References
Asghar, M., Hasselquist, D., Hansson,
B., Zehtindjiev, P., Westerdahl, H., & Bensch, S. (2015). Hidden costs
of infection: Chronic malaria accelerates telomere degradation and
senescence in wild birds. Science, 347 (6220), 436-438.
Beaulieu, M., Reichert, S., Le Maho,
Y., Ancel, A., & Criscuolo, F. (2011). Oxidative status and telomere
length in a long-lived bird facing a costly reproductive event.Functional Ecology, 25 (3), 577-585.
doi:10.1111/j.1365-2435.2010.01825.x
Becker, P. J. J., Reichert, S., Zahn,
S., Hegelbach, J., Massemin, S., Keller, L. F., . . . Criscuolo, F.
(2015). Mother-offspring and nest-mate resemblance but no heritability
in early-life telomere length in white-throated dippers.Proceedings of the Royal Society B: Biological Sciences,
282 (1807), 20142924-20142924. doi:10.1098/rspb.2014.2924
Beckman, K. B., & Ames, B. N. (1998).
The free radical theory of aging matures. Physiological Reviews,
78 (2), 547-581.
Bennett, P. M., & Owens, I. P. F.
(2002). Evolutionary ecology of birds: life histories, mating systems
and extinction. New York ; U.S.A. :. Oxford University Press.
Bernardes de Jesus, B., & Blasco, M.
A. (2012). Potential of telomerase activation in extending health span
and longevity. Current Opinion in Cell Biology, 24 (6), 739-743.
doi:10.1016/j.ceb.2012.09.004
Bichet, C., Bouwhuis, S., Bauch, C.,
Verhulst, S., Becker, P. H., & Vedder, O. (2020). Telomere length is
repeatable, shortens with age and reproductive success, and predicts
remaining lifespan in a long-lived seabird. Molecular Ecology .
doi:10.1111/mec.15331
Bize, P., Criscuolo, F., Metcalfe, N.
B., Nasir, L., & Monaghan, P. (2009). Telomere dynamics rather than age
predict life expectancy in the wild. Proceedings of the Royal
Society B: Biological Sciences, 276 (1662), 1679-1683.
doi:10.1098/rspb.2008.1817
Boonekamp, J. J., Bauch, C., &
Verhulst, S. (2020). Experimentally increased brood size accelerates
actuarial senescence and increases subsequent reproductive effort in a
wild bird population. Journal of Animal Ecology, 89 (6),
1395-1407. doi:10.1111/1365-2656.13186
Boonekamp, J. J., Mulder, G. A.,
Salomons, H. M., Dijkstra, C., & Verhulst, S. (2014). Nestling telomere
shortening, but not telomere length, reflects developmental stress and
predicts survival in wild birds. Proceedings of the Royal Society
B: Biological Sciences, 281 (1785), 20133287-20133287.
doi:10.1098/rspb.2013.3287
Bouwhuis, S., Charmantier, A.,
Verhulst, S., & Sheldon, B. C. (2010). Individual variation in rates of
senescence: natal origin effects and disposable soma in a wild bird
population. Journal of Animal Ecology, 79 (6), 1251-1261.
doi:10.1111/j.1365-2656.2010.01730.x
Briga, M. (2016). Growing up and
growing old: A longitudinal study on aging in zebra finches. In:
University of Groningen. Groningen, The Netherlands.doi:10.13140/rg.2.2.12893.00481
Briga, M., Jimeno, B., & Verhulst,
S. (2019). Coupling lifespan and aging? The age at onset of body mass
decline associates positively with sex-specific lifespan but negatively
with environment-specific lifespan. Experimental Gerontology,
119 , 111-119. doi:10.1016/j.exger.2019.01.030
Brown, J. H., & Sibly, R. M. (2006).
