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Summary

In this paper, an valid numerical algorithm is presented to solve variable fractional
viscoelastic pipes conveying pulsating fluid in the time domain and analyze dynam-
ically the vortex-induced vibration of the pipes. Firstly, Coimbra variable fractional
derivative operators are introduced. Meanwhile, using Hamilton’s principle and a
nonlinear variable fractional order model, the governing system of equations is estab-
lished. The unknown functions of the system of equations are approximated with
shifted Legendre polynomials. Then, convergence analysis and numerical example
investigate the effectiveness and accuracy of the proposed algorithm. Finally, the
influences of different parameters on the dynamic response of the viscoelastic pipe
are studied. The influencing factors and their ranges of the transient and long-term
chaotic states of the pipe are analyzed. In addition, the proposed algorithm shows
enormous potentials for solving the dynamics problems of viscoelastic pipes with
the variable fractional order models.
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1 INTRODUCTION

Viscoelastic materials are often used to vibrating structures for improving damping capability of the structures. The damping
capability of the structure highly depends on the properties of the viscoelastic materials within the damped structure [1]. There-
fore, it is of great significance to study the mechanical properties of viscoelastic materials. In recent years, many integer order
mathematical models have been developed to describe the viscoelasticity of materials in practical applications. Mohammad et al.
[2] used artificial neural network and Maxwell model to predict the viscoelastic behavior of pomegranate. Yan et al. [3] selected
Kelvin-Voight model to represent the character of viscoelastic interfaces. Because the fractional order model is more freedom
degrees and accurate than the integer order model. The fractional order model has been widely used in many fields of science
and engineering [4]. As a result, the fractional order model is applied to describe the viscoelastic behavior of materials. Yu et
al. [5] applied the fractional order Kelvin model as the constitution model to study the dynamic displacement varying with posi-
tion and time. Martin [6] used fractional order Zenner model to investigate the dynamic analysis of a viscoelastic nanobeam.
It was analyzed the effect of the fractional derivative on the nanobeam. Yin et al. [7] used fractional order Maxwell model to
study oscillating flow of a viscoelastic fluid in a pipe. However, the variable fractional order model is more suitable than the
fractional order model for variable memory and can better simulate the viscoelastic constitutive relations [8]. Li et al. [9] stud-
ied a numerical algorithm to simulate the variable fractional order of the shape-memory polymer owing viscoelastic property
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and compare with the fractional order. For accurately modelling the viscoelastic constitution relation, a variable fractional order
model was also proposed in [10]. The compression deformation of amorphous glassy polymers in viscoelastic region with the
variable fractional order model was investigated. Cai et al. [11] adopted a variable fractional order constitutive model to charac-
terize tensile behaviors of sintered nano-silver paste at different strain rates and ambient temperatures. Meng et al. [12] provided
a novel approach of variable fractional derivative model of viscoelasticity to describe the strain hardening behavior of amor-
phous glassy polymers. These results all demonstrated the variable fractional order model can better simulate the viscoelastic
constitutive relationship.
Vortex-induced vibration encountered usually with pipes conveying fluid is an important phenomenon of fluid-structure inter-

action. In the application of ocean engineering, the vortex-induced vibration of pipe is a factor that must be considered. As
vortex-induced vibration occurring, the external fluid applies lift forces and oscillatory drag on the pipe, which causes the pipe
oscillate or move rigidly. In addition, the internal fluid velocity and density, external excitation and other factors also affect the
dynamic response of the pipe. The pipe will enter a chaotic or stable state depending on whether these factors reach a critical
value. This may lead to fatigue damage of structures such as risers, mooring lines and pipes [13].
In order to avoid the loss caused by fatigue failure of pipes, many scholars begin to analyze vortex-induced vibration of pipes.

Dai et al. [14] examined the vortex-induced vibration of the pipe with the internal fluid velocity varying from the subcritical to
the supercritical regions. Amount of dynamical behaviors, such as periodic and chaotic motions were occurred by the time of the
internal fluid velocity varying in the supercritical regions. Duan et al. [15] studied vortex-induced vibration of a flexible fluid-
conveying pipe for internal and cross flow. With different internal and cross flow velocities, a flexible riser appeared the jumping
phenomenon, quasi-periodic and chaotic motions. Xie et al. [16] investigated a flexible pipe conveying variable density internal
fluid and undergoing vortex-induced vibrations. Dynamic response of the pipe would become more obvious for the fluctuation
amplitude of the internal fluid density varying. Dai et al. [17] researched vortex-induced vibration of the pipe conveying pulsating
fluid. Then the consequent demonstrated the peak response amplitude of the pipe can be adjusted by the frequency of the internal
pulsating fluid. Yang et al. [18] predicted the dynamic response of the flexible pipe conveying fluid for different internal and
cross flow velocity. Zhang et al. [19] noticed the effect of harmonic tension on fluid-conveying pipes undergoing vortex-induced
vibration. Displacements and stresses were increasing and the resonance regions became wider with harmonic tension amplitude
increasing. Although the above studies discussed the effects of time, internal and external fluid velocity, fluid density and other
factors on the pipe, none of the pipe materials were considered. Studies [20][21] have shown that viscoelastic materials have a
significant effect on weakening vibration response to hydraulic and structural transients. Viscoelastic materials greatly improve
the stability of the vortex-induced vibration of the pipe. Yang et al. [22] selected Kelvin-Voight model to study the impacts of
the viscoelastic coefficients on displacements, stresses, modal variation and phase portraits. It demonstrated that appropriate
viscoelastic coefficients were very important to effectively suppress the maximum displacements and stresses. However, there is
little research on vortex-induced vibration of viscoelastic pipes conveying fluid. In order to predict the dynamic response which
contains stable states and chaotic motions conditions, vortex-induced vibration of viscoelastic pipes is researched in this paper.
Dynamic analysis needs accurate and effective algorithm. The governing equation of pipe should be established by using the

variable fractional order model. Moreover, the governing equation is a class of nonlinear variable fractional order differential
system of equations containing analytic functions. Many scholars have studied fractional order differential equations and sys-
tems of equations before. Qu et al. [23] proposed neural network method to solve the fractional heat conduction equation and
the fractional wave equation. Ramezani [24] solved nonlinear multi-term time fractional differential equation based on collo-
cation method via fractional B-spline. Ansari et al. [25] used the fractional exponential operators to solve system of partial
fractional differential equations. The validity of this operator in obtaining the formal solution of diffusion equations was dis-
cussed. Recently, the numerical solutions of the variable fractional order differential equations and system of equations have
been further studied. Chen et al. [26] proposed a numerical method to estimate a variable fractional order of unknown signal
equation in noisy environment. El-Sayed et al. [27] introduced a method of solving multiterm variable-order fractional differen-
tial equations. The basic problem was reduced to a set of algebraic equations by using constructed shifted Legendre polynomials
matrices and configuration techniques. A Bernstein polynomial numerical method for solving a class of variable fractional order
linear cable equations was proposed in [28]. The two-dimensional variable fractional order time advection-diffusion equations
were solved by a meshless method [29] and a radial basis function-based differential quadrature method [30]. For variable frac-
tional order differential system of equations, Faghih and Mokhtary [31] were concerned with a new fractional Jacobi collocation
method for solving a system of multi-order fractional differential equations with variable coefficients. Heydari et al. [32] gen-
eralized a coupled system of reaction-advection-diffusion equations to a variable fractional order one. The orthogonal shifted
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discrete Legendre polynomials were introduced to solve obtained system of equations. However, there are few studies on the
numerical solutions of viscoelastic pipe of nonlinear variable fractional order differential governing system of equations.
Based on these reasons, the shifted Legendre polynomials algorithm is proposed to solve the nonlinear variable fractional

