,m=V , and the set of edges is 

represented by ( ) ( ) ( ) , , it i j j t=   E V V . Let r be the 

perceived radius of the multi agents, then the neighborhood of 

agent i  is defined as:  

 ( )  , ,i i jt j r j j i= −   q q V‖ ‖   (2) 

Multi-agent networks can be represented by Laplacian 

matrix. The Laplacian matrix L is defined as 

 
1,

, where ,
m

ij ii ij ij ijm m
j i j

L L a L a


= 

 = = = −  L  (3) 

Where only if 
ij  , 1ija = , otherwise 0ija = ; L  

satisfies the following sum of squares: 

 ( ) ( )
21

|
2

i

T

m ij j i

j

a


 = −z L I z z z . (4) 
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In order to avoid collision between agents, the agents need to 

be no less than a safe distance 
sr  while no more than the 

perceived radius r , the expected distance of multi-agent 

system is defined as: 

 ( )2|| || , , ,i j sd i j r d r− =   q q E . (5) 

However, due to the interaction of attraction and repulsion 

between agents, it will be difficult to reach the ideal -lattices  

system[34] and eventually evolve into -lattices -like system 

as 

 
2 - + || - || ,( , )i jd d i j   + q q E .  (6) 

 
Fig. 1 (a) α-lattices system, (b) α-lattices-like system 

Olfati-saber [35] firstly proposed the basic framework of the 

flocking control algorithm, and constructed the flocking control 

algorithm with leader, without leader and in the obstacle 

environment respectively by using three agents. Olfati-saber 

method assumed that the location and speed information of the 

virtual leader was available to all members, which was 

obviously not practical in the actual practice. 

Subsequent work in this field has proved that when only a 

small number of nodes are informed of the status of the virtual 

leader, flocking control can also be achieved. The flocking 

control of the multi-agent can be realized by means of pinning 

control [36]. In this way, uninformed members can be driven 

by the informed members, so the multi-agent requires less 

communication costs. Pinning control is a kind of flocking 

control with virtual leader, which can achieve multi-agent 

synchronization as well as allows the community to evolve 

towards the given goal. Although [36] has shown that a subset 

of the nodes is enough to make the status of the virtual leader 

informed, but did not provide the method to select the pinning 

node nor the  rules of which nodes should be informed. 

B. Matrix properties 

Lemma 1: L is the Laplacian matrix of the connected graph,

B is the non-all-zero diagonal matrix ( )1 2, , , ndiag b b b=B ,

= +C L B , and C  will be the positively definite matrix. 

Proof: because ,L B  are semidefinite matrices 

for any non-zero column vector ,x y  

 0, 0T T xLx y yB ， (7) 

then for any non-zero column vector u  

 ( ) 0T+ u L B u , (8) 

then = +C L B is a semidefinite matrix 

where 0,k  H 0 . 

Given that C is a semi-positive matrix, it is proved by 

reduction to proof that C is a positive matrix. 

If C is not a positive matrix, then there exists some z 0 so 

that 0T =zCz , also because L  is Laplacian matrix of a 

connected graph.  

If and only if

1

1

1

k

 
 
 =
 
 
 

z , =0T
zLz , 

while ( )1 2, , , ndiag b b b=B , we have
 

 
1

= 0
n

T

i

i

k b
=

zBz  , (9) 

 ( ) 0T T= + zCz z L B z  , (10) 

which contradicts the assumption. 

Therefore, the conclusion has been proved that C  is a 

positive definite matrix. 

Corollary 1: 1, −
C C are M-matries. 

First   define the following matrices: 

 ( ) : 0 ( , 1,... ) ,N N ij N N ija a if i j i j N =  == Z A

denote the set of real square N N matrices whose off-

diagonal elements are all nonpositive.  