Inaugural Article: Life-history evolution under a production constraint.Proceedings of the National Academy of Sciences, 103 (47),
17595-17599. doi:10.1073/pnas.0608522103
Buttemer, W. A., Abele, D., &
Costantini, D. (2010). From bivalves to birds: oxidative stress and
longevity. Functional Ecology, 24 (5), 971-983.
doi:10.1111/j.1365-2435.2010.01740.x
Cohen, J. (1988) Statistical Power
Analysis for the Behavioral Sciences, 2nd edition. Erlbaum,
Hillsdale, NJ.
Cohen, A. A., Coste, C. F. D., Li, X.-Y., Bourg, S., Pavard, S., &
Gaillard, J.-M. (2019). Are trade-offs really the key drivers of ageing
and life span? Functional Ecology, 34 (1), 153-166.
doi:10.1111/1365-2435.13444
Cornell, A., Gibson, K. F., Williams,
T. D., & Portugal, S. (2017). Physiological maturity at a critical
life-history transition and flight ability at fledging. Functional
Ecology, 31 (3), 662-670. doi:10.1111/1365-2435.12777
Dantzer, B., & Fletcher, Q. E.
(2015). Telomeres shorten more slowly in slow-aging wild animals than in
fast-aging ones. Experimental Gerontology, 71 , 38-47.
doi:10.1016/j.exger.2015.08.012
De Magalhaes, J. P., & Costa, J.
(2009). A database of vertebrate longevity records and their relation to
other life-history traits. Journal of Evolutionary Biology,
22 (8), 1770-1774. doi:10.1111/j.1420-9101.2009.01783.x
de Magalhaes, J. P., Costa, J., &
Church, George M. (2007). An Analysis of the Relationship Between
Metabolism, Developmental Schedules, and Longevity Using Phylogenetic
Independent Contrasts. Journal of Gerontology, 62A (2), 149-160.
Delhaye, J., Salamin, N., Roulin, A.,
Criscuolo, F., Bize, P., & Christe, P. (2016). Interspecific
correlation between red blood cell mitochondrial ROS production,
cardiolipin content and longevity in birds. Age, 38 (5-6),
433-443. doi:10.1007/s11357-016-9940-z
Dobson, F. S., & Jouventin, P.
(2007). How slow breeding can be selected in seabirds: testing Lack’s
hypothesis. Proceedings of the Royal Society B: Biological
Sciences, 274 (1607), 275-279. doi:10.1098/rspb.2006.3724
Dobson, F. S., & Oli, M. K. (2007).
Fast and slow life histories of mammals. Ecoscience, 14 (3),
292-299.
Dugdale, H. L., & Richardson, D. S.
(2018). Heritability of telomere variation: it is all about the
environment! Philosophical Transactions of the Royal Society B:
Biological Sciences, 373 (1741), 20160450. doi:10.1098/rstb.2016.0450
Dunn, P. O., & Møller, A. P. (2014).
Changes in breeding phenology and population size of birds.Journal of Animal Ecology, 83 (3), 729-739.
doi:10.1111/1365-2656.12162
Eisenberg, D. T. A. (2019). Paternal
age at conception effects on offspring telomere length across
species—What explains the variability? PLoS Genetics, 15 (2),
e1007946. doi:10.1371/journal.pgen.1007946.t001
Gaillard, J.-M., & Lemaître, J.-F.
(2017). The Williams’ legacy: A critical reappraisal of his nine
predictions about the evolution of senescence. Evolution, 71 (12),
2768-2785. doi:10.1111/evo.13379
Gaillard, J.-M., Lemaître, J.-F., &
Fox, C. (2020). An integrative view of senescence in nature.Functional Ecology, 34 (1), 4-16. doi:10.1111/1365-2435.13506
Gaillard, J.-M., Pontier, D.,
Allainé, D., Lebreton, J. D., Trouvilliez, J., & Clobert, J. (1989). An
analysis of demographic tactics in birds and mammals. Oikos, 56 ,
59-76.
Gomes, N. M. V., Ryder, O. A., Houck,
M. L., Charter, S. J., Walker, W., Forsyth, N. R., . . . Wright, W. E.
(2011). Comparative biology of mammalian telomeres: hypotheses on
ancestral states and the roles of telomeres in longevity determination.Aging Cell, 10 , 761-768.