order differential governing system of equations of the pipe. This algorithm utilizes shifted Legendre polynomials as basis
functions to approximate the analytic function, and uses the product of the differential operator matrices and the basis function
to represent the derivative of the analytic function. The algorithm provides algorithm support for the variable fractional order
model and viscoelastic materials.
The structure of this article is as follows: In Section 2, the variable fractional order model is selected as the constitutive model

to derive the governing system of equations of the pipe. In Section 3, the shifted Legendre polynomials algorithm is proposed to
obtain the numerical solution of the governing system of equations. In Section 4, convergence analysis is presented. In Section
5, three numerical examples are given to verify the accuracy of the proposed algorithm. In Section 6, the dynamics effects of
various parameters on pipe are studied and the conditions of stable states and chaotic motions are discussed. Finally, Section 7,
gives the conclusion.

2 MATHEMATICAL PRELIMINARIES AND ANALYTICAL MODEL

The definitions and properties of the variable fractional calculus operators are introduced, and the governing equations are
derived by introducing the variable fractional order model.

Definition 1. The Coimbra variable fractional derivative operator D�(x)
t of order �(x) is defined as [33]

D�(x)
t f (x, t) = 1

Γ(1 − �(x))

t

∫
0+

(t − �)−�(x)
)f (x, �)
)�

d� +

(

f
(

x, 0+
)

− f (x, 0−)
)

t−�(x)

Γ (1 − �(x))
(1)

where t ≥ 0, 0 < �(x) ≤ 1, �(x) is variable fractional order, f (t) is continuous over interval (0,+∞) and is integrable over any
subinterval of [0,+∞), Γ(⋅) denotes the Euler Gamma function.

Definition 2. For two-dimensional variable fractional order �(x, t) , the Coimbra variable fractional derivative operators are
defined as follows [33]:

D�(x,t)
t f (x, t) = 1

Γ(1 − �(x, t))

t

∫
0+

(t − �)−�(x,t)
)f (x, �)
)�

d� +

(

f
(

x, t0+
)

− f
(

x, t0−
))

t−�(x,t)

Γ (1 − �(x, t))
(2)

In the case of f
(

x, t0+
)

= f
(

x, t0−
)

in the Definition 2 , the operator would be correspondent to the well-known Caputo
fractional operator. Therefore, based on the definition of the variable fractional derivative in the Caputo sense, the following
formula can be expressed as:

D�(x,t)
t tm =

{

Γ(m+1)
Γ(m+1−�(x,t))

tm−�(x,t), �(x, t) − m ∉ ℕ
0, else.

(3)

This property facilitates the algorithm proposed later.
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FIGURE 1 The geometric figure of viscoelastic pipes conveying fluid under external fluid and load excitation.

Vortex-induced vibration of viscoelastic pipes conveying fluid is studied in this paper. It is simply supported at both ends as
shown in Fig. 1 . The governing system of equations can be derived by a variable fractional order constitutive model [34] and
Hamilton’s principle without considering gravity effects. Also, it is formulated as:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

m)
2w
)t2

+ 2mfVi
)2w
)x)t

+
[

mfV 2
i + mf

)Vi
)t
(L − x) − P0

])2w
)x2

+(Cs +
1
2
CD�0DVe)

)w
)t

+ EI�� )
4+�w
)x4)t�

= 1
4
CL0�0DV

2
e q + fe

)2q
)t2

+ �ws(q2 − 1)
)q
)t
+w2

sq =
Aw
D
)2w
)t2

� =

⎧

⎪

⎨

⎪

⎩

�0 − �k(
D
2
)2w
)x2

− �b),
)2w
)x2

≥
2�b
D

�0, 0 ≤ )2w
)x2

<
2�b
D

(4)

The boundary conditions are

w(0, t) = 0, w(L, t) = 0,
)w(0, t)
)x

= 0,
)w(L, t)
)x

= 0. (5)

TABLE 1 The physical quantities in governing system of equations (4)

Physical quantity Symbol Dimension Physical quantity Symbol Dimension

Mass per unit length of the pipe m kg ⋅m−1 Lift coefficient in the transverse direction CL0 1
Mass per unit length of internal and additional external fluid m kg ⋅m−1 Density of external fluid �0 kg ⋅m−3

Mass per unit length of internal fluid mf kg ⋅m−1 Constitution model parameter E Pa
Transverse displacement of the pipe w m Area moment of inertia I m4

Position x m Constitution model parameter � 1
Time t s Constitution model parameter � 1
Length of the pipe L m Reduced lift coefficient q 1
Outer diameter of the pipe D m Constant parameter � 1
Internal fluid velocity Vi m ⋅ s−1 Vortex-shedding frequency ws Hz
External fluid velocity Ve m ⋅ s−1 Constant parameter Aw 1
Internal damping coefficient Cs N ⋅ s ⋅m−2 Force excitation fe N ⋅m−1

Hydrodynamic damping coefficient in the transverse direction CD 1 Tensional force P0 N
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The physical quantities in governing system of equations (4) are interpreted as shown in Table 1 . Moreover, w and q are the
analytical functions of Eq.(4).
It is noted that CD, CL0 , �,Aw always respectively values 1.2, 0.3, 0.3, 12 and the specific derivation process can be seen in A.
The variable fractional order � is a piecewise function which satisfies 0 < � < 1. � values a constant �0 when strain of the

pipe is less than the threshold, and a function �0 − �k(
D
2
)2w
)x2

− �b) when strain of the pipe is equal to or more than the threshold.
Here the strain and threshold are respectively as D

2
)2w
)x2

and �b. In other words, the variable fractional order � is a constant at the
time of small deformation and a function containing an unknown analytical solution at the time of large deformation.

3 SHIFTED LEGENDRE POLYNOMIALS ALGORITHM

In this part, the shifted Legendre polynomials algorithm is presented to solve numerically this class of nonlinear variable frac-
tional order differential system of equations, which is a piecewise function containing analytic functions.Moreover, the following
section is the specific process of this algorithm.