A nonsingular matrix A It is called M matrix[37] if A ∈ 

N NZ  and all the eigenvalues of A have positive real parts. By 

Lemma 1, we can get that C , 1−
C  are positive definite 

matrices, then 1, − C C
nM  

IV. CONTROL PROTOCOL DESIGN AND ANALYSIS 

A. Controller design 

Assume in time t  control input is: 

 ( ) ( ) ( ) ( )i i i it t h t t = +u f f   (11) 

i


f is used to do the separation, alignment and aggregation 

rules of flocking motion. Different from literature [35], in order 

to facilitate analysis and calculation, the complex potential 

energy function is rewritten, and the specific mathematical 

expression is: 

 

( ) ( ) ( )( )( )
( )

( ) ( )( )
( )

1

2

i

i

i ij j i

j t

ij j i

j t

t c a t t

c a t t

 







= − −

+ −





f q q r

p p
  (12) 

Where ( )j isign d= −r q q , we call it the desired distance 

control term. 
Remark 1:When the expected distance is 0d = , the 

equation (11) degenerates from the flocking problem to the 

second order consensus problem. Let's decompose the sign  

function according to coordinates. 

i


f receives the information of virtual leader, and the 

mathematical expression is: 

Where 
n

 p  is the velocity vector of the virtual leader at 

time t ; ( )ih t  is the parameter related to the pinning node 

 

       

(a)                 (b) 
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selection, and the mathematical expression of ( )ih t at time t is: 

( )
1, node  is pinning node

0, node  is NOT pinning node
i

i
h t

i


= 


 

( )1 2, , , ndiag h h h=H
 

Define an augmented Laplacian matrix 

 k= +A L H   (13) 

The set of all agent nodes is V . Take the non-empty subset 

of V  as 
b V V ,  : | =1b ii h= V V . In different literature, 

bV  

is called control node, driving node[12], [38], pinning node[39], 

[40], leader[34]. The remaining nodes \ bV V  are called 

follower. 

Assumption 1:The initial status of the undirected graph 

( )0G is connected. 

Remark 2: If the initial state is not connected and divided 

into n  subnets, then each subnet needs at least one pinning 

point, the same conclusion can be obtained. 

Assumption 2: The initial state has no collisions. 

Assumption 3: The speed of virtual leader is fixed. 

Theorem 1: Considering the equation of motion as shown in 

formula (1), and the control input as shown in formula (6), then 

take any one or more nodes as the pinning node and there are 

following conclusions: 

1) The relative positions of all agents eventually approach to 

lattices; 

2) The speeds of all agents tend to virtual pilot speed ( )tp  

(an improvement on the proof of speed consistency in literature 

[41]); 

3) There will be no collisions between agents; 

4) The pinning node’s position tends to the virtual leader 

position ( )tq (An extension of the conclusion on the location 

of literature [42]). 

Proof: Assumption that the tracking error between agent and 

virtual leader is ( ) ( ) ( )i it t t= −q q q , ( ) ( ) ( )i it t t= −p p p . 

The distance between agents is . ( ) ( ) ( )ij i jt t t= −q q q . 

The total energy of the multi-agent ( )Q t  is composed of the 

potential energy and the kinetic energy 

 ( ) ( ) ( ) ( )( )
1

1

2

m
T

i i i

i

Q t U t t t
=

= + p p .  (14) 

The potential energy function is 

 1

1,

( ) ( )
n

T

i i i i i

j j i

U t t h c
= 

=  + q q ,  (15) 

( )i t  is expressed as 

 ( ) ( )( ) ( )( )
( )

1

2
i

T

i ij ij

j t

t t t


 = − − q r q r .  (16) 

When there is no overlap between agents, ( ) ( )0 0ji q q  and 

there is 

 ( )( )
( )

( )
i

i i

ij i

j ti ij

t t


 
= = −

 
 q r p

q q
 , (17) 

 ( )( )
( )

( )
i

i ij i

j t

t t


 = − q r p  . (18) 

The energy equation can be rewritten as 

 ( ) ( ) ( ) ( )( )
1

1

2

T

i i

i

n

iQ t U t t t
=

= + p p  . (19) 

The derivative of ( )Q t  is 

 ( ) ( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )( ) ( )

2

2

1

2 2 .

T

m

m
T

i i i

i

T

m

Q t c t t t

c h t t t

t c t c t t





 

=

− 

−

= − + 

=



p L I p

p p

p L pH I

  (20) 

L  is a Laplacian matrix and also is a semidefinite matrix. 

