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Abstract

In this work, we analyse the controllability for certain classes of impulsive integro - differential equa-
tions(IIDE) of fractional order via Atangana Baleanu derivative involving finite delay with initial and
nonlocal conditions using Banach fixed point theorem.
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1. Introduction

Fractional differential equations(FDE) have attracted many researchers in applied mathematics.
It has been treated as another model to nonlinear differential equations [11]. FDE’s have been used for
several models in engineering and also to progress the accuracy of models in natural sciences [29]. The
theory of FDE’s been widely discussed by Delbosco and Rodino [14], Diethelm [15], Kilbas et al [20],
Lakshmikantham et al [22, 23, 24, 25], Michalski [26], Miller and Ross [27], Podlubny [30] and Tarasov
[36].

Controllability is the basic concept in control theory initiated by Kalman in 1960.It has been signif-
icant area for several authors in applied problems. Impulsive differential equations(IDE) is a differen-
tial equations with impulse effect and its first paper is related to A. D. Mishkis and V. D. Mil’man in
1960 and 1963 [28]. IDE’s been grown rapidly during the last decades [5, 6, 7, 32, 33]. Both IDE and
FDE have gained the attention among the researchers due to its vast applications in various field of sci-
ence. These combination may yield an object of investigation, viz., impulsive FDEs made several papers
[8, 9, 10, 11, 13, 16, 17, 21, 37].

The Atangana - Baleanu (AB) derivative [4] is an commonly used fractional derivative with no singu-
larities. The Caputo version of AB derivative(ABC) shows more efficient and useful in enormous works.
Many authors have covers their theory in the sense of AB or ABC derivatives to comprehensive their work
[1, 2, 3, 18, 31, 34].

We analyse the controllability for IIDE of fractional order with finite delay via ABC derivative in our
present work,
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ABCDλ z(v) = Az(v)+Bu(v)+φ

(
v,zv,

∫ v

0
P(v,s,zs)ds

)
,v ∈ I= [0,T], (1.1)

∆z(v)|v=vk = Ik(z(vk)), k = 1,2, ..., l, (1.2)
z(v) = ψ(v) ∈B, v ∈ [−η ,0], (1.3)

where ABCDλ is the ABC derivative of fractional order λ . A : D(A) ⊂ M → M is the infinitesi-
mal generator of an λ− resolvent family (Sλ (v))v≥0, (Tλ (v))v≥0 is defined on a complex Banach space
(M,‖ · ‖), and u(·) ∈ L2([0,T],U) is the control, where U is a Banach space. B : U→M is linear and
bounded. Let B = {P : [−η ,0]→ M, P is continuous every where except for a finite number of s
at which P(s−),P(s+) exist and P(s−) = P(s)},φ ∈ C(I× S× S,S),P : I× I×D→ S is contin-
uous on I× I,Ik ∈ C(U,U),∆z(v)|v=vk = z(v+k )− z(v−k ),0 = v0 < v1 < v2 < .. . < vm < vm+1 = T for
k = 1,2, ...l, and z(v−k ),z(v

+
k ) are the left - hand and right - hand limits of z(t) at v = vk. zv ∈B satisfies

zv(δ ) = z(v+δ ), δ ∈ [−η ,0], zv(·) have time from v−η to v.
To the best of our knowledge, the study of the controllability for certain class of the form (1.1)−(1.3),

is an untreated content and it motivates our work.
The structure of this article as follows: In section 2, we present some preliminary results. Section 3

establishes the result for a class of Fractional Impulsive Integro-differential Equation(FIIE) with initial
conditions, while the fourth section covers the respective results of the system with initial condition.
Section 5 establishes the result for a class of FIIE with nonlocal condition and section 6 contains the
respective results of the system with non local condition.