3.1 Shifted Legendre polynomials
The shifted Legendre polynomial of degree n in [0, 1] [35] is defined as

un,i (x) =
n
∑

i=0
(−1)n+i

Γ (n + i + 1)
Γ (n − i + 1) (Γ (i + 1))2

xi (6)

where i = 0, 1,⋯ , n, x ∈ [0, 1]. Then a series of shifted Legendre polynomials matrix '(x) can be written as

' (x) =
[

un,0 (x) , un,1 (x) ,⋯ , un,n (x)
]

= HZ (x) (7)

where Z(x) = [1, x,⋯ , xn]T ,

H = [ℎij]ni,j=0, ℎij =

⎧

⎪

⎨

⎪

⎩

0, i < j

(−1)i+j
Γ(i + j + 1)

Γ(i − j + 1)(Γ(j + 1))2
, i ≥ j.

For expanding the range of x, the shifted Legendre polynomial of degree n in [0, L] is formulated as:

pn,i(x) =
n
∑

i=0
(−1)n+i

Γ(n + i + 1)
Γ(n − i + 1)(Γ(i + 1))2

( 1
L
)
i
xi (8)

where i = 0, 1,⋯ , n, x ∈ [0, L]. Then a series of shifted Legendre polynomials matrix Ψ(x) can be written as

Ψ(x) = [pn,0(x), pn,1(x),⋯ , pn,n(x)]T = RZ(x) (9)

where

R = [rij]ni,j=0, rij =

{

0, i ≠ j
(−1)n+i Γ(i+j+1)

Γ(i−j+1)(Γ(i+1))2
L−i, i = j.

Similarly, a series of shifted Legendre polynomials matrix Φ(t) in [0, S]can be defined as

Φ (t) =
[

pn,0 (t) , pn,1 (t) ,⋯ , pn,n (t)
]

=MZ (t) (10)

where

M = [mij]ni,j=0, mij =

{

0, i ≠ j
(−1)n+i Γ(i+j+1)

Γ(i−j+1)(Γ(i+1))2
S−i, i = j.
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3.2 Function approximation
A continuous function T (x) in the domain [0, L] can be approached with the form of shifted Legendre polynomials as T (x) =
∑∞
i=0 cipn,i(x), T (x) can be approximated as:

T (x) ≈ Tn(x) =
n
∑

i=0
cipn,i(x) = CTΨ(x) (11)

where CT = [c0, c1,⋯ , cn] is an unknown coefficient matrix. Then

⟨T (x),ΨT (x)⟩ = CT
⟨Ψ(x),ΨT (x)⟩ = CTQ (12)

where Q = ⟨Ψ(x),ΨT (x)⟩ = [�ij]ni,j=0, �ij = ∫ L
0 pn,i(x)pn,j(x)dx, CT =

⟨

T (x) ,ΨT (x)
⟩

Q−1.
Two-variable continuous function T (x, t) ∈ L2[0, L] × [0, S] can be described as:

T (x, t) =
∞
∑

j=0
(
∞
∑

i=0
cipn,i(x))kjpn,j(t)

=
∞
∑

j=0

∞
∑

i=0
cikjpn,i(x)pn,j(t)

=
∞
∑

j=0

∞
∑

i=0
Ωijpn,i(x)pn,j(t) (13)

If we consider truncated series in (13) , then it can rewritten as:

T (x, t) ≈
n
∑

j=0

n
∑

i=0
Ωijpn,i(x)pn,j(t)

= ΩT [Ψ(x)⊗Φ(t) (14)

whereΩ = [Ω00,Ω01,⋯ ,Ω0n,Ω10,Ω11,⋯ ,Ω1n,⋯ ,Ωn0,Ωn1,⋯ ,Ωnn]T ,Ω = C⊗K , and⊗ is Kronecker product. Thus,w(x, t)
and q(x, t) can be noted as:

⎧

⎪

⎨

⎪

⎩

w(x, t) ≈ wn(x, t) = ΩT1
[

Ψ(x)⊗Φ(t)
]

q(x, t) ≈ qn(x, t) = ΩT2
[

Ψ(x)⊗Φ(t)
]

(15)

3.3 Differential operator matrices
In this section, differential operator matrices need to be solved for expressing the derivative function of analytic function. Ψ(x)
are a series of polynomials matrices with respect to x, the derivative of Ψ(x) with respect to x is formulated as:

Ψ′ (x) = (RZ (x))′ = R(Z (x))′ = RV Z (x) = RV R−1Ψ (x) = BΨ (x) (16)

where V = [vij]ni,j=0, vij =
{

0, i ≠ j + 1
i, i = j + 1.

B = RV R−1 is first order differential operator matrix. Similarly, second order differential operator matrix B2 can be written
as:

B2 = RV 2R−1 (17)

And so on, m order differential operator matrix Bm can be written as:

Bm = RV mR−1 (18)

The � order derivative of Φ(t) with respect to t is formulated as:
d�Φ
dt�

= B�(t)Φ(t), � ∈ (0, 1). (19)

Then
B�(t)Φ(t) = B�(t)MZ(t) =M

d�Z(t)
dt�

=MGZ(t) =MGM−1Φ(t) (20)
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where G = [gij]ni,j=0, gij =

{

Γ(i+1)
Γ(i+1−�)

t−� , i = j,i ≥ 1
0, otℎerwise.

The variable fractional order differential operator matrix B�(t) can be

described as:
B�(t) =MGM−1 (21)

Thus, integer-fractional differential term of w(x, t) and q(x, t) can be noted as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

)m+vw(x, t)
)xm)tv

≈ ΩT1
[

(BmΨ(x))⊗ (BvΦ(t))
]

)m+�w(x, t)
)xm)t�

≈ ΩT1
[

(BmΨ(x))⊗ (B�(t)Φ(t))
]

(22)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

)m+vq(x, t)
)xm)tv

≈ ΩT2
[

(BmΨ(x))⊗ (BvΦ(t))
]

)m+�q(x, t)
)xm)t�

≈ ΩT2
[

(BmΨ(x))⊗ (B�(t)Φ(t))
]

(23)

where Ω1 and Ω2 are unknown coefficient matrices.
Finally, the governing system of equations (4) will be converted into the following algebraic system of equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

mΩT1
[

Ψ(x)⊗ (B2Φ(t))
]

+ 2mfViΩT1
[

(BΨ(x))⊗ (BΦ(t))
]

+
[

mfV 2
i + mf

)Vi
)t
(L − x) − P0

]

ΩT1
[

(B2Ψ(x))⊗Φ(t))
]

+(Cs +
1
2
CD�0Ve)ΩT1

[

Ψ(x)⊗ (BΦ(t))
]

+ EI��ΩT1
[

(B4Ψ(x))⊗ (B�(t)Φ(t))
]

= 1
4
CL0�0DV

2
e Ω

T
2

[

Ψ(x)⊗Φ(t)
]

+ fe

ΩT2
[

Ψ(x)⊗ (B2Φ(t))
]

+�ws

[(

ΩT2
(

Ψ(x)⊗Φ(t)
)

)2
−1

]

ΩT2
[

Ψ(x)⊗ (BΦ(t))
]

+w2
sΩ

T
2

[

Ψ(x)⊗Φ(t)
]

=
Aw
D
ΩT1

[

Ψ(x)⊗ (B2Φ(t))
]

�=

⎧

⎪

⎨

⎪

⎩

�0−�k{
D
2
ΩT1

[

(B2Ψ(x))⊗Φ(t))
]

−�b}, ΩT1
[

(B2Ψ(x))⊗Φ(t))
]

≥
2�b
D

�0, ΩT1
[

(B2Ψ(x))⊗Φ(t))
]

<
2�b
D

(24)

where onlyΩ1 andΩ2 are unknown. x and t are discretized to points (xi, tj), where xi = i
L
n
and tj = j

S
n
,Ω1 andΩ2 are obtained

by solving the above algebraic system of equations (24) based on least squares. Solutions wn(x, t) and qn(x, t) are obtained by
Eq.(15) as the approximation of the exact solutions w(x, t) and q(x, t). Also, solutions wn(x, t) and qn(x, t) can be seen as the
interpolating polynomial of the exact solutions w(x, t) and q(x, t).