1[ ]ndiag h h=H  is a definite matrix. From lemma 1 

( ) ( )2 2c t c t +L H is a positive matrix. Then 

( ) ( )( )( )2 2 mc t c t + HL I is a positive matrix. So at time t

0Q  ,and the total energy of the system continues to decay. 

 
0 max( )Q t Q Q    (21) 

From the definition of the potential function ( )U q ,

max

1

(|| || ) (0)
N

i

i

U r Q Q
=

  , at time t , the distance between two 

adjacent nodes that are neighbors should be less than r , that is, 

the existing edge in the network will not break. Assuming that 

after t  time, m new edges are added into the network, then 

 0 max( ) (|| || )Q t t Q mU r Q+ = + −    (22) 

This indicates that over time, the existing edges in the system 

will have no possibility of disconnection, while the initial 

network ( )0G  is connected, so the system will always remain 

connected. 

Next we need to answer the following two questions[38]: 

Question 1: Will the controllability be achieved by choosing 

a set of nodes? This is a problem of controllability. 

Question 2: How to select a minimum number of nodes 

collection, and make the system controllable? That is the 

problem of minimum set. 

The first question could be solved by analyzing the spectrum 

of the Laplacian matrix with structural characteristics of the 

graph, in particular
2 . Its size directly reflects the convergence 

of graph connectivity, robustness and even multi-agent 

distributed collaborative control [28]. With pinning control, the 

Laplacian matrix L is further transformed into the augmented 

Laplacian matrix A, as shown in (13). By estimating the 

approximate range of the eigenvalues of A and the variation 

trend of the eigenvalues caused by the pinning control, we can 

preliminarily obtain  the convergence effect of pinning control 

on the system. 

Theorem 2[43]: The controllability of a strongly-connected 

network can be increased by either adding a pinning node or 

increasing one of the pinning gains. 

Remark 3: Z. Cheng et al. [43] presents a network control 

strategy based on left Perron vector, but it requires iterative 
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calculation of eigenvalues and eigenvectors of k+L H . It is 

difficult to solve the eigenvalues in practical engineering due to 

the large amount of computation. The method of eigenvalue 

perturbation can be used to approximate the optimal pinning 

point. 

Remark 4: With regard to the first-order consistency 

problem, when no pinning control is applied, since the 

minimum  eigenvalue of Laplician is 0, the final result of 

convergence in multi-agent equilibrium is not necessarily 

0,depending on the average value of the initial state of multi-

agent [44], and the second minimum  eigenvalue determines the 

convergence rate of consistency. When pinning control is 

applied, as the minimum eigenvalue of the system is less than 

zero, the equilibrium state finally converges to the state of the 

pinning point. 

V. SELECTION OF PINING NODE 

A. Synchronization index  

A Synchronizability Index R is defined in [45]  

 
2

NR



= , (23) 

R is the ratio of the eigenvalues of the Laplacian matrix, the 

maximum eigenvalue
N divided by the second smallest 

eigenvalue
2 . The smaller the eigenvalue R  is, the better the 

network synchronization performance will be. 

Remark 5: The synchronization index of Laplacian matrix is 

an important indicator to represent the synchronization of the 

network. The smaller the synchronization index is, the better 

the synchronization performance of the network will be. The 

smaller the synchronization index is, the closer the ratio of the 

maximum eigenvalue of Laplacian matrix to the subminimum 

eigenvalue is to 1, which indicates that all the eigenvalues of 

Laplacian matrix are almost equal. 

However, when the connection between multi-agent systems 

is not completely connected, it leads to 
2 0 =  and R  

nonsense.  

So we define a new Synchronizability Index R  

 m

N

R



= , (24) 

Where 
m  is the minimum non-zero eigenvalue. It only 

requires the solution of two eigenvalues of Laplacian matrix, 

which is easy to calculate[11].  

Remark 6：The larger the synchronization index is, the 

closer the ratio of the maximum eigenvalue of Laplacian matrix 

to the subminimum eigenvalue is to 1, which indicates that all 

the eigenvalues of Laplacian matrix are almost equal. 