Gorbunova, V., & Seluanov, A.
(2009). Coevolution of telomerase activity and body mass in mammals:
From mice to beavers. Mechanisms of Ageing and Development,
130 (1-2), 3-9. doi:10.1016/j.mad.2008.02.008
Grafen, A. (1989). The phylogenetic
regression. Philosophical Transactions of the Royal Society of
London. Series B: Biological Sciences, 326 , 119-157.
Grasman, J., Salomons, H. M., &
Verhulst, S. (2011). Stochastic modeling of length-dependent telomere
shortening in Corvus monedula . Journal of Theoretical
Biology, 282 (1), 1-6. doi:10.1016/j.jtbi.2011.04.026
Greider, C. W., & Blackburn, E. H.
(1985). Identification of a Specific Telomere Terminal
Transferase-Activity in Tetrahymena Extracts. Cell, 43 (2),
405-413.
Hadfield, J. D. (2010). MCMC Methods
for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R
Package. Journal of Statistical Software, 33 (2), 1-22.
Hadfield, J. D., & Nakagawa, S.
(2010). General quantitative genetic methods for comparative biology:
phylogenies, taxonomies and multi-trait models for continuous and
categorical characters. Journal of Evolutionary Biology, 23 (3),
494-508. doi:10.1111/j.1420-9101.2009.01915.x
Harley, C. B., Futcher, A. B., &
Greider, C. W. (1990). Telomeres shorten during ageing of human
fibroblasts. Nature, 345 , 458-460.
Harvey, P. H., & Purvis, A. (1999).
Understanding the ecological and evolutionary reasons for life history
variation: Mammals as a case study. in J. McGlade (ed.). Advanced
Ecological Theory: Principles and Applications. Blackwell Science,
Malden, Massachusetts. , 232-348.
Haussmann, M. F., Winkler, D. W.,
Huntington, C. E., Nisbet, I. C. T., & Vleck, C. M. (2004). Telomerase
Expression Is Differentially Regulated in Birds of Differing Life Span.Annals of the New York Academy of Sciences, 1019 (1), 186-190.
doi:10.1196/annals.1297.029
Haussmann, M. F., Winkler, D. W.,
O’Reilly, K. M., Huntington, C. E., Nisbet, I. C. T., & Vleck, C. M.
(2003). Telomeres shorten more slowly in long-lived birds and mammals
than in short-lived ones. Proceedings of the Royal Society B:
Biological Sciences, 270 (1522), 1387-1392. doi:10.1098/rspb.2003.2385
Haussmann, M. F., Winkler, D. W., &
Vleck, C. M. (2005). Longer telomeres associated with higher survival in
birds. Biology Letters, 1 (2), 212-214. doi:10.1098/rsbl.2005.0301
Hayward, A. D., Moorad, J., Regan, C.
E., Berenos, C., Pilkington, J. G., Pemberton, J. M., & Nussey, D. H.
(2015). Asynchrony of senescence among phenotypic traits in a wild
mammal population. Experimental Gerontology, 71 , 56-68.
doi:10.1016/j.exger.2015.08.003
Heidinger, B. J., Blount, J. D.,
Boner, W., Griffiths, K., Metcalfe, N. B., & Monaghan, P. (2012).
Telomere length in early life predicts lifespan. Proceedings of
the National Academy of Sciences, 109 , 1742-1748.
doi:10.1073/pnas.1113306109
Hemann, M. T., & Greider, C. W.
(2000). Wild-derived inbred mouse strains have short telomeres.Nucleic Acids Research, 28 (22), 4474-4478.
Herborn, K. A., Heidinger, B. J.,
Boner, W., Noguera, J. C., Adam, A., Daunt, F., & Monaghan, P. (2014).