2. Preliminaries

Let (I,‖ · ‖) and (U,‖ · ‖) be two Banach spaces. L (I,U) denotes the space of bounded linear operators
from J into U with uniform operator topology, and C(I,U) indicates the Banach space of all continuous
functions from I to U .
The norm of P ∈B is

||P||B = sup{||P(ρ)|| : ρ ∈ [−η ,0]},

B1 = PC(I+,U) = {S : I+ → U : z(·) is continuous except for a finite number of point tk at which
z(v+k ),z(v

−
k ) exist and z(v−k ) = z(vk),k = 1, . . . , l},

B1 with ‖z‖B∞
= sup{‖z(v)‖ : v ∈ [−η ,T ]} is a Banach space, for any v ∈ J and z ∈B1, we have zv ∈B.

In this part, we give some basic definition of the fractional calculus.

Definition 2.1. [18, 30] For λ > 0, the integral

( 0Iλ z)(a) =
1

Γ(λ )

t∫
0

(a− s)λ−1z(s)ds, (2.1)

is defined as the R-L integral of order λ .

Definition 2.2. [18, 30] For 0 < λ < 1, the fractional derivative

( 0Dλ z)(a) =
1

Γ(1−λ )

d
dt

t∫
0

(a− s)−λ z(s)ds, (2.2)

is defined as the left R-L derivative of order λ .
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Definition 2.3. [18, 30] For 0 < λ < 1, the fractional derivative

( 0Dλ z)(a) =
1

Γ(λ )

t∫
0

(a− s)λ−1z′(s)ds, (2.3)

is defined as the Caputo derivative of order λ .

Definition 2.4. [4] For P ∈ H ′(c,d), and 0≤ λ ≤ 1

( ABC
0 Dλ )(P(a)) =

B(λ )
1−λ

t∫
0

P ′(s)Eλ

[
(a− s)λ

λ −1

]
ds, (2.4)

where E(λ ) is the Mittag-Leffler function, B(λ ) is a normalizing positive function 3 B(0) = B(1) = 1 is
defined as the fractional AB derivative of order λ in the sense of Caputo .

Definition 2.5. [4] For 0≤ λ ≤ 1 and P ∈ H ′(c,d),

( ABR
0 Dλ )(P(a)) =

B(λ )
1−λ

d
da

a∫
0

P(s)Eλ

[
(a− z)δ

λ −1

]
ds, (2.5)

is defined as the AB derivative in the sense Riemann Liouville .

The AB integral is [19, 27, 35]

( AB
0 Iλ z)(a) =

1−λ

B(λ )
z(a)+

λ

B(λ )
( 0Iλ z)(a),

where 0Iλ is defined in (2.1).

3. Controllability result

Definition 3.1. A function z(·) ∈B1 is said to be solution of system (1.1)− (1.3) with restriction of z(·)
to the interval K, k = 1,2, ..., l. is continuous and satisfies the following:

z(v) =



φ(v), v ∈ [−η ,0]
G Tλ (v)φ(0)+

kG (1−λ )
B(P)Γλ

∫ v
vk
(v− s)λ−1[Bua(s)+φ(v,zv,

∫ v
0 ψ(v,s,zs)ds)]ds

+ λG 2

B(λ )

∫ v
vk

Sp(v− s)[Bua(s)+φ(v,av,
∫ v

0 ψ(v,s,as)ds)]ds v ∈ [0,v1]

G Tλ (v− vk)(z(v−k ))+ Ik(z(v−k ))+
kG (1−λ )
B(P)Γλ

∫ v
vk
(v− s)λ−1[Buz(s)+

φ(v,zv,
∫ v

0 ψ(v,s,zs)ds)]ds+ λG 2

B(λ )

∫ v
vk

Sp(v− s)[Buz(s)

+φ(v,zv,
∫ v

0 ψ(v,s,zs)ds)]ds v ∈ (vk,vk+1], k=1,2,...,l

(3.1)

Definition 3.2. If for every initial function ψ ∈B1 and z1 ∈ S, ∃ a control u ∈ L2(I,U) 3 z(·) of (1.1)−
(1.3) satisfies z(T) = z1, then the system (1.1)− (1.3) is said to be controllable on I.