4 CONVERGENCE ANALYSIS

The aim of this section is to investigate the convergence of the proposed numerical algorithm. For doing this, the Banach space
W = C[0, L] × C[0, S] of all continuous functions on Ξ = [0, L] × [0, S] is considered with the following norm:

||w(x, t)|| = ⟨w(x, t), w(x, t)⟩
1
2 = (∫ S

0 ∫ L
0 |w(x, t)|2dxdt)

1
2 . (25)

Similarly, the norm of continuous function q(x, t) in the Banach space can also be formulated as

||q(x, t)|| = ⟨q(x, t), q(x, t)⟩
1
2 = (∫ S

0 ∫ L
0 |q(x, t)|2dxdt)

1
2 . (26)
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Theorem 1. Suppose thatw(x, t) and q(x, t) are the exact solutions,wn(x, t) and qn(x, t) are the approximate solutions obtained
by the shifted Legendre polynomials algorithm in the Banach spaceW = C[0, L] × C[0, S]. Then

||wn(x, t) −w(x, t)|| ≤ (LS)
1
2
[

A1(
L
n
)n+1 + A2(

S
n
)n+1 + A3(

(LS)
1
2

n
)2n+2

]

||qn(x, t) − q(x, t)|| ≤ (LS)
1
2
[

B1(
L
n
)n+1 + B2(

S
n
)n+1 + B3(

(LS)
1
2

n
)2n+2

]

(27)

where A1, A2, A3, B1, B2 and B3 are terminate constants.

Proof. wn(x, t) is the numerical solution obtained as the interpolating polynomial ofw(x, t) at points (xi, tj) by means of shifted
Legendre polynomials algorithm, where xi = i

L
n
and tj = j

S
n
. Then, one can obtain

w(x, t) −wn(x, t) =
)n+1w(%, t)
)xn+1

∏n
i=0(x − xi)
(n + 1)!

+
)n+1w(x, �)
)tn+1

∏n
j=0(t − tj)

(n + 1)!

−
)2n+2w(%′, � ′)
)xn+1)tn+1

∏n
i=0(x − xi)

∏n
j=0(t − tj)

[(n + 1)!]2

(28)

for %, %′ ∈ [0, L] and � , � ′ ∈ [0, S]. Thus, we can have

|wn(x, t) −w(x, t)| ≤ max
(x,t)∈Ξ

|

|

|

)n+1w(x, t)
)xn+1

|

|

|

∏n
i=0 |x − xi|
(n + 1)!

+ max
(x,t)∈Ξ

|

|

|

)n+1w(x, t)
)tn+1

|

|

|

∏n
j=0 |t − tj|

(n + 1)!

+ max
(x,t)∈Ξ

|

|

|

)2n+2w(x, t)
)xn+1)tn+1

|

|

|

∏n
i=0 |x − xi|

∏n
j=0 |t − tj|

[(n + 1)!]2
.

(29)

To find the bounds on
∏n

i=0 |x − xi| and
∏n

j=0 |t − tj|, defining the variables x = #
L
n
and t = #′ S

n
, it gives that

n
∏

i=0
|x − xi| = (

L
n
)n+1

n
∏

i=0
|# − i|

n
∏

j=0
|t − tj| = (

S
n
)n+1

n
∏

j=0
|#′ − j|.

By choosing the integersN1 andN2 which are less than n, we have # ∈ (N1, N1 + 1) and #′ ∈ (N2, N2 + 1), therefore
n
∏

i=0
|# − i| = |(# −N1)(# −N1 − 1)|

N1−1
∏

i=0
|# − i|

n
∏

i=N1+2
|# − i|

n
∏

j=0
|#′ − j| = |(#′ −N2)(#′ −N2 − 1)|

N2−1
∏

i=0
|#′ − j|

n
∏

j=N2+2
|#′ − j|.

(30)

Note that |(#−N1)(#−N1−1)| and |(#′−N2)(#′−N2−1)| have maximum when # and #′ values at pointsN1+
1
2
andN2+

1
2
,

respectively, thus

|(# −N1)(# −N1 − 1)| ≤
1
4

|(#′ −N2)(#′ −N2 − 1)| ≤
1
4
.

And we can get
N1−1
∏

i=0
|# − i|

n
∏

i=N1+2
|# − i| ≤

N1−1
∏

i=0
(N1 + 1 − i)

n
∏

i=N1+2
(i −N1) = (N1 + 1)!(n −N1)! ≤ (n + 1)!. (31)
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and
N2−1
∏

i=0
|#′ − i|

n
∏

i=N2+2
|#′ − i| ≤

N2−1
∏

i=0
(N2 + 1 − i)

n
∏

i=N2+2
(i −N2) = (N2 + 1)!(n −N2)! ≤ (n + 1)!. (32)

Substituting (31)-(32) into (30), it yields
n
∏

i=0
|# − i| = |(# −N1)(# −N1 − 1)|

N1−1
∏

i=0
|# − i|

n
∏

i=N1+2
|# − i| ≤ 1

4
(n + 1)!. (33)

and
n
∏

j=0
|#′ − j| = |(#′ −N2)(#′ −N2 − 1)|

N2−1
∏

j=0
|#′ − j|

n
∏

j=N2+2
|#′ − j| ≤ 1

4
(n + 1)!. (34)

Therefore, according to (30), (33) and (34), one has
n
∏

i=0
|x − xi| ≤ (

L
n
)n+1 1

4
(n + 1)!

n
∏

j=0
|t − tj| ≤ (

S
n
)n+1 1

4
(n + 1)!.

