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Abstract
Variable creep load is one of the most important failure modes for hot-component of aero-engine. To accurately predict creep damage and remaining life, a novel nonlinear creep damage accumulation model is proposed based on the Wilshire function and isodamage line, which takes the influence of load history into account and uses ultimate tension strength to compensate the temperature effect. Experimental result of tests on four kinds of material were utilized to verify the accuracy of the proposed model and to compare it with existing models. It was determined that the novel model was better at predicting damage accumulation than all others model. Furthermore, the proposed model elucidates the evolutionary process of creep damage, and four cases of damage evolution process are discussed.
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1. Introduction

Engineering components, such as aircraft engine blades, gas turbines, and power plants are often subjected to variable loading conditions at high temperatures. Accurately predicting the creep damage accumulation and evaluating the remaining life of these structures is essential to their operation.  GOTOBUTTON ZEqnNum479725  \* MERGEFORMAT The creep properties of materials are usually characterized by the dependence of the minimum creep rate on temperature and stress, and is expressed by the power-law creep equation1–3
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Where A is a constant, n is the stress exponent, 
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 is the creep activation energy, 
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 is the temperature, and 
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 is the universal gas constant. It is generally recognized that different creep mechanisms become dominant in dissimilar temperature-stress regimes4–9. For instance, creep occurs by lattice diffusion and grain boundary diffusion, with the deformation mainly proceeding in the form of a vacancy migration when 
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 at low stresses. As the stress increases, the value of n also shows a similar trend, where the dislocation processes controlling creep become dominate, with n increasing rapidly in the “power-law breakdown” region10,11. Accompany the development of the exponent are simultaneous changes in the creep activation energy
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As the strain accumulates, different damage processes occur, which include the development of transgranular cracks, grain boundary cavitation, neck formation and deterioration of the microstructure, which ultimately results in rupture12–16. It is evident that the creep deformation and mechanisms of damage are different under dissimilar stresses and temperatures. In addition, the load history will seriously affect the accumulation process of creep damage, and that failure occurs when a critical value is reached.

Numerous creep damage accumulation models to calculate the damage have been proposed 17–24. Among them, the most famous are the linear damage accumulation rules, such as the time fraction method, strain fraction method, and mixed rule25. Due to the simplicity of the linear damage accumulation rule, it has been widely used in practical applications. For instance, the time friction method has been used in design codes such as ASME BPVC, and RCC-MRx26.
The creep constitutive model based on continuous damage mechanics developed by Kachanov and Rabotnov in the 1950s and ‘60s has received much attention and improvement. These creep damage constitutive models can be divided into two categories, namely stress-based creep damage models, and strain-based creep damage models, which are generally known as the ductility exhaustion approach27. The stress-based creep damage models have been development with many definitions, including the famous Kachanov-Rabotnov damage model28, the Liu-Murakami damage model29, the hyperbolic sine model24 with a single damage state parameter, the Othman-Hayhurst-Dyson damage model 30, with two damage state parameters, and the Kowalewski-Hayhurst-Dyson31, and Perrin-Hayhurst models32 each with three damage state parameters, respectively, etc. The damage process caused by nucleation and the growth of cavities, the multiplication of the dislocation density, dynamic coarsening of the microstructure, and the hardening of the creep strain, etc. can be represented by different damage state parameters. The strain-based ductility exhaustion models consider a failure to have occurred when the local accumulated strain reaches a critical ductility value33. In the UK this method is used as part of the R5 procedures to assess creep damage34.