3



4. Main Result:

We analyse the controllability of mild solutions-type (3.1) for the problem (1.1)−(1.3).If A∈Aλ (β0,ω0)
then ||Tλ (v)|| ≤Mewv and ||Sλ (v)|| ≤ C ewv(1+ vλ−1), for every v > 0, w > w0. Hence, τ̃ = sup

v≥0
||Tλ (v)||,

τ̃1 = sup
v≥0

C ewv(1+ vλ−1). So we get ||Tλ (v)|| ≤ τ̃; ||Sλ (v)|| ≤ vλ−1τ̃1.

Let us assume that,

H1 Let φ : J×S×S→ S be a continuous function and ∃Mφ > 0 for which:

||φ(v,u,s)|| ≤Mφ , f or v ∈ J, u,s ∈ S

.
H2 W : L2(J,U)→ S, the linear operator defined by

Wu =
kG (1−λ )

B(P)Γλ

∫ t

tk
(T −S)λ−1Bu(s)ds+

λG 2

B(λ )

∫ t

tk
Sp(T −S)Buz(s)ds, k = 0,1, ..., l

admits W−1 : S→ L2(J,U)/ker(W), W−1 is bounded and ∃ τ̃ > 0 and τ̃1 > 0 3 ||B|| ≤ τ̃ and
||W−1|| ≤ τ̃1.

H3 Fk ∈C(S,S), ∃ ω > 0 such that ||Fk(a)||< ω for every a ∈ S

H4 φ : J×D×S→ S is continuous and ∃ a function G ∈ L′(J,R+) 3∣∣∣∣∣∣φ(v,av,
∫ v

0
P(v,s,as)ds

)
−φ

(
v,bv,

∫ v

0
P(v,s,bs)ds

)∣∣∣∣∣∣≤G
[
||a−b||

+
∣∣∣∣∣∣∫ v

0
[P(v,s,as)−P(v,s,bs)]ds

∣∣∣∣∣∣]
for a,b ∈ PC.

H5 P : J×J×D→ S is continuous and ∃ τ1 > 0 3 for every (t,s) ∈ J× J,∣∣∣∣∣∣∫ t

0
[P(v,s,as)−P(v,s,bs)]ds

∣∣∣∣∣∣
S
≤ τ1||a−b||PC.

H6 The function Ik : S→ S are continuous and ∃ λk > 0 such that

||Ik(a)− Ik(b)||S ≤ λk||a−b||,a,b ∈ S, k = 1,2, . . . , l

H7 P : J×J×D→ S is continuous and ∃ τ1 > 0 3 for all (v,s) ∈ J×J∣∣∣∣∣∣∫ v

0
[P(v,s,as)−P(v,s,bs)]ds

∣∣∣∣∣∣
S
≤ τ1||a−b||PC.

H8 Let us assume that the value of

max
1≤i≤τ

[v2−α
τ̃T (τ̃λk + τ1 +1)+ τ̃S(τ̃λk +L(τ1 +1))]< 1

for our result.
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Consider the mild solution as

z(v) = G Tλ (v− vk)[z(v−k )+ Ikz(v−k )]+
kG (1−λ )

B(P)Γλ

∫ v

vk

(v− s)λ−1
[
Buz(s)

+φ

(
v,zv,

∫ v

0
P(v,s,zs)ds

)]
ds+

λG 2

B(λ )

∫ v

vk

Sp(v− s)
[
Buz(s)

+φ

(
v,zv,

∫ v

0
P(v,s,zs)ds

)]
ds,v ∈ (vk,vk+1];k = 1,2, . . . , l.

The linear operator corresponding to control term u is

Wu =
kG (1−λ )

B(λ )Γλ

∫ v

vk

(v− s)λ−1Buz(s)ds+
λG 2

B(λ )

∫ v

vk

Sλ (v− s)Buz(s)ds,v ∈ (vk,vk+1].