Remark 7 ： The synchronization index reflects the 

uniformity of network topology connection, and for the 

-lattices  system, the synchronization index also reflects the 

uniformity of agent in spatial distribution. 

Remark 8：The synchronization index of Laplacian matrix 

is an important index to represent the synchronization of the 

network. The smaller the synchronization index is, the better 

the synchronization performance of the network will be. 

Remark 9：Conclusion from Master Stability Function 

analysis[46]. With the stability functions for synchronized 

coupled systems, the spread of Laplacian eigenvalues can be 

used as a synchronizability index. So a simple measure for the 

spread of eigenvalues is the ratio of the largest to the smallest 

[47][48]. 

B. Perturbation analysis 

The node with largest value of R  is of stronger effect on 

network controllability[49]. Further, the change of R  caused 

by the pinning node is expressed as: 

2

N m m N

N

R
   



 − 
 = .                 (25) 

It's worth noting that since 
N  is much larger than 

m  in the 

initial phase, R  is much more affected by m  than
n . 

Therefore, when adding a pinning node, if the effect on m  is 

greatest, the effect on R  will generally be greatest. 

From the eigenvalue perturbation theory[50] , changes of the 

eigenvalue 
n  caused by perturbation of the parameter p  

is[30]: 

 
( )

, 1,2, ,n

Tn

n

d d p
N

dp dp
n


= = 

L
y x , (26) 

where ,n n

T
y x are the normalized left and right eigenvectors 

of L respectively, and 1n n

T =y x , and node i is selected as the 

pinning node. 

When the pinning control is applied, k= −L L H . So the 

minimum eigenvalue of the new matrix L  is 
1 0  according 

to the previous analysis. 

The perturbation of R  by pinning node is approximate to: 

 
( ) ( )

( )

1 1

2

1

i i i i

N N

ii N

Ny x y xdR

dl

 



−
= ,  (27) 

where i represents the i th element of the vector. Since the 

minimum eigenvalue of L is
1 0 = , the corresponding 

eigenvector is 
1

1
N

N
=x 1 . 

For an undirected graph with 
n n=y x , it can be written as: 

 ( )
21 1 i

ii N

N

dR
R x

dl N
= −

 
 
 

.  (28) 

Define Controllability Centrality[51] ( )i as 

 ( )
2

( ) , 1,2, ,i

Ni x i N = =  .  (29) 

Because ( )
2

ik

ii

N

d

dl


= − x  and the minimum eigenvalue of L

is 
1 0 = , the corresponding eigenvector is 

1

1
N

N
=x 1  . 

Remark 10: We assume that the disturbance 
1k  caused by 

the control gain is consistent 
1k > 0 on all diagonal elements of 

matrix L . So we will get the theoretical optimal result of the 
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theory, when the perturbations are much smaller than the 

diagonal terms of the original Laplacian matrix L , namely the 

perturbation is far more less than the minimum degree of the 

network. For larger disturbance or small degree, the precision 

of the perturbation method may decrease. 

VI. SIMULATION 

In this section, the motion of multi-agent based on constant 

speed virtual leader in two-dimensional space plane is studied. 

Assuming the number of agents is n=35, and the initial state of 

all agents is shown in Figure 1, where the red arrow represents 

the speed of the agent, the black circle beside it indicates that 

the agent is a pinning node, and the virtual leader is represented 

by a five-pointed star. Let r=10 be the perception radius of the 

agent, and d=2 be the radius of the target -lattices structure. 

The virtual leader's initial position is (25,25) , and the speed is 

constant (0.5,0.5) . 

Analyze the multi-agent system as a whole, define the 

location and velocity of the multi-agent center（CoM，Center 

of Mass） as the average of the locations and velocities of all 

agents: 

 
1

1

1

1

i

i

m

i

m

i

m

m

=

=


=



 =






q q

p p

.  (30) 

The definition of virtual leader and CoM tracking error is: 

 
r

r

= −


= −

q q q

p p p
.  (31) 

The total velocity tracking error of the multi-agent system is 

defined as: 

 
2

1

N

r

i

iErr
=

= − q q .  (32) 

 
Figure 1 Agent initial state 

 

In the Figure 1, each point represents an agent, and the angle 

of the arrow represents the direction of the agent, the length of 

the arrow represents velocity magnitude. The virtual leader is 

represented by a pentagram. 