However, it was experimentally established that the load interaction and the sequence will seriously affect the accumulation process of creep damage35,36. Therefore, in recent years, many attempts have been made to develop nonlinear creep damage accumulation models37–40. Pavlou37 proposed a nonlinear damage accumulation model based on time friction and on the Larson-Miller parameter. The Larson-Miller parameter can only guarantee an extrapolation accuracy to three times the lifetime of the material. This means that this model can only be applied to a narrow range of stress and temperature conditions. Besides, the Pavlou model will introduce additional errors for materials that have a shorter life when high temperatures are first applied under variable temperature creep conditions and vice versa. Batsoulas38 presented a nonlinear creep damage model which takes the strain into account. Unfortunately, it was found that Batsoulas’ model has some contradictions after the derivation was carefully obtained. Hu40 modified the exponential term based on Batsoulas’ model. However, this method does not have unambiguous physical significance. Many studies41–47 have demonstrated that the rupture strain has significant scatter compared to the rupture time, and a unified rupture strain expression has not yet been formulated. Therefore, the nonlinear damage accumulation model based on the strain fraction remains strongly dependent on material type.

In the present study, a novel nonlinear damage accumulation model based on the Wilshire function and the isodamage line is proposed. It incorporates the influence of the load history and it uses the ultimate tension strength to account for changes in temperature. The proposed model can be applied to a wide range of stress and temperature conditions. Finally, the accuracy of the model was validated using experimental data of different materials.

2. Creep damage accumulation

The accumulation of creep damage is a process that depends on the failure procedure which is strongly affected by the load sequence. The evolution equation of creep damage can be expressed as:
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where D,
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 are the actual state of damage, stress, temperature, material property, time, and the change in time, respectively. Making the reasonable assumption that the relative increase of creep damage 
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 is a linear function of a relative increase in time 
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, then the damage equation can be rewritten as follows:
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where 
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 is a stress-temperature factor.

Integrating from 
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, the above equation results in:
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The above equation for damage accumulation under different exponents
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 is illustrated in Figure 1. A similar form has been proposed by previous researchers37. For a two-step loading condition, if the specimen is firstly loaded at 
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 is the corresponding rupture time, and the level of damage can be represented by point A. Changing to second step load level with 
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 up to failure, then point A moves to point B at the same damage level. The damage evolves along the 
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 curve until the failure takes place. The level of damage corresponding to points A and B is then the same, and we take:
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where 
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FIGURE 1 Creep damage curves
3. Wilshire function

In recently years, Wilshire et.al48–50 proposed a new method known as the Wilshire function, which can accurately predict the minimum creep strain rate, and the time to rupture. The Wilshire function for rupture time, temperature, and stress can be expressed as:
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where 
[image: image72.wmf]b

s

 is the ultimate tension strength, 
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 is the applied stress, 
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 is the rupture time, 
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 is the creep activation energy, 
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 is the temperature, 
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 is the universal gas constant, and 
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 and 
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 are material constants which can be obtained by a least-square fitting procedure.

Taking the logarithm of the above equation, then Equation (7) becomes:
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Many experimental results indicated that 
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Changes in the creep deformation mechanism will affect the form of the Wilshire equation. When the creep stress gradually increases to near the yield strength and further increases to the ultimate tensile strength, there is a turning point in the Wilshire equation, corresponding to two different sets of 
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 values. The turning point occurs near the yield strength. Wilshire et.al51 pointed out that the creep deformation can be divided into two contributions: grain, and grain boundary deformation. The dislocation density increases rapidly as the plastic deformation increases, the grain interiors govern the accumulation of strain, in which the activation energy is consistent with the lattice diffusion activation energy when above the yield strength 
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. In contrast to this, when the stress is below the yield strength, the deformation of the dislocations with the grains becomes increasingly difficult. The deformation is mainly limited to the grain boundary. The activation energy coincides with that for diffusion along the grain boundaries and related dislocations near to the grain boundaries. Whittaker52 pointed out that a low activation energy is related to dislocation interaction with
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g

precipitates below the yield stress, and an increasing activation energy is caused as forest hardening becomes the dominating mechanism above the yield stress.

4. Nonlinear creep damage accumulation under variable loading condition
In this section, a novel nonlinear damage accumulation model based on the Wilshire function and the isodamage line is proposed.