Transfer the system from it intial state to final state u→ vk+1

Wu =
kG (1−λ )

B(λ )Γλ

∫ vk+1

vk

(v− s)λ−1Buz(s)ds+
λG 2

B(λ )

∫ vk+1

vk

Sλ (v− s)Buz(s)ds.

Now in solution, the corresponding term is replaced by Wu

z(v) = G Tλ (v− vk)[z(v−k )+ Ik(z(v−k ))]+Wu

+
kG (1−λ )

B(P)Γλ

∫ v

vk

(v− s)λ−1
φ

(
v,zv,

∫ v

0
P(v,s,zs)ds

)
ds

+
λG 2

B(λ )

∫ v

vk

Sp(v− s)φ
(

v,zv,
∫ v

0
P(v,s,zs)ds

)
ds,v ∈ (vk,vk+1].

The control is defined by

u(v) =W−1
[
z1−G Tλ (v− vk)[z(v−k )+ Ik(z(v−k ))]

− kG (1−λ )

B(λ )Γλ

∫ v

vk

(v− s)λ−1
φ

(
v,zv,

∫ v

0
P(v,s,zs)ds

)
ds

− λG 2

B(λ )

∫ v

vk

Sp(v− s)φ
(

v,zv,
∫ v

0
P(v,s,zs)ds

)]
ds, v ∈ (vk,vk+1].

The solution of the system (1.1)− (1.3) is (3.1)
We define the operator N : PC([−η ,T],S)→ PC([−η ,T],S) by

N(z(v)) =



ψ(v), v ∈ [−η ,0]
G Tλ (v)ψ(0)+ kG (1−λ )

B(P)Γλ

∫ v
0 (v− s)λ−1[Buz(s)+φ(v,zv,

∫ v
0 P(v,s,zs)ds)]ds

+ λG 2

B(λ )

∫ v
0 Sp(v− s)[Buz(s)+φ(v,zv,

∫ v
0 P(v,s,zs)ds)]ds, v ∈ [0,v1]

G Tλ (v− vk)(z(v−k )+ Ik(z(v−k )+
kG (1−λ )
B(P)Γλ

∫ v
vk
(v− s)λ−1[Buz(s)

+φ(v,zv,
∫ v

0 P(v,s,zs)ds)]ds+ λG 2

B(λ )

∫ v
vk

Sp(v− s)[Buz(s)

+φ(v,zv,
∫ v

0 P(v,s,zs)ds)]ds, v ∈ (vk,vk+1], k = 1, ..., l.
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Note that N is well defined on PC ([−η ,T],S). Let us take v ∈ (0,v1] & a,b ∈ PC([−η ,T],S)

||N(a(v))−N(b(v))|| ≤
∣∣∣∣∣∣G Tλ (v)ψ(0)+

kG (1−λ )

B(P)Γλ

∫ v

0
(v− s)λ−1

[
Bua(s)

+φ

(
v,av,

∫ v

0
P(v,s,as)ds

)]
ds

+
λG 2

B(λ )

∫ v

0
Sp(v− s)

[
Bua(s)

+φ

(
v,av,

∫ v

0
P(v,s,as)ds

)]
ds−G Tλ (v)ψ(0)

− kG (1−λ )

B(P)Γλ

∫ v

0
(v− s)λ−1

[
Bub(s)+φ

(
v,bv,

∫ v

0
P(v,s,bs)ds

)]
ds

− λG 2

B(λ )

∫ v

0
Sp(v− s)

[
Bub(s)+φ

(
v,bv,

∫ v

0
P(v,s,bs)ds

)]
ds
∣∣∣∣∣∣

≤
∣∣∣∣∣∣kG (1−λ )

B(λ )Γλ

[∫ v

0
(v− s)λ−1B[ua(s)−ub(s)]ds

+
∫ v

0
(v− s)λ−1

[
φ

(
v,av,

∫ v

0
P(v,s,as)ds

)
−φ

(
v,bv,

∫ v

0
P(v,s,bs)ds

)]
ds]+

λG 2

B(λ )