Considering A1 = max
(x,t)∈Ξ

1
4
|

|

|

)n+1w(x,t)
)xn+1

|

|

|

, A2 = max
(x,t)∈Ξ

1
4
|

|

|

)n+1w(x,t)
)tn+1

|

|

|

and A3 = max
(x,t)∈Ξ

1
16
|

|

|

)2n+2w(x,t)
)xn+1)tn+1

|

|

|

, gives

|wn(x, t) −w(x, t)| ≤ A1(
L
n
)n+1 + A2(

S
n
)n+1 + A3[

(LS)
1
2

n
]2n+2. (35)

So,

||wn(x, t) −w(x, t)|| ≤ (LS)
1
2
[

A1(
L
n
)n+1 + A2(

S
n
)n+1 + A3[

(LS)
1
2

n
]2n+2

]

. (36)

Similarly, considering B1 = max
(x,t)∈Ξ

1
4
|

|

|

)n+1q(x,t)
)xn+1

|

|

|

, B2 = max
(x,t)∈Ξ

1
4
|

|

|

)n+1q(x,t)
)tn+1

|

|

|

and B3 = max
(x,t)∈Ξ

1
16
|

|

|

)2n+2q(x,t)
)xn+1)tn+1

|

|

|

, gives

|qn(x, t) − q(x, t)| ≤ B1(
L
n
)n+1 + B2(

S
n
)n+1 + B3[

(LS)
1
2

n
]2n+2. (37)

So,

||qn(x, t) − q(x, t)|| ≤ (LS)
1
2
[

B1(
L
n
)n+1 + B2(

S
n
)n+1 + B3[

(LS)
1
2

n
]2n+2

]

. (38)

The proof of Theorem 1 is completed.

According to (35) and (36), the error bound of the absolute value form isA1(
L
n
)n+1+A2(

S
n
)n+1+A3[

(LS)
1
2

n
]2n+2 and the error

bound of the spaceL2(Ξ) norm form is (LS)
1
2
[

A1(
L
n
)n+1+A2(

S
n
)n+1+A3[

(LS)
1
2

n
]2n+2

]

. In other words, |wn(x, t)−w(x, t)| → 0,
∀(x, t) ∈ Ξ as n→∞. Also, ||wn(x, t) −w(x, t)|| → 0, ∀(x, t) ∈ Ξ as n→∞.

Once again, based on (37) and (38), the error bound of the absolute value form isB1(
L
n
)n+1+B2(

S
n
)n+1+B3[

(LS)
1
2

n
]2n+2 and

the error bound of the space L2(Ξ) norm form is (LS)
1
2
[

B1(
L
n
)n+1 + B2(

S
n
)n+1 + B3[

(LS)
1
2

n
]2n+2

]

. In other words, |qn(x, t) −
q(x, t)| → 0, ∀(x, t) ∈ Ξ as n→∞. Also, ||qn(x, t) − q(x, t)|| → 0, ∀(x, t) ∈ Ξ as n→∞.

5 NUMERICAL EXAMPLES

In this section, the numerical results obtained by the shifted Legendre polynomials algorithm are proposed on some test prob-
lems. The numerical example is chosen to show the efficiency and accuracy of the presented algorithm. A variable fractional
order system of equations is considered, which contains an unknown piecewise analytical function. This numerical example
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has the same form with the governing system of equations (4). The obtained solutions are compared with the exact solutions to
establish the validity of the shifted Legendre polynomials algorithm.
To show the accuracy and efficiency , the absolute errors are expressed, using the following definitions:

{

ew(x, t) = |wn(x, t) −w(x, t)|
eq(x, t) = |qn(x, t) − q(x, t)|

(39)

where ew(x, t) are absolute errors of numerical solutions wn(x, t) and exact solutions w(x, t), eq(w, t) are absolute errors of
numerical solutions qn(x, t) and exact solutions q(x, t).
Example . Consider the following variable fractional order system of equations which is the same form as governing system of
equations (4)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

)2w(x, t)
)x2

+
)2w(x, t)
)x)t

+
)2w(x, t)
)t2

+
)4+�(x,t)w(x, t)
)x4)t�(x,t)

+
)w(x, t)
)t

+q(x, t)=f1(x, t)

)2w(x, t)
)t2

+q(x, t)+
)2q(x, t)
)t2

+
)q(x, t)
)t

(q2(x, t) − 1)=f2(x, t)

�(x, t) =

⎧

⎪

⎨

⎪

⎩

0.56 − 0.02(
)2w(x, t)
)x2

− 0.01),
)2w(x, t)
)x2

≥ 0.01

0.56, 0 ≤ )2w(x, t)
)x2

< 0.01.

(40)

�(x, t) can be also equal to the following form

�(x, t) = 0.56 − 0.01||
|

)2w(x, t)
)x2

− 0.01||
|

− 0.01(
)2w(x, t)
)x2

− 0.01) (41)

where
f1(x, t) = t2(12x2 − 12x + 2) + 2t(4x3 + 6x2 + 2x) + 2(x4 − 2x3 + x2)

+24
Γ(3)

Γ(3 − �(x, t))
t2−�(x,t) + 2tx2(1 − x)2 + t3x(1 − x),

f2(x, t) = 6tx(1 − x) + 2x2(1 − x)2 + t3x(1 − x) + 3t8x3(1 − x)3 − 3t2x(1 − x).

The exact solutions are expressed as:
{

w(x, t) = x2(1 − x)2t2, x ∈ [0, 1], t ∈ [0, 1]

q(x, t) = x(1 − x)t3, x ∈ [0, 1], t ∈ [0, 1].
(42)

The boundary conditions are

!(0, t) = 0, !(1, t) = 0,
)w(0, t)
)x

= 0,
)w(1, t)
)x

= 0. (43)

TABLE 2 The exact solution and absolute error of Example 3 when x values 0.5 and n values 4.

t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

w(x, t) 0.0025 0.0100 0.0225 0.0400 0.0625
ew(x, t) 5.00 × 10−12 3.84 × 10−12 2.49 × 10−12 0.30 × 10−12 4.55 × 10−12

q(x, t) 0.0020 0.0160 0.0540 0.1280 0.2500
eq(x, t) 2.11 × 10−9 1.73 × 10−9 1.18 × 10−9 0.46 × 10−9 0.45 × 10−9

The numerical example is a nonlinear variable fractional order system of equations which contains a cubic term of the analytic
function. The numerical solutions wn(x, t) and qn(x, t) are obtained by shifted Legendre polynomials algorithm for n values
4. The absolute errors are shown in the first two figures in Fig. 2 . It shows that the absolute errors ew(x, t) and eq(x, t) are
respectively less than 2 × 10−11 and 4 × 10−9. In addition, the absolute error is far less than exact solution as shown in Table
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(a) ew(x, t) (b) eq(x, t) (c) )2w(x,t)
)x2

FIGURE 2 The absolute error and partial derivative )2w(x,t)
)x2

of Example 3 when n values 4 for (a) ew(x, t), (b) eq(x, t) and (c)
)2w(x,t)
)x2

.

0 0.2 0.4 0.6 0.8 1

t

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

w
(x

,t
)

Numerical solution

Analytical solution

(a) w(x, t)

0 0.2 0.4 0.6 0.8 1

t

-0.05

0

0.05

0.1

0.15

0.2

0.25

q
(x

,t
)

Numerical solution

Analytical solution

(b) q(x, t)

FIGURE 3 The numerical solution and exact solution of Example 3 when x values 0.5 and n values 4 for (a) w(x, t) and (b)
q(x, t).