At each point along the 
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 curve, the creep damage corresponds to 100%, which means that this curve is an isodamage line. When combinations of creep conditions of stress 
[image: image94.wmf]e

s

 and temperature 
[image: image95.wmf]e

T

 result in no damage, the value of stress 
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 is called the creep endurance limit and corresponds to a state of 0% creep damage. It is hypothesized that a set of straight isodamage lines can be introduced between the two extremes, as shown in Figure 2. Earlier experimental results showed that all of the isodamage lines converged near the creep endurance limit37.
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FIGURE 2 Definition of isodamage lines
The accumulated creep damage due to load step i can be defined as the ratio between the slope of an isodamage line, 
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Supposing that a specimen is loaded under a two-step loading condition as shown in Figure 3, then the creep damage introduced by the previous creep condition 
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 must be considered. This is done by following the isodamage line to the new loading level (Figure 4). The accumulated damage is along the vertical line to point A, after the creep condition 
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 to the point O represents an isodamage line, where 
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. Failure eventually occurs when the damage reaches point G vertically, and:
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where 
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FIGURE 3 Two-step loading condition
For the loading condition 
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or
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According to Equation (11) GOTOBUTTON ZEqnNum245277  \* MERGEFORMAT 
(14)
 and Equation (12) GOTOBUTTON ZEqnNum194763  \* MERGEFORMAT 
(15)
, we obtain:
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Given Equation (10)

, the following can be derived:



[image: image134.wmf]21

21

lnln

lnln

lnln

2

21

2221

11*

bb

ee

bebe

e

fffe

t

tt

t

tttt

ss

ss

ss

ss

æöæö

æöæö

--

ç÷ç÷

ç÷ç÷

ç÷ç÷

èøèø

ç÷ç÷

*

æöæö

ç÷ç÷

--

ç÷ç÷

ç÷ç÷

èøèø

èøèø

æö

=-=-

ç÷

èø

 
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (14)

Further:
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or
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Equation (15) GOTOBUTTON ZEqnNum721108  \* MERGEFORMAT 
(15)
 and Equation (16) GOTOBUTTON ZEqnNum485530  \* MERGEFORMAT 
(16)
 can be rewritten as:
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Combining Equation (14) GOTOBUTTON ZEqnNum773604  \* MERGEFORMAT 
(14)
 and Equation (17) GOTOBUTTON ZEqnNum984504  \* MERGEFORMAT 
(17)
, we arrive at:
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or
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where:
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 are the creep endurance limit and the ultimate tension strength at a certain temperature, respectively. It can be regard as a whole and can be obtained experimentally from actual applications.

Equation (19) GOTOBUTTON ZEqnNum962945  \* MERGEFORMAT 
(19)
 can be generalized to a multi-step loading condition, which can be written as:
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where
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[image: image145.emf]
FIGURE 4 The accumulation of creep damage
5. Experiments
In this section, variable creep loading experiments of Ni-base superalloy GH4169 were carried out to verify the predictive ability of the proposed model.
5.1. Material and testing details

The investigated material is Ni-base superalloy GH4169 with a typical chemical composition of 55%Ni, 19%Cr, 5.23%Nb, 3.02%Mo, 0.98%Ti, and 0.54%Al. The ultimate tension strength at 873K and 923K are 1440MPa, 1255MPa, respectively. The specimen used for creep tests and the microstructure of the superalloy were shown in Figure 5.
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(A)The creep specimen       (B) Microstructure of the superalloy GH4169
FIGURE 5 The specimens used for creep test and microstructure of the alloy
The creep experiments were conducted on RDL-50 testing system. At first, the furnaces were heated to target temperature and maintained for 1 hour at 50MPa. The temperature and stress controlling errors were no more than 2 K and 0.5%, respectively. Creep deformation was measured using high-resolution extensometer, and the stress-temperature load were automatically changed to the next level.
Creep specimens 1, 2, 3, 4, 5, 6 and 7 were loaded under constant loading conditions to obtain the corresponding rupture time and strain. Furthermore, specimens 8, 9, 10, 11 and 12 were loaded under variable loading conditions. The specific experimental results and creep curves were shown in Table 1 and Figure 6. 
5.2 Comparison of predicting results of different method