[∫ v

0
Sλ (v− s)B[ua(s)−ub(s)]ds

+
∫ v

0
Sλ (v− s)

[
φ

(
v,av,

∫ v

0
P(v,s,as)ds

)
−φ

(
v,bv,

∫ v

0
P(v,s,bs)ds

)]
ds
]∣∣∣∣∣∣

≤ v1−α
τ̃T τ̃λk||a−b||Sv+ v1−α

τ̃T L
[
||a−b||

+
∣∣∣∣∣∣∫ v

0
P(v,s,as)ds−

∫ v

0
P(v,s,bs)ds

∣∣∣∣∣∣]v+ τ̃sτ̃λk||a−b||Sv

+ τ̃sL
[
||a−b||+

∣∣∣∣∣∣∫ v

0
P(v,s,as)ds−

∫ v

0
P(v,s,bs)ds

∣∣∣∣∣∣]v
≤ v1−α

τ̃T τ̃λk|a−b||Sv+ v1−α
τ̃T L
[
||a−b||+ τ1||a−b||PC

]
v

+ τ̃Sτ̃λk||a−b||Sv+ τ̃SL
[
||a−b||+ τ1||a−b||PC]v

≤ v2−α
τ̃T τ̃λk||a−b||PCv+ v1−α

τ̃T

[
||a−b||PC + τ1||a−b||PC

]
v

+ τ̃Sτ̃λk||a−b||PC + τ̃SL
[
||a−b||PC + τ1||a−b||PC

]
v

≤
(

v2−α
τ̃T τ̃λk + v1−α+1

τ̃T + v1−α+1
τ̃T τ1

)
||a−b||PC

+
(

τ̃Sτ̃λk + τ̃SL(τ1 +1)
)
||a−b||PC

≤ v2−α

(
τ̃T τ̃λk + τ̃T + τ̃T τ1

)
||a−b||PC

+ τ̃S

(
τ̃λk +L(τ1 +1)

)
||a−b||PC

≤ v2−α
τ̃T

(
τ̃λk + τ1 +1

)
||a−b||PC + τ̃S

(
τ̃λk +L(τ1 +1)

)
]||a−b||PC

≤
[
v2−α

τ̃T

(
τ̃λk + τ1 +1

)
+ τ̃S

(
τ̃λk +L(τ1 +1)

)]
||a−b||PC

||Na(v)−Nb(v)|| ≤ ||a−b||PC.
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holds for v ∈ (0,v1), v ∈ (v1,v2], v ∈ (vi,vi+1] & v ∈ (vi+1,T ]. Thus for all v ∈ [0,T], we have,

||Na(v)−Nb(v)||PC ≤ max
1≤i≤τ

[v2−α
τ̃T (τ̃λk + τ1 +1)+ τ̃S(τ̃λk +L(τ1 +1))]||a−b||PC.

Since
max

1≤i≤τ
[v2−α

τ̃T (τ̃λk + τ1 +1)+ τ̃S(τ̃λk +L(τ1 +1))]< 1

Thus N is a Contraction map.
∴ N has a unique fixed point by Banach contraction principle.
This completes the proof.

5. Nonlocal controllability result

Here, we investigate the controllability system with a nonlocal condition

z(0)+P(z) = z0 (5.1)

where P : PC(J,S)→ S is a given function. Nonlocal conditions were initiated by Byszewski and Laksh-
mikantham when they works on the existence and uniqueness of mild and classical solutions of nonlocal
Cauchy problems [12]. As remarked by them, the nonlocal condition is better applicable than the initial
condition z(0) = z0.

For example,

P(z) =
n

∑
i=1

ciz(vi),

where ci(i = 1,2, . . . , l) are constants and 0 < v1 < v2 < .. . < vl < b.