The following is a comparison of flocking control based on 

optimal, degree centrality maximization and degree centrality 

minimization. 

A. Simulation 1 

Selection based on optimal pinning point. 

The  Figure 2 shows the trajectories of all the agents. The 

four graphs in Figure 3 respectively show the positions and 

motions of the agents at different times. Figure 4 and Figure 5 

show velocity convergence error curves of agents on x and y 

axis. Figure 6 shows the total velocity error convergence of 

multi-agent system according to the calculation formula (32). 

 
Figure 2  Trajectories of agents 

 
Figure 3 The status of agents at different times 
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Figure 4 Velocity convergence error curves of agents on x axis 

 
Figure 5 Velocity convergence error curves of multi-agent on y axis 

 
Figure 6 The total velocity error convergence of multi-agent system 

B. Simulation 2 

Based on degree centrality of the maximum point of pinning 

selection. 

The Figure 7 shows the trajectories of all the agents. The four 

graphs in Figure 8 respectively show the positions and motions 

of the agents at different times. Figure 9 and Figure 10  show 

velocity convergence error curves of agents on x and y axis. 

Figure 11 shows the total velocity error convergence of multi-

agent system according to the calculation formula (32). 

 
Figure 7 Trajectories of agents 

 
Figure 8 The status of agents at different times 

 
Figure 9 Velocity convergence error curves of agents on x axis 
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Figure 10 Velocity convergence error curves of agents on y axis 

 
Figure 11 The total velocity error convergence of multi-agent system 

C. Simulation 3 

Based on degree centrality of the minimum point of pinning 

selection. 

The  Figure 12 shows the trajectories of all the agents. The 

four graphs in Figure 13 respectively show the positions and 

motions of the agents at different times. Figure 14 and Figure 

15 show velocity convergence error curves of agents on x and 

y axis. Figure 16 shows the total velocity error convergence of 

multi-agent system according to the calculation formula (32). 

 
Figure 12 Trajectories of agents 

 
Figure 13 Multi-agent status at different time 

 
Figure 14 Velocity convergence error curves of agents on x axis 
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Figure 15 Velocity convergence error curves of agents on y axis  

 
Figure 16 The total velocity error convergence of multi-agent system 

 
Figure 17 Influence of different pinning points on velocity consistency 

error  

D. Experiment analysis 

From three groups of simulation, the proposed algorithm can 

achieve effective flocking control. The speed of all agents is 

basically the same in a short time, and gradually approaches the 

speed of the virtual leader. The distance between agents 

gradually approaches the ideal distance over time, and is always 

greater than 0, which verifies the correctness of the controller 

design. 

It can be seen from Figure 17 that the selection of different 

pinning points has a great influence on the formation speed of 

multi-agent flocking. The convergence rate of velocity 

consistency error based on the optimal pinning point is the 

fastest, the pinning point of maximum degree centrality is the 

second, and the pinning point of minimum degree centrality is 

the slowest. It is indicated that the formation speed of agent 

flocking is directly related to degree centrality. 

After realizing the flocking movement, the velocity tracking 

error of the agents and the virtual leader have no direct relation 

with the choice of the pinning point. 

VII. CONCLUSION 

We have proposed a simple flocking control strategy for 

second-order multi-agent systems by which the control system 

can realize stable and collision-free flocking motion. The 

influence of the dynamic performance of the system by adding 

a pinning node was analyzed. The controllability of a strongly-

connected network can be increased by either adding a pinning 

node or increasing one of the pinning gains. All the eigenvalues 

of the new system are greater than zero. We have also analyzed 

the synchronizability index pinning point selection strategies. 

The synchronization index of Laplacian matrix is an important 

index to represent the synchronization of the network. The 

smaller the synchronization index is, the better the 

synchronization performance of the network will be. The 

optimal pinning node has also been analyzed by the eigenvalue 

perturbation method. The simulations show the pinning point 

selection based on the synchronization index is the best, and the 

convergence rate of velocity consistency error is faster than the 

maximum degree centrality. 
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