2 . The range of )2w(x,t)
)x2

is in [0, 2] as shown in the third figure in Fig. 2 , which influences whether �(x, t) is a constant or an
unknown piecewise function for analytical solution. Meanwhile, �(x, t) can also satisfy 0 < �(x, t) < 1. As can be seen from
Fig. 3 , the numerical solution and exact solution of w(x, t) and q(x, t) are highly consistent. In all words, the above numerical
results illustrate that shifted Legendre polynomials algorithm is accurate and effective for solving nonlinear variable fractional
order system of equations, which is an unknown piecewise function.

6 APPLICATION TO DYNAMIC ANALYSIS OF VISCOELASTIC PIPES

After the above validations, the shifted Legendre polynomials algorithm is applied to study practical vortex-induced vibration
of viscoelastic pipes problems, which do not always have an exact solution. The influence of each parameter on viscoelastic pipe
is analyzed. The feasibility of the proposed algorithm for solving practical problems is verified. In this section, the following
non-dimensional quantities are introduced for making the governing system of equations (4) dimensionless:

y = w
L
, � = x

L
, � = t

L

√

P0
mf

, 
 =

√

mf
P0
,
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� =
mf
m
, q = EI

P0L2
( P0
mfL2

)
�
2 , � =

Cs +
1
2
CD�0DVe

√

Pmf
,

kL =
CD�0DV 2

e mf
4mP0

, ke =
mf
mp
,Ωs =

ws

L

√

P0
mf

.

Consequently, the nonlinear variable fractional order governing system of equations (4) can be transformed into the
dimensionless forms as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

)2y
)�2

+ �
{

2
Vi
)2y
)�)�

+ [
2V 2
i + 


)Vi
)�
(1 − �) − 1]

)2y
)�2

+�
)y
)�
+ "�� )

4+�w
)�4)��

}

= kLq + kefe

)2q
)�2

+ �Ωs(q2 − 1)
)q
)�
+ Ω2sq =

Aw
D
)2y
)�2

� =

⎧

⎪

⎨

⎪

⎩

�0 − �k
D
2
)2y
)�2

,
)2y
)�2

≥
2�b
D

�0, 0 ≤ )2y
)�2

<
2�b
D
.

(44)

TABLE 3 The fixed parameters in vortex-induced vibration of viscoelastic pipe conveying pulsating fluid.

Physical quantity Symbol Value Dimension

Length of the pipe L 100 m
Outer diameter of the pipe D 0.5 m
Inner diameter of the pipe d 0.3 m
Area moment of inertia I 0.0027 m4

Constitutive model parameter E 100 GPa
Constitutive model parameter � 0.01 1

Density of external fluid �0 1020 kg ⋅m−3

Tensional force P0 1000 N
Internal damping coefficient Cs 50 N ⋅ s ⋅m−2

Dynamic response of the viscoelastic pipe undergoing vortex-induced vibration and conveying pulsating fluid is analyzed with
the above form of governing system of equations. Numerical results are obtained by shifted Legendre polynomials algorithm
for n selected as 4. Moreover, the ring-shaped pipe is considered, and the fixed parameters are listed in Table 3 .
Here external fluid velocity Ve, internal fluid velocity Vi, density �f and force excitation fe are expressed as the following

form
Ve = V0(1 − �) (45)

where Ve is varying with the deep of the pipe, V0 is the external fluid velocity at the top of pipe.

Vi = Vib + Vis sin(!Vi�) (46)

where Vib, Vis and !Vi are respectively the basic velocity, fluctuation velocity and fluctuation frequency of the internal fluid.

�f = �fb + �fk� (47)

where �fb and �fk are respectively the basic density and varying rate of the internal fluid.

fe = feb + fes sin(fe!�) (48)

where feb , fes and fe! are respectively the basic force, fluctuation force and fluctuation frequency of the force excitation.
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Meanwhile, three physical quantities non-dimensional displacement y(�, �), non-dimensional velocity v(�, �) and non-
dimensional acceleration a(�, �) of the pipe are used for the dynamic analysis. v(�, �) and a(�, �) are expressed as the following
form:

v(�, �) =
)y(�, �)
)�

; a(�, �) =
)2y(�, �)
)�2

. (49)
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FIGURE 4 Dynamic analysis of viscoelastic pipe conveying fluid when n values 4 for (a) y(�, �), fe = 0 , (b) v(�, �), fe = 0,
(c) a(�, �), fe = 0, (d) y(�, �), fe = 1000 + 500 sin(500�), (e) v(�, �), fe = 1000 + 500 sin(500�) and (f) a(�, �), fe = 1000 +
500 sin(500�).
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FIGURE 5 Bifurcation diagram as V0 varying when n values 4 for (a) y(�, �) , (b) v(�, �) and (c) a(�, �).

Firstly, the influence of external fluid velocity on the dynamic response of the pipe is analyzed when the external force
excitation is determined. As shown in the first three figures in Fig. 4 , When the external excitation fe = 0 , the external fluid
velocity increases, so does the displacement, velocity and acceleration of the pipe. But, when fe = 1000 + 500 sin(500�) in the
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last three figures in Fig. 4 , displacement, velocity and acceleration are no significant change. Therefore, This illustrates that
external force excitation can attenuate the effect of external fluid velocity on the pipe.
The following analysis is the effect of various factors on the chaotic state of the pipe.
The first factor is external fluid velocity Ve = V0(1−�), the value of V0 in Fig. 5 ranges from 0 to 2 m/s. When V0 takes several

fixed values, the displacement, velocity and acceleration of the pipe will enter an instant chaotic state.

(a) y(�, �), �0 (b) v(�, �), �0 (c) a(�, �), �0

(d) y(�, �), �k (e) v(�, �), �k (f) a(�, �), �k

FIGURE 6 Three-dimensional dynamic response map as � varying when n values 4 for (a) y(�, �), �0 , (b) v(�, �), �0, (c)
a(�, �), �0, (d) y(�, �), �k, (e) v(�, �), �k and (f) a(�, �), �k.

The second factor is variable fractional order � = �0 − �k
D
2
)2y
)�2

, when )
2y
)�2

≥
2�b
D

. With the change of �0 in the first three
figures in Fig. 6 , when �0 takes several fixed values, the displacement, velocity and acceleration of the pipe will enter an instant
chaotic state. Similarly, when �k takes several fixed values in the last three figures in Fig. 6 ,the displacement, velocity and
acceleration of the pipe will also enter an instant chaotic state.
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FIGURE 7 Dynamic response as �fk varying when n values 4 for (a) y(�, �) , (b) v(�, �) and (c) a(�, �).
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The third factor is the internal fluid density �f = �fb + �fk� in Fig. 7 , With the increase of �fk , the displacement, velocity
and acceleration of the pipe enter into a long-term chaotic state.
The viscoelastic pipewould occur to be a strong oscillation response at chaotic state.Meanwhile, this can cause the viscoelastic

pipe damaged and bring unpredictable losses. According to the above analysis and discussions, the physical quantity values and
value regions of the viscoelastic pipe entering chaotic state can be computed by the shifted Legendre polynomials algorithm at
different cases. The proposed algorithm contributes to the physics and sciences field related to vortex-induced vibration of the
viscoelastic pipe conveying fluid and avoids risk physical quantity values and value regions. The shifted Legendre polynomials
algorithm provides a guarantee for the safe and effective performance of the viscoelastic pipe.