For comparison purposes, the method developed by Pavlou37, Batsoulas38, Hu40 and the time fraction model were also utilized here. Specimen 8 was used to obtain the parameters
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in the proposed model and Pavlou model, respectively. The fitting results are 
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(for Pavlou model). It’s worth noting that real solution cannot be obtained with specimens 8 or 9, so the parameters
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of Batsoulas and Hu model were fitted by specimens 10, 11. The obtained results are
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(for Hu model). The predicting results of different method are shown in Table 2, and it can be seen that the novel method displays preferable prediction ability compared to others model.
TABLE 1 Experimental results of GH4169 superalloy.

	No.
	1st step load
	2nd step load
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	1
	923
	820
	—
	17
	—
	7.9
	—
	—
	—
	—
	—
	—

	2
	923
	770
	—
	71.5
	—
	13.6
	—
	—
	—
	—
	—
	—

	3
	923
	720
	—
	99
	—
	20.7
	—
	—
	—
	—
	—
	—

	4
	923
	595
	—
	328
	—
	14.5
	—
	—
	—
	—
	—
	—

	5
	873
	880
	—
	246
	—
	4.2
	—
	—
	—
	—
	—
	—

	6
	873
	850
	—
	326
	—
	16.0
	—
	—
	—
	—
	—
	—

	7
	873
	820
	—
	416
	—
	15.6
	—
	—
	—
	—
	—
	—

	8
	923
	720
	20
	99
	0.34
	20.7
	923
	595
	210
	328
	27.66
	14.5

	9
	923
	720
	50
	99
	1.14
	20.7
	923
	595
	143
	328
	22.16
	14.5

	10
	923
	820
	10
	17
	1.69
	7.9
	873
	820
	146
	416
	15.48
	15.6

	11
	873
	880
	100
	246
	0.76
	4.2
	923
	820
	11
	17
	5.74
	7.9

	12
	923
	770
	20
	71.5
	1.53
	13.6
	873
	850
	195
	326
	9.88
	16.0


[image: image170.png]strain

0.20

0.15 +

0.10 -+

0.05 -+

0.00 -

—— 923K 820MPa
—— 923K 770MPa
—— 923K 720MPa
—— 923K 595MPa
——— 873K 880MPa
—— 873K 850MPa
- 873K 820MPa

_

1
100

2(I)0
t (h)

1
300

1
400




[image: image171.png]strain

0.30 -

0.25 -+

0.20

0.15 +

0.10 -+

0.05 -+

0.00 -

— 923K 720MPa—923K 595MPa
— 923K 720MPa—923K 595MPa
—— 923K 820MPa—=873K 820MPa
—— 873K 880MPa—923K 820MPa
——— 923K 770MPa—=873K 850MPa

50 . 1(I)0 . 1%0
t (h)

1
200

250




(A)The creep curves of specimens 1-7           (B) The creep curves of specimens 8-12
FIGURE 6 The creep curves of specimens 1-12
TABLE 2 Comparison of prediction results of different models
	No.
	Experimental results
	Novel model
	Pavlou model
	Time fraction
	Batsoulas model
	Hu model

	
	Remaining life/h
	Remaining strain/%
	Predicting life/h
	Error
	Predicting life/h
	Error
	Predicting life/h
	Error
	Predicting strain/%
	Error
	Predicting strain/%
	Error