Stress exposure in early post-natal life reduces telomere length: an
experimental demonstration in a long-lived seabird. Proceedings of
the Royal Society B: Biological Sciences, 281 (1782), 20133151.
doi:10.1098/rspb.2013.3151
Hulbert, A., Pamplona, R.,
Buffenstein, R., & Buttemer, W. (2007). Life and death: metabolic rate,
membrane composition, and life span of animals. Physiological
Reviews, 87 , 1176-1213. doi:10.1152/physrev.00047.2006.
Jetz, W., Thomas, G. H., Joy, J. B.,
Hartmann, K., & Mooers, A. O. (2012). The global diversity of birds in
space and time. Nature, 491 (7424), 444-448.
doi:10.1038/nature11631
Jones, O. R., Gaillard, J.-M.,
Tuljapurkar, S., Alho, J. S., Armitage, K. B., Becker, P. H., . . .
Coulson, T. (2008). Senescence rates are determined by ranking on the
fast-slow life-history continuum. Ecology Letters, 11 (7),
664-673. doi:10.1111/j.1461-0248.2008.01187.x
Lê, S., Josse, J., & Husson, F.
(2008). FactoMineR: An R Package for Multivariate Analysis.Journal of Statistical Software, 25 (1), 2-18.
Liberati, A., Altman, D. G.,
Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Loannidis, J. P. A., . . .
Moher, D. (2009). The PRISMA Statement for Reporting Systematic Reviews
and Meta-Analyses of Studies That Evaluate Health Care Interventions:
Explanation and Elaboration. PLoS Medicine, 6 (7), e1000100.
doi:doi:10.1371/journal.pmed.1000100. PMC 2707010. PMID 19621070
Lieshout, S. H. J., Bretman, A.,
Newman, C., Buesching, C. D., Macdonald, D. W., & Dugdale, H. L.
(2019). Individual variation in early-life telomere length and survival
in a wild mammal. Molecular Ecology, 28 , 4152-4165.
doi:10.1111/mec.15212
Lindstedt, S. L., & Calder, W. A.
(1976). Body size and longevity in birds. The Condor, 78 , 91-145.
LIndstedt, S. L., & Calder, W. A.
(1981). Body size, physiological time, and longevity of homeothermic
animals. The Quarterly Review of Biology, 56 (1), 1-16.
Metcalfe, N., & Monaghan, P. (2003).
Growth versus lifespan: perspectives from evolutionary ecology.Experimental Gerontology, 38 (9), 935-940.
doi:10.1016/s0531-5565(03)00159-1
Miller, R. A., Harper, J. M.,
Galecki, A., & Burke, D. T. (2002). Big mice die young: early life body
weight predicts longevity in genetically heterogeneous mice. Aging
Cell, 1 , 22-29.
Monaghan, P., & Ozanne, S. E.
(2018). Somatic growth and telomere dynamics in vertebrates:
relationships, mechanisms and consequences. Philosophical
Transactions of the Royal Society B: Biological Sciences, 373 (1741),
20160446. doi:10.1098/rstb.2016.0446
Nussey, D. H., Froy, H., Lemaitre,
J.-F., Gaillard, J.-M., & Austad, S. N. (2013). Senescence in natural
populations of animals: Widespread evidence and its implications for
bio-gerontology. Ageing Research Reviews, 12 (1), 214-225.
doi:10.1016/j.arr.2012.07.004
Paradis, E., Claude, J., & Strimmer,
K. (2004). APE: analyses of phylogenetics and evolution in R language.Bioinformatics, 20 , 289-290.
Quque, M., Paquet, M., Zahn, S.,
Théron, F., Faivre, B., Sueur, C., . . . Covas, R. (2021). Contrasting
associations between nestling telomere length and pre and postnatal
helpers’ presence in a cooperatively breeding bird. Oecologia ,
1-15.
Read, A. F., Harvey, P. H. (1989) Life history differences among the
eutherian radiations. Journal of Zoology, 219 , 329-353.