Definition 5.1. A function z(·) ∈B1 is said to be solution of system (1.1)− (1.2) with (5.1) if the impul-
sive condition ∆z(v)|v=v−k

= Ik(z(v−k )), k = 1,2, .., l. is verified the restriction of z(·) to K, k = 1,2, ..., l is
continuous and satisfies the following :

z(v) =



ψ(v), v ∈ [−η ,0]

G Tλ (v)(ψ0−P(ψ))+ kG (1−λ )
B(P)Γλ

∫ v
vk
(v− s)λ−1

[
Buz(s)+φ

(
v,zv,

∫ v
0 P(v,s,zs)ds

)]
ds

+ λG 2

B(λ )

∫ v
vk

Sp(v− s)
[

Buz(s)+φ

(
v,zv,

∫ v
0 P(v,s,zs)ds

)]
ds, v ∈ [0,v1]

G Tλ (v− vk)(z(v−k ))+ Ik(z(v−k ))+
kG (1−λ )
B(P)Γλ

∫ v
vk
(v− s)λ−1

[
Buz(s)+

φ

(
v,zv,

∫ v
0 P(v,s,zs)ds

)]
ds+ λG 2

B(λ )

∫ v
vk

Sp(v− s)
[

Buz(s)

+φ

(
v,zv,

∫ v
0 P(v,s,zs

)
ds)
]

ds v ∈ [vk,vk+1],

k = 1,2, ..., l.

(5.2)

Definition 5.2. If for every initial function ψ ∈B1 and z0,z1 ∈ S, ∃ a control u ∈ L2(I,U) such that z(·)
of (1.1)− (1.2) with (5.1) satisfies z(0)+P(z) = z0 and z(T) = z1, then the system (1.1)− (1.2) with
(5.1) is said to be controllable on I.
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6. Main Result:

Let us assume that the Hypothesis (H1) to (H8),

The solution of the system (1.1)− (1.2) with (5.1) is

z(v) =



ψ(v), v ∈ [−η ,0]

G Tλ (v)(ψ0−P(ψ))+ kG (1−λ )
B(P)Γλ

∫ v
0 (v− s)λ−1

[
Buz(s)+φ

(
v,zv,

∫ v
0 P(v,s,zs)ds

)]
ds

+ λG 2

B(λ )

∫ v
0 Sp(v− s)

[
Buz(s)+φ

(
v,zv,

∫ v
0 P(v,s,zs)ds

)]
ds, v ∈ [0,v1]

G Tλ (v− vk)(z(v−k )+ Ik(z(v−k ))+
kG (1−λ )
B(P)Γλ

∫ v
vk
(v− s)λ−1

[
Buz(s)

+φ

(
v,zv,

∫ v
0 P(v,s,zs

)
ds)
]
ds+ λG 2

B(λ )

∫ v
vk

Sp(v− s)
[
Buz(s)

+φ

(
v,zv,

∫ v
0 P(v,s,zs)ds

)]
ds, v ∈ (vk,vk+1], k = 1, ..., l.

We define the operator N : PC([−η ,T],S)→ PC([−η ,T],S) by

Nz(v)=



ψ(v), v ∈ [−η ,0]

G Tλ (v)(ψ0−P(ψ))+ kG (1−λ )
B(P)Γλ

∫ v
0 (v− s)λ−1

[
Buz(s)+φ

(
v,zv,

∫ v
0 P(v,s,zs)ds

)]
ds

+ λG 2

B(λ )

∫ v
0 Sp(v− s)

[
Buz(s)+φ

(
v,zv,

∫ v
0 P(v,s,zs)ds

)]
ds v ∈ [0,v1]

G Tλ (v− vk)(z(v−k )+ Ik(z(v−k ))+
kG (1−λ )
B(P)Γλ

∫ v
vk
(v− s)λ−1

[
Buz(s)+φ

(
v,zv,

∫ v
0 P(v,s,zs)ds

)]
ds

+ λG 2

B(λ )

∫ v
vk

Sp(v− s)
[
Buz(s)+φ

(
v,zv,

∫ v
0 P(v,s,zs)ds

)]
ds v ∈ [vk,vk+1],

k = 1, ..., l.

has a fixed point. This fixed point is then a solution of the control problem (1.1)−(1.2) with (5.1). Clearly,
Nz(T) = z1, which means that the control u steers the system (1.1)− (1.2) with (5.1) from the initial state
z0 to z1 in time T provided, we can obtain a fixed point of the operator N. The rest of the proof is similar
to section 4, hence omitted.