	8
	210
	27.66
	210.2
	0%
	210.2
	0%
	262.8
	+25%
	14.49
	-48%
	14.48
	-48%

	9
	143
	22.16
	116.9
	-18%
	115.4
	-19%
	164.3
	+15%
	14.40
	-35%
	14.43
	-35%

	10
	146
	15.48
	134.4
	-8%
	117.9
	-19%
	170.6
	+17%
	15.48
	0%
	15.48
	0%

	11
	11
	5.74
	11.0
	0%
	9.1
	-17%
	10.1
	-8%
	5.74
	0%
	5.74
	0%

	12
	195
	9.88
	224.8
	+15%
	258.3
	+32%
	234.7
	+20%
	12.68
	+28%
	12.50
	+27%


The proposed model assumes that the damage caused by the duration 
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 condition are the same, and thus should be on one isodamage line. Therefore, the results obtained from Table 1 are used to draw damage evolution lines. The experimental data corresponding to the same damage were connected to represent the isodamage lines. The value of creep activation energy 
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can be obtained by using Equation (1) and experimental results. 

However, due to the dispersion of the experimental data and the error of related parameters, all the damage evolution lines are not drawn together. On the contrary, the damage evolution lines of each set of experimental data are given in Figure 7. It can be seen the proposed model accurately elucidates the evolutionary process of creep damage.
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(A) Isodamage line and damage evolution line      (B) Isodamage line and damage evolution line 
of specimens 8 and 9                         of specimen 10
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(C) Isodamage line and damage evolution line       (D) Isodamage line and damage evolution line 
of specimen 11                                of specimen 12

FIGURE 7 Isodamage line and damage evolution line of GH4169 material
6. Comparison with other materials
To further verify the ability of the proposed model, experimental results of austenitic high-temperature steel X8CrNiMoNb-16-16, Al-99.98 and Sn-3.5Ag-0.5Cu solder alloy from different literature sources39,53 were used for validation. The specific test schemes and results are summarized in Table 3 and Table 4
TABLE 3 Test conditions and properties of three kind of materials.
	Material
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	X8CrNiMoNb-16-16
	150
	973
	447
	313
	170
	973
	200
	313

	Al-99.98
	12
	498
	17
	40
	14
	498
	6.9
	40

	Sn-3.5Ag-0.5Cu
	16.1
	333
	16.7
	31.2
	16.1
	298
	722.5
	47.8


TABLE 4 Test results of three kind of materials.
	Material
	No.
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	X8CrNiMoNb-16-16
	13
	0.05
	0.7
	17
	0.44
	0.20

	
	14
	0.1
	0.61
	18
	0.46
	0.21

	
	15
	0.35
	0.21
	19
	0.55
	0.21

	
	16
	0.4
	0.25
	20
	0.88
	0.05

	Al-99.98
	21
	0.12
	0.58
	25
	0.50
	0.24

	
	22
	0.13
	0.56
	26
	0.65
	0.16

	
	23
	0.3
	0.38
	27
	0.70
	0.13

	
	24
	0.32
	0.37
	28
	0.75
	0.11

	Sn-3.5Ag-0.5Cu
	29
	0.10
	0.55
	31
	0.58
	0.37

	
	30
	0.34
	0.26
	--
	--
	--


Since only time information is known, so the model developed by Pavlou and the time fraction method are utilized for comparison. The prediction results obtained using the same method are shown in Figure 8. It is evident that the results predicted by the proposed model all fall within the ±2, ±1.05 and ±1.6 scatter band for X8CrNiMoNb-16-16, Al-99.98 and Sn-3.5Ag-0.5Cu, respectively, which shows that the predictions of the proposed model are better than those of the Pavlou model and the time fraction method.
[image: image193.png]Predicted life t,

X8-CrNiMoNb-16-16

100 4

L7 XX
Ve
7 e
7 e
/x //
Ve Ve
// ga //
// //
7 7z
7 e
7 e
e
e
e
e
Ve
e
Ve
N O Proposed model

+ Pavlou model
> Time friction
- - - -2 life factor

100
Tested life t,




[image: image194.png]Predicted life t,

Al-99.98

//
//
//
//
X 7
S yal
7
X
/:’/
X b
4
'
’ /4
’ d
//’/
//’
O Proposed model
+ Pavlou model
> Time friction