Revell, L. J. (2012). phytools: an R
package for phylogenetic comparative biology (and other things).Methods in Ecology and Evolution, 3 (2), 217-223.
doi:10.1111/j.2041-210X.2011.00169.x
Ricklefs, R. E. (2006). Embryo
development and ageing in birds and mammals. Proceedings of the
Royal Society B: Biological Sciences, 273 (1597), 2077-2082.
doi:10.1098/rspb.2006.3544
Ricklefs, R. E. (2008). The evolution
of senescence from a comparative perspective. Functional Ecology,
22 (3), 379-392. doi:10.1111/j.1365-2435.2008.01420.x
Ricklefs, R. E., Shea, R. E., &
Choi, I.-H. (1994). Inverse relationship between functional maturity and
exponential growth rate of avian skeletal muscle: a constraint on
evolutionary response. Evolution, 48 (4), 1080-1088.
Risques, R. A., & Promislov, D. E.
L. (2018). All’s well that ends well: why large species have short
telomeres. Philosophical Transactions of the Royal Society B:
Biological Sciences, 373 , 20160448. doi:10.1098/rstb.2016.0448
10.6084/m9
Roff, D. A. (2002). Life History
Evolution. Sunderland, MA: Sinauer Associates .
Salomons, H. M., Mulder, G. A., van
de Zande, L., Haussmann, M. F., Linskens, M. H. K., & Verhulst, S.
(2009). Telomere shortening and survival in free-living corvids.Proceedings of the Royal Society B: Biological Sciences,
276 (1670), 3157-3165. doi:10.1098/rspb.2009.0517
Seluanov, A., Chen, Z., Hine, C.,
Sasahara, T. H. C., Ribeiro, A. A. C. M., Catania, K. C., . . .
Gorbunova, V. (2007). Telomerase activity coevolves with body mass, not
lifespan. Aging Cell, 6 , 45-52.
Simons, M. J. P. (2015). Questioning
causal involvement of telomeres in aging. Ageing Research
Reviews . doi:10.1016/j.arr.2015.08.002
Speakman, J. R. (2005a). Body size,
energy metabolism and lifespan. Journal of Experimental Biology,
208 (9), 1717-1730. doi:10.1242/jeb.01556
Speakman, J. R. (2005b). Correlations
between physiology and lifespan – two widely ignored problems with
comparative studies. Aging Cell, 4 , 167-175.
Speakman, J. R., Blount, J. D.,
Bronikowski, A. M., Buffenstein, R., Isaksson, C., Kirkwood, T. B. L., .
. . Selman, C. (2015). Oxidative stress and life histories: unresolved
issues and current needs. Ecology and Evolution, 5 (24),
5745-5757. doi:10.1002/ece3.1790
Starck, J. M., & Ricklefs, R. E.
(1998). Patterns of development: the altricial-precocial spectrum. .Oxford Ornithology Series, 8 , 3-30.
Stearns, S. C. (1992). The evolution
of life histories. Oxford University Press .
Stier, A., Metcalfe, N. B., &
Monaghan, P. (2019). Ageing before birth: pace and stability of prenatal
growth affect telomere dynamics. bioRxiv , 809087.
doi:10.1101/809087
Stier, A., Viblanc, V. A.,
Massemin-Challet, S., Handrich, Y., Zahn, S., Rojas, E. R., . . .
Criscuolo, F. (2014). Starting with a handicap: phenotypic differences
between early- and late-born king penguin chicks and their survival
correlates. Functional Ecology, 28 (3), 601-611.
doi:10.1111/1365-2435.12204
Sudyka, J., Arct, A., Drobniak, S.,
Dubiec, A., Gustafsson, L., & Cichon, M. (2014). Experimentally
increased reproductive effort alters telomere length in the blue tit
(Cyanistes caeruleus ). Journal of Evolutionary Biology .
doi:10.1111/jeb.12479
Sudyka, J., Arct, A., Drobniak, S.,
Gustafsson, L., & Cichoń, M. (2015). Longitudinal studies confirm
faster telomere erosion in short-lived bird species. Journal of
Ornithology, 157 (1), 373-375. doi:10.1007/s10336-015-1304-4
Tarry-Adkins, J. L., Chen, J. H.,
Smith, N. S., Jones, R. H., Cherif, H., & Ozanne, S. E. (2009). Poor
maternal nutrition followed by accelerated postnatal growth leads to
telomere shortening and increased markers of cell senescence in rat
islets. The FASEB Journal, 23 (5), 1521-1528.