7 CONCLUSIONS

Due to the lack of research on fluid-solid coupling variable fractional nonlinear dynamics, the vortex-induced vibration dynamics
of viscoelastic pipes conveying pulsating fluid is studied based on the variable fractional order model. A class of nonlinear
variable fractional order composed of unknown piecewise analytic function system of equations is established. And the analytic
model of vortex-induced vibration problem is more accurate than ever. The shifted Legendre polynomials algorithm is proposed
for solving this kind of system of equations. At the same time, it is verified that the proposed numerical algorithm is accurate
and efficient for this kind of problems by convergence analysis and numerical examples. From the numerical results obtained
by the proposed algorithm, the following conclusions are drawn:
1. When the force excitation values 0, the dynamic response of the viscoelastic pipes increases nonlinearly with the linear

variation of the external fluid velocity. However, when the force excitation value is large, the effect of external fluid velocity on
the dynamic response is almost zero.
2. In the problem of vortex-induced vibration of viscoelastic pipes conveying pulsating fluid, the dynamic response will

change and enter the chaotic state with the change of parameters. The displacement, velocity and acceleration of the pipe will
enter an transcient chaotic state with external fluid velocity and variable fractional order reaching several certain values. The
displacement, velocity and acceleration of the pipe will enter a long-term chaotic state with density of internal pulsating fluid
being in a certain value region.
3. The shifted Legendre polynomials algorithm contributes to the viscoelastic pipe for avoiding risk physical quantity values

and value regions due to great potential for high-precision problems. Furthermore, the proposed algorithm not only plays a
theoretical foundation for the engineering field, but also has a guiding significance for further research in physics and science.

ACKNOWLEDGMENT

This work is supported by the Natural Science Foundation of Hebei Province (A2017203100) in China and the LE STUDIUM
RESEARCH PROFESSORSHIP award of Centre-Val de Loire region in France.

AUTHOR CONTRIBUTIONS

All authors read and approved the final manuscript.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

ORCID

Yiming Chen https://orcid.org/0000-0001-7040-8050



16

References

1. Yun KS, Youn SK. Microstructural topology optimization of viscoelastic materials of damped structures subjected to
dynamic loads. Int J Solids Struct. 2018;147:67−79. DOI:10.1016/j.ijsolstr.2018.04.022.

2. Mohammad HS, Abbas R, Saeed Z. Predictions of viscoelastic behavior of pomegranate using artificial neural network and
Maxwell model. Comput Electron Agr. 2013;98:1−7. DOI:10.1016/j.compag.2013.07.009

3. Yan W, Ying J, Chen WQ. The behavior of angle-ply laminated cylindrical shells with viscoelastic interfaces in cylindrical
bending. Compos Struct. 2007;78(4):551−559. DOI:10.1016/j.compstruct.2005.11.017.

4. Abobakr A, Said LA, Madian AH, Elwakil AS, Radwan AG. Experimental Comparison of Integer/Fractional-order
Electrical Models of Plant. Int J Electron Commun. 2017;80:1−9. DOI:10.1016/j.aeue.2017.06.010.

5. Yu CX, Zhang J, Chen YM, Feng YJ, Yang AM. A numerical method for solving fractional-order viscoelastic Euler-
Bernoulli beams. Chaos Solitons Fract. 2019;128:275−279. DOI:10.1016/j.chaos.2019.07.035.

6. Martin O. Nonlocal effects on the dynamic analysis of a viscoelastic nanobeam using a fractional Zener model. Appl Math
Model. 2019;73:637−650. DOI:10.1016/j.apm.2019.04.029.

7. Yin YB, Zhu KQ. Oscillating flow of a viscoelastic fluid in a pipe with the fractional Maxwell model. Appl Math Comput.
2006;173:231−242. DOI:10.1016/j.amc.2005.04.001.

8. Sweilam NH, AL-Mekhlafi SM, Albalawi AO, Machado JAT. Optimal control of variable-order fractional model for delay
cancer treatments. Appl Math Model. 2021;89:1557−1574. DOI:10.1016/j.apm.2020.08.012.

9. Li Z, Wang H, Xiao R, Yang S. A variable-order fractional differential equation model of shape memory polymers. Chaos
Solitons Fract. 2017;102:473−485. DOI:10.1016/j.chaos.2017.04.042.

10. Meng RF, Yin DS, Drapaca CS. Variable-order fractional description of compression deformation of amorphous glassy
polymers. Comput Mech. 2019;64:163−171. DOI:10.1007/s00466-018-1663-9.

11. Cai W, Wang P, Fan JJ. A variable-order fractional model of tensile and shear behaviors for sintered nano-silver paste used
in high power electronics. Mech Mater. 2020;145:103391. DOI:10.1016/j.mechmat.2020.103391.

12. Meng RF, Yin DS, Yang HX, Xiang GJ. Parameter study of variable order fractional model for the strain hardening behavior
of glassy polymers. Phys A:Sta Mech Appl. 2020;545:123763. DOI:10.1016/j.physa.2019.123763.

13. Zheng HX, wang JS. A numerical study on the vortex-induced vibration of flexible cylinders covered with differently placed
buoyancy modules. J Fluids Struct. 2021;100:103174. DOI:10.1016/j.jfluidstructs.2020.103174.

14. Dai HL, Wang L, Qian Q, Ni Q. Vortex-induced vibrations of pipes conveying fluid in the subcritical and supercritical
regimes. J Fluids Struct.2013;39(5):322−334. DOI:10.1016/j.jfluidstructs.2013.02.015.

15. Duan JL, Chen K, You YX, Wang RF, Li JL. Three-dimensional dynamics of vortex-induced vibration of a pipe
with internal flow in the subcritical and supercritical regimes. Int J Naval Arch Ocean Eng. 2018;10(6):692−710.
DOI:10.1016/j.ijnaoe.2017.11.002.

16. Xie WD, Gao XF, Wang EH, Xu WH, Bai YC. An investigation of the nonlinear dynamic response of a flexible pipe
undergoing vortex-induced vibrations and conveying internal fluid with variable-density. Ocean Eng. 2019;183:453−468.
DOI:10.1016/j.oceaneng.2019.05.005.

17. Dai HL, Wang L, Qian Q, Ni Q. Vortex-induced vibrations of pipes conveying pulsating fluid. Ocean Eng. 2014;77:12−22.
DOI:10.1016/j.oceaneng.2013.12.006.