-1.05 life factor

Tested life t,

10




(A) Comparison between the tested and model          (B) Comparison between the tested and model 
predicted life of X8CrNiMoNb-16-16                predicted life of Al-99.98
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(C) Comparison between the tested and model predicted life of Sn-3.5Ag-0.5Cu
FIGURE 8 Comparison between the tested and model predicted life of three kind of materials.
Similarly, the isodamage lines and damage evolution lines can also be obtained. It can be seen from Figure 9 that all isodamage lines intersect at approximately the same point, and the damage evolution line of the second set of experimental data is also shown in Figure 9.
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(A) Isodamages lines and damage evolution          (B) Isodamage lines and damage evolution 

line of X8CrNiMoNb-16-16                            line of Al-99.98
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 (C) Isodamage lines and damage evolution line of Sn-3.5Ag-0.5Cu
FIGURE 9 Isodamage lines and damage evolution line of three kind of materials.
7. Summary of the results

Based on the abovementioned analyses, it is evident that the novel method proposed in this paper is better at predicting the cumulative behavior of nonlinear creep damage than the other methods with which it was compared. After careful observation, the damage evolution lines show that there was a small difference. Specifically, for GH4169 and Sn-3.5Ag-0.5Cu, the intersection of the isodamage lines appear at the position where the stress is smaller, while the opposing situation happened for X8CrNiMoNb-16-16 and Al-99.98. This phenomenon can be explained by the load sequence effect. For the case where the intersection occurs at the position where the stress is smaller, the total creep life will be reduced if the high loading condition was applied first. On the contrary, the total creep life will be reduced if the low loading condition was applied first for the case where the intersection occurs at the position where the stress is greater. It can be seen from Figure 10 that there are four cases of damage evolution process. As summarized in Table 5, GH4169, Sn-3.5Ag-0.5Cu belong to case 1, 2, and X8CrNiMoNb-16-16, Al-99.98 belong to case 3, 4, respectively. What’s interesting is that there are two intersections, which means the existence of two kinds of creep endurance limit. And rare relevant research on this phenomenon has been reported, as far as the author knows. Hence, further research is needed on the concept of creep endurance limit. It is worth noting that the predictive ability of the model proposed in this paper is not affected by this issue.
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FIGURE 10 Four cases of damage evolution process
TABLE 5 Load sequence efect on creep life
	Intersection
	Case
	Type of load applied first
	Creep life
	Material

	
[image: image200.wmf]1

O


	1
	High
	Reduced
	GH4169,
Sn-3.5Ag-0.5Cu

	
	2
	Low
	Increased
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	3
	High
	Increased
	X8CrNiMoNb-16-16,
Al-99.98

	
	4
	Low
	Reduced
	


8. Conclusions

In the present research, a novel nonlinear creep damage accumulation model is proposed based on the Wilshire function and isodamage line. The load sequence and the interaction effects can be represented by an exponential term
[image: image202.wmf]n1,n
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. Furthermore, variable creep loading experiments were carried out to evaluate the proposed model. The conclusions of this work are as follows:

(1) The proposed model takes the load sequence and the interaction effects into account, and these can be represented by exponents. Experimental results show that the predictive ability of the novel model is better than all others model.
(2) The load sequence has dissimilar effects on different materials. The total creep life was reduced for X-8-CrNiMoNb-16-16 and Al-99.98 when the low loading condition was applied first. The opposite was found for GH4169 and Sn-3.5Ag-0.5Cu.

(3) This paper discusses the four kinds of damage evolution process, and elucidates the damage evolution process of different materials.
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Highlights
1. Damage predictive ability of proposed model is better than all others model.
2. Four kinds of damage evolution process are discussed.

3. This paper elucidates the damage evolution process of different materials.

4. The dissimilar load sequence will increase or reduce the life for different materials.
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