7. Example

Take the following semilinear differential equation of fractional order:



ABCDλ
y ν(y,δ ) = ∂ 2ν

∂δ 2 (y,δ )+ζ (y,δ )+ 1
10

(
e−y

1+ey

)(
|ν(y−τ,δ )|

1+|ν(y−τ,δ )|

)
y ∈ [0,1],y 6= 1

2

ν(y,0) = ν(y,π) = 0, y ∈ [0,1]
ν(y,δ ) = ψ(y,δ ), y ∈ [−s,0], δ ∈ [0,π]

∆ν(1
2 ,δ ) =

|ν( 1
2
−
,δ )|

25+|ν( 1
2
−
,δ )|

δ ∈ [0,π].

(7.1)

Where γ ∈ (0,1),s > 0 and φ ∈ B = {h : [−s,0]× [0,π]→ R, h is continuous everywhere except for a
countable number of points at which h(s−),h(s+) exist with h(s−) = h(s)},ν(1

2
+
,δ ) =

lim(h,δ )→(0+,δ )ν(1
2 +h,δ ), ν(1

2
−
,δ ) = lim(h,δ )→(0−,δ )ν(1

2 +h,δ ).
Set E = L2[0,π] and A : D(A)⊂ E→ E an operator defined by Aϕ = ϕ”,ϕ ∈ D(A), with domain

8



D(A)= {ϕ ∈E;ϕ,ϕ
′
are absolutely continuous, ϕ” ∈E,ϕ(0)=ϕ(1)= 0},Then Aϕ =∑

∞
n=1 n2(ϕ,ϕn)ϕn,

ϕ ∈ D(A). Here ϕn(s) =
√

2
π

sin(ns),n ∈ N is the orthogonal set of eigenvectors of A. It is well known

that A is a generator of an analytic semigroup (T (y))y≥0 in E given by T (y)ϕ = ∑
∞
n=1 e−n2y(ϕ,ϕn)ϕn,

ϕ ∈ E, y > 0 Hence (T (y))y≥0 is a uniformly bounded compact semigroup, in order that
R(κ,A) = (κ−A)−1 is a compact operator for all κ ∈ ρ(A), which means that A ∈ Aλ (β0,ϕ0).In addition,
the subordination principle of solution operator (Tλ (y))y≥0 such that ‖Tλ (y)‖ ≤ M̂ for y ∈ [0,1].
Therefore, for (y,δ ) ∈ [0,1]× [0,π],β ∈ [−s,0] and φ ∈C([0,1], [−s,1]), where

z(y)(δ ) = ν(y,δ ),

g(y,ψ,ν(φ(y)))(δ ) =
1

10

(
e−y

1+ ey

)(
|ν(y− τ,δ )|

1+ |ν(y− τ,δ )|

)
∆ν(

1
2
)(δ ) =

|ν(1
2
−
,δ )|

25+ |ν(1
2
−
,δ )|

Bu(y)(δ ) = ν(y,δ )
ψ(y)(δ ) = ν(y,δ ), y ∈ [−s,0]

The system (7.1) is the abstract form of (1.1)− (1.3). Further, the conditions (H1)− (H3) are satisfied.
Hence by our Main result, the fractional semilinear system (7.1) is controllable on I.

8. Conclusion

Controllability is one of the key area where the researchers have actively working for various classes
of fractional differential equation due to its wide applications. Here, we have discussed and analysed the
controllablility of IIDE with initial and nonlocal conditions.

We suggest that it would be very useful if someone works on qualitative results for the mentioned class
in the framework of the other well-known additional conditions.
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