18. Yang WW, Ai ZJ, Zhang XD, Chang XP, Gou RY. Nonlinear dynamics of three-dimensional vortex-
induced vibration prediction model for a flexible fluid-conveying pipe. Int J Mech Sci. 2018;138-139:99−109.
DOI:10.1016/j.ijmecsci.2018.02.005.



17

19. Zhang XD, Gou RY,Yang WW, Chang XP. Vortex-induced vibration dynamics of a flexible fluid-conveying marine riser
subjected to axial harmonic tension. J Brazil Soc Mech Sci Eng. 2018;40(8):365. DOI:10.1007/s40430-018-1289-z.

20. Keramat A, Tijsseling AS, Hou Q, Ahmadi A. Fluid-structure interaction with pipe-wall viscoelasticity during water
hammer. J Fluids Struct. 2012;28(1):434−455. DOI:10.1016/j.jfluidstructs.2011.11.001.

21. Wahba EM. On the two-dimensional characteristics of laminar fluid transients in viscoelastic pipes. J Fluids Struct.
2017;68:113−124. DOI:10.1016/j.jfluidstructs.2016.10.012.

22. Yang WW, Ai ZJ, Zhang XD, Gou RY, Chang XP. Nonlinear three-dimensional dynamics of a marine viscoelastic riser
subjected to uniform flow. Ocean Eng. 2018;149:38−52. DOI:10.1016/j.oceaneng.2017.12.004.

23. Qu HD, Liu X, She Z. Neural network method for fractional-order partial differential equations. Neurocomputing.
2020;414:225−237. DOI:10.1016/j.neucom.2020.07.063.

24. Ramezani M. Numerical analysis nonlinear multi-term time fractional differential equation with collocation method via
fractional B-spline. Math Meth Appl Sci. 2019;42(1):4640−4663. DOI:10.1002/mma.5642.

25. Ansari A, Sheikhani AR, Najafi HS. Solution to system of partial fractional differential equations using the fractional
exponential operators. Math Meth Appl Sci. 2012;35(1):119−123. DOI:10.1002/mma.1545.

26. Chen YM , Wei YQ, Liu DY, Boutat D, Chen XK. Variable-order fractional numerical differentiation for noisy signals by
wavelet denoising. J Comput Phys. 2016;311:338−347. DOI:10.1016/j.jcp.2016.02.013.

27. El-Sayed AA, Agarwal P. Numerical solution of multiterm variable-order fractional differential equations via shifted
Legendre polynomials. Math Meth Appl Sci. 2019;42(11):3978−3991. DOI:10.1002/mma.5627.

28. Chen YM, Liu LQ, Li BF, Sun YN. Numerical solution for the variable order linear cable equation with Bernstein
polynomials. Appl Math Comput.2014;238:329−341. DOI:10.1016/j.amc.2014.03.066.

29. Tayebi A, Shekari Y, HeydariMH.Ameshlessmethod for solving two-dimensional variable-order time fractional advection-
diffusion equation. J Comput Phys. 2017;340:655−669. DOI:10.1016/j.jcp.2017.03.061.

30. Liu JM, Li XK, Hu XL. A RBF-based differential quadrature method for solving two-dimensional variable-order time
fractional advection-diffusion equation. J Comput Phys. 2019;384:222−238. DOI:10.1016/j.jcp.2018.12.043.

31. Faghih A, Mokhtary P. A new fractional collocation method for a system of multi-order fractional differential equations
with variable coefficients. J Comput Appl Math. 2021;383:113139. DOI:10.1016/j.cam.2020.113139.

32. Heydari MH, Avazzadeh Z, Atangana A. Orthonormal shifted discrete Legendre polynomials for solving a coupled system
of nonlinear variable-order time fractional reaction-advection-diffusion equations. Appl Num Math. 2021;161:425−436.
DOI:10.1016/j.apnum.2020.11.020.

33. Coimbra CFM. Mechanics with variable-order differential operators. Annalen der Physik. 2003;12(11-12):692−703.
DOI:10.1002/andp.200310032.

34. Meng RF, Yin DS, Drapaca CS. A variable order fractional constitutive model of the viscoelastic behavior of polymers. Int
J Non-Linear Mech. 2019;113:171−177. DOI:10.1016/j.ijnonlinmec.2019.04.002.

35. Chen YM, Ke XH, Wei YQ. Numerical algorithm to solve system of nonlinear fractional differential equations based on
wavelets method and the error analysis. Appl Math Comput. 2015;143:203−222. DOI:10.1016/j.amc.2014.11.079



18

APPENDIX

A THE DERIVATION PROCESS OF THE GOVERNING SYSTEM OF EQUATIONS OF
VISCOELASTIC PIPES CONVEYING FLUID

This section illustrates the specifical derivation process of Eq.(4). It is noted that the physical quantities not specifically explained
in this section are given in Table 1 .
Hamilton’s principal is written as the following form:

t2

∫
t1

(�T − �V + �W )dt = 0 (A1)

where T is total kinetic energy, V is potential energy,W is nonconservative work.
Total kinetic energy T contains three parts

T = Tp + Tf + Ta (A2)

where the kinetic energy of the pipe Tp =
1
2
mp ∫

L
0 (
)w
)t
)2dx, the kinetic energy of the internal fluid Tf =

1
2
mf ∫

L
0

[

()w
)t

+

Vi
)w
)x
)2 + V 2

i

]

dx and the kinetic energy of the additional external fluid Ta =
1
2
ma ∫

L
0 (
)w
)t
)2dx. Similarly, total mass per unit

length contains three parts m = mp + mf + ma where mp is mass per unit length of the pipe, mf is mass per unit length of the
internal fluid and ma is mass per unit length of the additional external fluid which is defined as ma =

1
4
��0D2.

The potential energy of the pipe is written as:

V = 1
2 ∫
Vr

[

E��(−z )
2+�w
)x2)t�

) − P0
]

"dVr (A3)

where " = −z)
2w
)x2

, z is the radial coordinate of the circular section for the pipe and Vr is the volume of the pipe.
The nonconservative workW is formulated as:

�W =

L

∫
0

f�wdx −

L

∫
0

Cs
)w
)t
�wdx (A4)

where f is the vortex-induced and excitation forces.
Substituting Eqs.(A2)-(A4) into Eq.(A1) respectively, the following formulations hold:

m)
2w
)t2

+ [mfV 2
i + mf

)Vi
)t
(L − x) − P0]

)2w
)x2

+2mfVi
)2w
)x)t

+ EI�� )
4+�w
)x4)t�

+ Cs
)w
)t

= f.

(A5)

In addition, force f containing three parts hydrodynamic damping force fD(x, t) = −1
2
CD�0DVe

)w
)t

, lift force fL(x, t) =
1
4
CL0�0DV

2
e q and excitation force fe can be expressed as:

f = fD + fL + fe (A6)

Furthermore, the second formulation of Eq.(4) is from Ref.[14] and the third formulation of Eq.(4) is from Ref.[34]. After
the above derivation, the governing system of equations are written as Eq.(4).
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