doi:10.1096/fj.08-122796
Tian, X., Doerig, K., Park, R., Can
Ran Qin, A., Hwang, C., Neary, A., . . . Gorbunova, V. (2018). Evolution
of telomere maintenance and tumour suppressor mechanisms across mammals.Philosophical Transactions of the Royal Society B: Biological
Sciences, 373 , 20160443. doi:10.1098/rstb.2016.0443 10.6084/m9
Tricola, G. M., Simons, M. J. P.,
Atema, E., Boughton, R. K., Brown, J. L., Dearborn, D. C., . . .
Haussmann, M. F. (2018). The rate of telomere loss is related to maximum
lifespan in birds. Philosophical Transactions of the Royal Society
B: Biological Sciences, 373 (1741), 20160445. doi:10.1098/rstb.2016.0445
Varela, E., Muñoz-Lorente, M. A.,
Tejera, A. M., Ortega, S., & Blasco, M. A. (2016). Generation of mice
with longer and better preserved telomeres in the absence of genetic
manipulations. Nature Communications, 7 , 11739.
doi:10.1038/ncomms11739
Vedder, O., Moiron, M., Bichet, C.,
Bauch, C., Verhulst, S., Becker, P. H., & Bouwhuis, S. (2021). Telomere
length is heritable and genetically correlated with lifespan in a wild
bird. . Molecular Ecology .
Vedder, O., Verhulst, S., Bauch, C.,
& Bouwhuis, S. (2017). Telomere attrition and growth: a life-history
framework and case study in common terns. Journal of Evolutionary
Biology, 30 (7), 1409-1419. doi:10.1111/jeb.13119
Vedder, O., Verhulst, S., Zuidersma,
E., & Bouwhuis, S. (2018). Embryonic growth rate affects telomere
attrition: an experiment in a wild bird. The Journal of
Experimental Biology, 221 (15), jeb181586. doi:10.1242/jeb.181586
Vera, E., Bernardes de Jesus, B.,
Foronda, M., Flores, Juana M., & Blasco, Maria A. (2012). The Rate of
Increase of Short Telomeres Predicts Longevity in Mammals. Cell
Reports, 2 (4), 732-737. doi:10.1016/j.celrep.2012.08.023
Verhulst, S., Dalgård, C., Labat, C.,
Kark, J. D., Kimura, M., Christensen, K., . . . Benetos, A. (2016). A
short leucocyte telomere length is associated with development of
insulin resistance. Diabetologia, 59 (6), 1258-1265.
doi:10.1007/s00125-016-3915-6
Viblanc, V. A., Schull, Q., Stier,
A., Durand, L., Lefol, E., Robin, J.-P., . . . Criscuolo, F. (2020).
Foster rather than biological parental telomere length predicts
offspring survival and telomere length in king penguins. Molecular
Ecology . doi:10.1111/mec.15485
Whittemore, K., Vera, E.,
Martínez-Nevado, E., Sanpera, C., & Blasco, M. A. (2019). Telomere
shortening rate predicts species life span. Proceedings of the
National Academy of Sciences, 116 (30), 15122-15127.
doi:10.1073/pnas.1902452116
Wilbourn, R. V., Moatt, J. P., Froy,
H., Walling, C. A., Nussey, D. H., & Boonekamp, J. J. (2018). The
relationship between telomere length and mortality risk in non-model
vertebrate systems: a meta-analysis. Philosophical Transactions of
the Royal Society B: Biological Sciences, 373 , 20160447.
doi:10.1098/rstb.2016.0447 10.6084/m9
Young, A. J. (2018). The role of
telomeres in the mechanisms and evolution of life-history trade-offs and
ageing. Philosophical Transactions of the Royal Society B:
Biological Sciences, 373 (1741), 20160452. doi:10.1098/rstb.2016.0452